linux/drivers/hwtracing/stm/policy.c

572 lines
13 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
/*
* System Trace Module (STM) master/channel allocation policy management
* Copyright (c) 2014, Intel Corporation.
*
* A master/channel allocation policy allows mapping string identifiers to
* master and channel ranges, where allocation can be done.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/configfs.h>
#include <linux/slab.h>
#include <linux/stm.h>
#include "stm.h"
/*
* STP Master/Channel allocation policy configfs layout.
*/
struct stp_policy {
struct config_group group;
struct stm_device *stm;
};
struct stp_policy_node {
struct config_group group;
struct stp_policy *policy;
unsigned int first_master;
unsigned int last_master;
unsigned int first_channel;
unsigned int last_channel;
/* this is the one that's exposed to the attributes */
unsigned char priv[0];
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
};
void *stp_policy_node_priv(struct stp_policy_node *pn)
{
if (!pn)
return NULL;
return pn->priv;
}
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
static struct configfs_subsystem stp_policy_subsys;
void stp_policy_node_get_ranges(struct stp_policy_node *policy_node,
unsigned int *mstart, unsigned int *mend,
unsigned int *cstart, unsigned int *cend)
{
*mstart = policy_node->first_master;
*mend = policy_node->last_master;
*cstart = policy_node->first_channel;
*cend = policy_node->last_channel;
}
static inline char *stp_policy_node_name(struct stp_policy_node *policy_node)
{
return policy_node->group.cg_item.ci_name ? : "<none>";
}
static inline struct stp_policy *to_stp_policy(struct config_item *item)
{
return item ?
container_of(to_config_group(item), struct stp_policy, group) :
NULL;
}
static inline struct stp_policy_node *
to_stp_policy_node(struct config_item *item)
{
return item ?
container_of(to_config_group(item), struct stp_policy_node,
group) :
NULL;
}
void *to_pdrv_policy_node(struct config_item *item)
{
struct stp_policy_node *node = to_stp_policy_node(item);
return stp_policy_node_priv(node);
}
EXPORT_SYMBOL_GPL(to_pdrv_policy_node);
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
static ssize_t
stp_policy_node_masters_show(struct config_item *item, char *page)
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
{
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
struct stp_policy_node *policy_node = to_stp_policy_node(item);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
ssize_t count;
count = sprintf(page, "%u %u\n", policy_node->first_master,
policy_node->last_master);
return count;
}
static ssize_t
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
stp_policy_node_masters_store(struct config_item *item, const char *page,
size_t count)
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
{
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
struct stp_policy_node *policy_node = to_stp_policy_node(item);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
unsigned int first, last;
struct stm_device *stm;
char *p = (char *)page;
ssize_t ret = -ENODEV;
if (sscanf(p, "%u %u", &first, &last) != 2)
return -EINVAL;
mutex_lock(&stp_policy_subsys.su_mutex);
stm = policy_node->policy->stm;
if (!stm)
goto unlock;
/* must be within [sw_start..sw_end], which is an inclusive range */
if (first > last || first < stm->data->sw_start ||
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
last > stm->data->sw_end) {
ret = -ERANGE;
goto unlock;
}
ret = count;
policy_node->first_master = first;
policy_node->last_master = last;
unlock:
mutex_unlock(&stp_policy_subsys.su_mutex);
return ret;
}
static ssize_t
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
stp_policy_node_channels_show(struct config_item *item, char *page)
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
{
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
struct stp_policy_node *policy_node = to_stp_policy_node(item);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
ssize_t count;
count = sprintf(page, "%u %u\n", policy_node->first_channel,
policy_node->last_channel);
return count;
}
static ssize_t
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
stp_policy_node_channels_store(struct config_item *item, const char *page,
size_t count)
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
{
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
struct stp_policy_node *policy_node = to_stp_policy_node(item);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
