2014-06-02 12:18:35 +00:00
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/time.h>
|
|
|
|
#include <linux/types.h>
|
|
|
|
#include <linux/efi.h>
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/memblock.h>
|
|
|
|
#include <linux/bootmem.h>
|
2014-06-13 11:39:55 +00:00
|
|
|
#include <linux/acpi.h>
|
2014-06-02 12:18:35 +00:00
|
|
|
#include <asm/efi.h>
|
|
|
|
#include <asm/uv/uv.h>
|
|
|
|
|
|
|
|
#define EFI_MIN_RESERVE 5120
|
|
|
|
|
|
|
|
#define EFI_DUMMY_GUID \
|
|
|
|
EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
|
|
|
|
|
|
|
|
static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
|
|
|
|
|
|
|
|
static bool efi_no_storage_paranoia;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some firmware implementations refuse to boot if there's insufficient
|
|
|
|
* space in the variable store. The implementation of garbage collection
|
|
|
|
* in some FW versions causes stale (deleted) variables to take up space
|
|
|
|
* longer than intended and space is only freed once the store becomes
|
|
|
|
* almost completely full.
|
|
|
|
*
|
|
|
|
* Enabling this option disables the space checks in
|
|
|
|
* efi_query_variable_store() and forces garbage collection.
|
|
|
|
*
|
|
|
|
* Only enable this option if deleting EFI variables does not free up
|
|
|
|
* space in your variable store, e.g. if despite deleting variables
|
|
|
|
* you're unable to create new ones.
|
|
|
|
*/
|
|
|
|
static int __init setup_storage_paranoia(char *arg)
|
|
|
|
{
|
|
|
|
efi_no_storage_paranoia = true;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
early_param("efi_no_storage_paranoia", setup_storage_paranoia);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deleting the dummy variable which kicks off garbage collection
|
|
|
|
*/
|
|
|
|
void efi_delete_dummy_variable(void)
|
|
|
|
{
|
|
|
|
efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
|
|
|
|
EFI_VARIABLE_NON_VOLATILE |
|
|
|
|
EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
|
|
EFI_VARIABLE_RUNTIME_ACCESS,
|
|
|
|
0, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Some firmware implementations refuse to boot if there's insufficient space
|
|
|
|
* in the variable store. Ensure that we never use more than a safe limit.
|
|
|
|
*
|
|
|
|
* Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
|
|
|
|
* store.
|
|
|
|
*/
|
|
|
|
efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
|
|
|
|
{
|
|
|
|
efi_status_t status;
|
|
|
|
u64 storage_size, remaining_size, max_size;
|
|
|
|
|
|
|
|
if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
status = efi.query_variable_info(attributes, &storage_size,
|
|
|
|
&remaining_size, &max_size);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
|
|
return status;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We account for that by refusing the write if permitting it would
|
|
|
|
* reduce the available space to under 5KB. This figure was provided by
|
|
|
|
* Samsung, so should be safe.
|
|
|
|
*/
|
|
|
|
if ((remaining_size - size < EFI_MIN_RESERVE) &&
|
|
|
|
!efi_no_storage_paranoia) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Triggering garbage collection may require that the firmware
|
|
|
|
* generate a real EFI_OUT_OF_RESOURCES error. We can force
|
|
|
|
* that by attempting to use more space than is available.
|
|
|
|
*/
|
|
|
|
unsigned long dummy_size = remaining_size + 1024;
|
|
|
|
void *dummy = kzalloc(dummy_size, GFP_ATOMIC);
|
|
|
|
|
|
|
|
if (!dummy)
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
|
|
|
|
status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID,
|
|
|
|
EFI_VARIABLE_NON_VOLATILE |
|
|
|
|
EFI_VARIABLE_BOOTSERVICE_ACCESS |
|
|
|
|
EFI_VARIABLE_RUNTIME_ACCESS,
|
|
|
|
dummy_size, dummy);
|
|
|
|
|
|
|
|
if (status == EFI_SUCCESS) {
|
|
|
|
/*
|
|
|
|
* This should have failed, so if it didn't make sure
|
|
|
|
* that we delete it...
|
|
|
|
*/
|
|
|
|
efi_delete_dummy_variable();
|
|
|
|
}
|
|
|
|
|
|
|
|
kfree(dummy);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The runtime code may now have triggered a garbage collection
|
|
|
|
* run, so check the variable info again
|
|
|
|
*/
|
|
|
|
status = efi.query_variable_info(attributes, &storage_size,
|
|
|
|
&remaining_size, &max_size);
|
|
|
|
|
|
|
|
if (status != EFI_SUCCESS)
|
|
|
|
return status;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There still isn't enough room, so return an error
|
|
|
|
*/
|
|
|
|
if (remaining_size - size < EFI_MIN_RESERVE)
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(efi_query_variable_store);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The UEFI specification makes it clear that the operating system is free to do
|
|
|
|
* whatever it wants with boot services code after ExitBootServices() has been
|
|
|
|
* called. Ignoring this recommendation a significant bunch of EFI implementations
|
|
|
|
* continue calling into boot services code (SetVirtualAddressMap). In order to
|
|
|
|
* work around such buggy implementations we reserve boot services region during
|
|
|
|
* EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it
|
|
|
|
* is discarded.