unsigned int first, last;
struct stm_device *stm;
char *p = (char *)page;
ssize_t ret = -ENODEV;
if (sscanf(p, "%u %u", &first, &last) != 2)
return -EINVAL;
mutex_lock(&stp_policy_subsys.su_mutex);
stm = policy_node->policy->stm;
if (!stm)
goto unlock;
if (first > INT_MAX || last > INT_MAX || first > last ||
last >= stm->data->sw_nchannels) {
ret = -ERANGE;
goto unlock;
}
ret = count;
policy_node->first_channel = first;
policy_node->last_channel = last;
unlock:
mutex_unlock(&stp_policy_subsys.su_mutex);
return ret;
}
static void stp_policy_node_release(struct config_item *item)
{
struct stp_policy_node *node = to_stp_policy_node(item);
kfree(node);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
}
static struct configfs_item_operations stp_policy_node_item_ops = {
.release = stp_policy_node_release,
};
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
CONFIGFS_ATTR(stp_policy_node_, masters);
CONFIGFS_ATTR(stp_policy_node_, channels);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
static struct configfs_attribute *stp_policy_node_attrs[] = {
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
&stp_policy_node_attr_masters,
&stp_policy_node_attr_channels,
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
NULL,
};
static const struct config_item_type stp_policy_type;
static const struct config_item_type stp_policy_node_type;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
const struct config_item_type *
get_policy_node_type(struct configfs_attribute **attrs)
{
struct config_item_type *type;
struct configfs_attribute **merged;
type = kmemdup(&stp_policy_node_type, sizeof(stp_policy_node_type),
GFP_KERNEL);
if (!type)
return NULL;
merged = memcat_p(stp_policy_node_attrs, attrs);
if (!merged) {
kfree(type);
return NULL;
}
type->ct_attrs = merged;
return type;
}
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
static struct config_group *
stp_policy_node_make(struct config_group *group, const char *name)
{
const struct config_item_type *type = &stp_policy_node_type;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
struct stp_policy_node *policy_node, *parent_node;
const struct stm_protocol_driver *pdrv;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
struct stp_policy *policy;
if (group->cg_item.ci_type == &stp_policy_type) {
policy = container_of(group, struct stp_policy, group);
} else {
parent_node = container_of(group, struct stp_policy_node,
group);
policy = parent_node->policy;
}
if (!policy->stm)
return ERR_PTR(-ENODEV);
pdrv = policy->stm->pdrv;
policy_node =
kzalloc(offsetof(struct stp_policy_node, priv[pdrv->priv_sz]),
GFP_KERNEL);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
if (!policy_node)
return ERR_PTR(-ENOMEM);
if (pdrv->policy_node_init)
pdrv->policy_node_init((void *)policy_node->priv);
if (policy->stm->pdrv_node_type)
type = policy->stm->pdrv_node_type;
config_group_init_type_name(&policy_node->group, name, type);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
policy_node->policy = policy;
/* default values for the attributes */
policy_node->first_master = policy->stm->data->sw_start;
policy_node->last_master = policy->stm->data->sw_end;
policy_node->first_channel = 0;
policy_node->last_channel = policy->stm->data->sw_nchannels - 1;
return &policy_node->group;
}
static void
stp_policy_node_drop(struct config_group *group, struct config_item *item)
{
config_item_put(item);
}
static struct configfs_group_operations stp_policy_node_group_ops = {
.make_group = stp_policy_node_make,
.drop_item = stp_policy_node_drop,
};
static const struct config_item_type stp_policy_node_type = {
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
.ct_item_ops = &stp_policy_node_item_ops,
.ct_group_ops = &stp_policy_node_group_ops,
.ct_attrs = stp_policy_node_attrs,
.ct_owner = THIS_MODULE,
};
/*
* Root group: policies.
*/
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
static ssize_t stp_policy_device_show(struct config_item *item,
char *page)
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
{
struct stp_policy *policy = to_stp_policy(item);
ssize_t count;
count = sprintf(page, "%s\n",
(policy && policy->stm) ?
policy->stm->data->name :
"<none>");
return count;
}
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
CONFIGFS_ATTR_RO(stp_policy_, device);
static ssize_t stp_policy_protocol_show(struct config_item *item,
char *page)
{
struct stp_policy *policy = to_stp_policy(item);
ssize_t count;
count = sprintf(page, "%s\n",
(policy && policy->stm) ?
policy->stm->pdrv->name :
"<none>");
return count;
}
CONFIGFS_ATTR_RO(stp_policy_, protocol);
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
static struct configfs_attribute *stp_policy_attrs[] = {
&stp_policy_attr_device,
&stp_policy_attr_protocol,
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending Pull SCSI target updates from Nicholas Bellinger: "This series contains HCH's changes to absorb configfs attribute ->show() + ->store() function pointer usage from it's original tree-wide consumers, into common configfs code. It includes usb-gadget, target w/ drivers, netconsole and ocfs2 changes to realize the improved simplicity, that now renders the original include/target/configfs_macros.h CPP magic for fabric drivers and others, unnecessary and obsolete. And with common code in place, new configfs attributes can be added easier than ever before. Note, there are further improvements in-flight from other folks for v4.5 code in configfs land, plus number of target fixes for post -rc1 code" In the meantime, a new user of the now-removed old configfs API came in through the char/misc tree in commit 7bd1d4093c2f ("stm class: Introduce an abstraction for System Trace Module devices"). This merge resolution comes from Alexander Shishkin, who updated his stm class tracing abstraction to account for the removal of the old show_attribute and store_attribute methods in commit 517982229f78 ("configfs: remove old API") from this pull. As Alexander says about that patch: "There's no need to keep an extra wrapper structure per item and the awkward show_attribute/store_attribute item ops are no longer needed. This patch converts policy code to the new api, all the while making the code quite a bit smaller and easier on the eyes. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>" That patch was folded into the merge so that the tree should be fully bisectable. * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pending: (23 commits) configfs: remove old API ocfs2/cluster: use per-attribute show and store methods ocfs2/cluster: move locking into attribute store methods netconsole: use per-attribute show and store methods target: use per-attribute show and store methods spear13xx_pcie_gadget: use per-attribute show and store methods dlm: use per-attribute show and store methods usb-gadget/f_serial: use per-attribute show and store methods usb-gadget/f_phonet: use per-attribute show and store methods usb-gadget/f_obex: use per-attribute show and store methods usb-gadget/f_uac2: use per-attribute show and store methods usb-gadget/f_uac1: use per-attribute show and store methods usb-gadget/f_mass_storage: use per-attribute show and store methods usb-gadget/f_sourcesink: use per-attribute show and store methods usb-gadget/f_printer: use per-attribute show and store methods usb-gadget/f_midi: use per-attribute show and store methods usb-gadget/f_loopback: use per-attribute show and store methods usb-gadget/ether: use per-attribute show and store methods usb-gadget/f_acm: use per-attribute show and store methods usb-gadget/f_hid: use per-attribute show and store methods ...
2015-11-14 04:04:17 +00:00
NULL,
};
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
void stp_policy_unbind(struct stp_policy *policy)
{
struct stm_device *stm = policy->stm;
/*
* stp_policy_release() will not call here if the policy is already
* unbound; other users should not either, as no link exists between
* this policy and anything else in that case
*/
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
if (WARN_ON_ONCE(!policy->stm))
return;
lockdep_assert_held(&stm->policy_mutex);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
stm->policy = NULL;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
policy->stm = NULL;
stm_put_protocol(stm->pdrv);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
stm_put_device(stm);
}
static void stp_policy_release(struct config_item *item)
{
struct stp_policy *policy = to_stp_policy(item);
struct stm_device *stm = policy->stm;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
/* a policy *can* be unbound and still exist in configfs tree */
if (!stm)
return;
mutex_lock(&stm->policy_mutex);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
stp_policy_unbind(policy);
mutex_unlock(&stm->policy_mutex);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
kfree(policy);
}
static struct configfs_item_operations stp_policy_item_ops = {
.release = stp_policy_release,
};
static struct configfs_group_operations stp_policy_group_ops = {
.make_group = stp_policy_node_make,
};
static const struct config_item_type stp_policy_type = {
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
.ct_item_ops = &stp_policy_item_ops,
.ct_group_ops = &stp_policy_group_ops,
.ct_attrs = stp_policy_attrs,
.ct_owner = THIS_MODULE,
};
static struct config_group *
stp_policy_make(struct config_group *group, const char *name)
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
{
const struct config_item_type *pdrv_node_type;
const struct stm_protocol_driver *pdrv;
char *devname, *proto, *p;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
struct config_group *ret;
struct stm_device *stm;
int err;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
devname = kasprintf(GFP_KERNEL, "%s", name);
if (!devname)
return ERR_PTR(-ENOMEM);
/*
* node must look like <device_name>.<policy_name>, where
* <device_name> is the name of an existing stm device; may
* contain dots;
* <policy_name> is an arbitrary string; may not contain dots
* <device_name>:<protocol_name>.<policy_name>