|
|
|
|
*/
|
|
|
|
void __init efi_reserve_boot_services(void)
|
|
|
|
{
|
|
|
|
void *p;
|
|
|
|
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
|
|
efi_memory_desc_t *md = p;
|
|
|
|
u64 start = md->phys_addr;
|
|
|
|
u64 size = md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
|
|
|
|
if (md->type != EFI_BOOT_SERVICES_CODE &&
|
|
|
|
md->type != EFI_BOOT_SERVICES_DATA)
|
|
|
|
continue;
|
|
|
|
/* Only reserve where possible:
|
|
|
|
* - Not within any already allocated areas
|
|
|
|
* - Not over any memory area (really needed, if above?)
|
|
|
|
* - Not within any part of the kernel
|
|
|
|
* - Not the bios reserved area
|
|
|
|
*/
|
|
|
|
if ((start + size > __pa_symbol(_text)
|
|
|
|
&& start <= __pa_symbol(_end)) ||
|
|
|
|
!e820_all_mapped(start, start+size, E820_RAM) ||
|
|
|
|
memblock_is_region_reserved(start, size)) {
|
|
|
|
/* Could not reserve, skip it */
|
|
|
|
md->num_pages = 0;
|
|
|
|
memblock_dbg("Could not reserve boot range [0x%010llx-0x%010llx]\n",
|
|
|
|
start, start+size-1);
|
|
|
|
} else
|
|
|
|
memblock_reserve(start, size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init efi_free_boot_services(void)
|
|
|
|
{
|
|
|
|
void *p;
|
|
|
|
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
|
|
efi_memory_desc_t *md = p;
|
|
|
|
unsigned long long start = md->phys_addr;
|
|
|
|
unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
|
|
|
|
|
|
|
|
if (md->type != EFI_BOOT_SERVICES_CODE &&
|
|
|
|
md->type != EFI_BOOT_SERVICES_DATA)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Could not reserve boot area */
|
|
|
|
if (!size)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
free_bootmem_late(start, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
efi_unmap_memmap();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A number of config table entries get remapped to virtual addresses
|
|
|
|
* after entering EFI virtual mode. However, the kexec kernel requires
|
|
|
|
* their physical addresses therefore we pass them via setup_data and
|
|
|
|
* correct those entries to their respective physical addresses here.
|
|
|
|
*
|
|
|
|
* Currently only handles smbios which is necessary for some firmware
|
|
|
|
* implementation.
|
|
|
|
*/
|
|
|
|
int __init efi_reuse_config(u64 tables, int nr_tables)
|
|
|
|
{
|
|
|
|
int i, sz, ret = 0;
|
|
|
|
void *p, *tablep;
|
|
|
|
struct efi_setup_data *data;
|
|
|
|
|
|
|
|
if (!efi_setup)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!efi_enabled(EFI_64BIT))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
data = early_memremap(efi_setup, sizeof(*data));
|
|
|
|
if (!data) {
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!data->smbios)
|
|
|
|
goto out_memremap;
|
|
|
|
|
|
|
|
sz = sizeof(efi_config_table_64_t);
|
|
|
|
|
|
|
|
p = tablep = early_memremap(tables, nr_tables * sz);
|
|
|
|
if (!p) {
|
|
|
|
pr_err("Could not map Configuration table!\n");
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto out_memremap;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < efi.systab->nr_tables; i++) {
|
|
|
|
efi_guid_t guid;
|
|
|
|
|
|
|
|
guid = ((efi_config_table_64_t *)p)->guid;
|
|
|
|
|
|
|
|
if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
|
|
|
|
((efi_config_table_64_t *)p)->table = data->smbios;
|
|
|
|
p += sz;
|
|
|
|
}
|
2014-06-09 12:41:26 +00:00
|
|
|
early_memunmap(tablep, nr_tables * sz);
|
2014-06-02 12:18:35 +00:00
|
|
|
|
|
|
|
out_memremap:
|
2014-06-09 12:41:26 +00:00
|
|
|
early_memunmap(data, sizeof(*data));
|
2014-06-02 12:18:35 +00:00
|
|
|
out:
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init efi_apply_memmap_quirks(void)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Once setup is done earlier, unmap the EFI memory map on mismatched
|
|
|
|
* firmware/kernel architectures since there is no support for runtime
|
|
|
|
* services.
|
|
|
|
*/
|
|
|
|
if (!efi_runtime_supported()) {
|
|
|
|
pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n");
|
|
|
|
efi_unmap_memmap();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* UV doesn't support the new EFI pagetable mapping yet.
|
|
|
|
*/
|
|
|
|
if (is_uv_system())
|
|
|
|
set_bit(EFI_OLD_MEMMAP, &efi.flags);
|
|
|
|
}
|
2014-06-13 11:39:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* For most modern platforms the preferred method of powering off is via
|
|
|
|
* ACPI. However, there are some that are known to require the use of
|
|
|
|
* EFI runtime services and for which ACPI does not work at all.
|
|
|
|
*
|
|
|
|
* Using EFI is a last resort, to be used only if no other option
|
|
|
|
* exists.
|
|
|
|
*/
|
|
|
|
bool efi_reboot_required(void)
|
|
|
|
{
|
|
|
|
if (!acpi_gbl_reduced_hardware)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
efi_reboot_quirk_mode = EFI_RESET_WARM;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool efi_poweroff_required(void)
|
|
|
|
{
|
|
|
|
return !!acpi_gbl_reduced_hardware;
|
|
|
|
}
|