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
*/
p = strrchr(devname, '.');
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
if (!p) {
kfree(devname);
return ERR_PTR(-EINVAL);
}
*p = '\0';
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
/*
* look for ":<protocol_name>":
* + no protocol suffix: fall back to whatever is available;
* + unknown protocol: fail the whole thing
*/
proto = strrchr(devname, ':');
if (proto)
*proto++ = '\0';
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
stm = stm_find_device(devname);
if (!stm) {
kfree(devname);
return ERR_PTR(-ENODEV);
}
err = stm_lookup_protocol(proto, &pdrv, &pdrv_node_type);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
kfree(devname);
if (err) {
stm_put_device(stm);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
return ERR_PTR(-ENODEV);
}
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
mutex_lock(&stm->policy_mutex);
if (stm->policy) {
ret = ERR_PTR(-EBUSY);
goto unlock_policy;
}
stm->policy = kzalloc(sizeof(*stm->policy), GFP_KERNEL);
if (!stm->policy) {
2018-12-19 15:19:20 +00:00
ret = ERR_PTR(-ENOMEM);
goto unlock_policy;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
}
config_group_init_type_name(&stm->policy->group, name,
&stp_policy_type);
stm->pdrv = pdrv;
stm->pdrv_node_type = pdrv_node_type;
stm->policy->stm = stm;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
ret = &stm->policy->group;
unlock_policy:
mutex_unlock(&stm->policy_mutex);
if (IS_ERR(ret)) {
2018-12-19 15:19:20 +00:00
/*
* pdrv and stm->pdrv at this point can be quite different,
* and only one of them needs to be 'put'
*/
stm_put_protocol(pdrv);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
stm_put_device(stm);
}
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
return ret;
}
static struct configfs_group_operations stp_policy_root_group_ops = {
.make_group = stp_policy_make,
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
};
static const struct config_item_type stp_policy_root_type = {
.ct_group_ops = &stp_policy_root_group_ops,
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
.ct_owner = THIS_MODULE,
};
static struct configfs_subsystem stp_policy_subsys = {
.su_group = {
.cg_item = {
.ci_namebuf = "stp-policy",
.ci_type = &stp_policy_root_type,
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
},
},
};
/*
* Lock the policy mutex from the outside
*/
static struct stp_policy_node *
__stp_policy_node_lookup(struct stp_policy *policy, char *s)
{
struct stp_policy_node *policy_node, *ret = NULL;
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
struct list_head *head = &policy->group.cg_children;
struct config_item *item;
char *start, *end = s;
if (list_empty(head))
return NULL;
next:
for (;;) {
start = strsep(&end, "/");
if (!start)
break;
if (!*start)
continue;
list_for_each_entry(item, head, ci_entry) {
policy_node = to_stp_policy_node(item);
if (!strcmp(start,
policy_node->group.cg_item.ci_name)) {
ret = policy_node;
if (!end)
goto out;
head = &policy_node->group.cg_children;
goto next;
}
}
break;
}
out:
return ret;
}
struct stp_policy_node *
stp_policy_node_lookup(struct stm_device *stm, char *s)
{
struct stp_policy_node *policy_node = NULL;
mutex_lock(&stp_policy_subsys.su_mutex);
mutex_lock(&stm->policy_mutex);
if (stm->policy)
policy_node = __stp_policy_node_lookup(stm->policy, s);
mutex_unlock(&stm->policy_mutex);
if (policy_node)
config_item_get(&policy_node->group.cg_item);
else
mutex_unlock(&stp_policy_subsys.su_mutex);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
return policy_node;
}
void stp_policy_node_put(struct stp_policy_node *policy_node)
{
lockdep_assert_held(&stp_policy_subsys.su_mutex);
mutex_unlock(&stp_policy_subsys.su_mutex);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
config_item_put(&policy_node->group.cg_item);
}
int __init stp_configfs_init(void)
{
config_group_init(&stp_policy_subsys.su_group);
mutex_init(&stp_policy_subsys.su_mutex);
return configfs_register_subsystem(&stp_policy_subsys);
stm class: Introduce an abstraction for System Trace Module devices A System Trace Module (STM) is a device exporting data in System Trace Protocol (STP) format as defined by MIPI STP standards. Examples of such devices are Intel(R) Trace Hub and Coresight STM. This abstraction provides a unified interface for software trace sources to send their data over an STM device to a debug host. In order to do that, such a trace source needs to be assigned a pair of master/channel identifiers that all the data from this source will be tagged with. The STP decoder on the debug host side will use these master/channel tags to distinguish different trace streams from one another inside one STP stream. This abstraction provides a configfs-based policy management mechanism for dynamic allocation of these master/channel pairs based on trace source-supplied string identifier. It has the flexibility of being defined at runtime and at the same time (provided that the policy definition is aligned with the decoding end) consistency. For userspace trace sources, this abstraction provides write()-based and mmap()-based (if the underlying stm device allows this) output mechanism. For kernel-side trace sources, we provide "stm_source" device class that can be connected to an stm device at run time. Cc: linux-api@vger.kernel.org Reviewed-by: Mathieu Poirier <mathieu.poirier@linaro.org> Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-09-22 12:47:10 +00:00
}
void __exit stp_configfs_exit(void)
{
configfs_unregister_subsystem(&stp_policy_subsys);
}