linux/arch/mn10300/mm/init.c

177 lines
4.8 KiB
C
Raw Normal View History

/* MN10300 Memory management initialisation
*
* Copyright (C) 2007 Matsushita Electric Industrial Co., Ltd.
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Modified by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/tlb.h>
#include <asm/sections.h>
unsigned long highstart_pfn, highend_pfn;
2010-10-27 16:28:56 +00:00
#ifdef CONFIG_MN10300_HAS_ATOMIC_OPS_UNIT
static struct vm_struct user_iomap_vm;
#endif
/*
* set up paging
*/
void __init paging_init(void)
{
unsigned long zones_size[MAX_NR_ZONES] = {0,};
pte_t *ppte;
int loop;
/* main kernel space -> RAM mapping is handled as 1:1 transparent by
* the MMU */
memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
memset(kernel_vmalloc_ptes, 0, sizeof(kernel_vmalloc_ptes));
/* load the VMALLOC area PTE table addresses into the kernel PGD */
ppte = kernel_vmalloc_ptes;
for (loop = VMALLOC_START / (PAGE_SIZE * PTRS_PER_PTE);
loop < VMALLOC_END / (PAGE_SIZE * PTRS_PER_PTE);
loop++
) {
set_pgd(swapper_pg_dir + loop, __pgd(__pa(ppte) | _PAGE_TABLE));
ppte += PAGE_SIZE / sizeof(pte_t);
}
/* declare the sizes of the RAM zones (only use the normal zone) */
zones_size[ZONE_NORMAL] =
contig_page_data.bdata->node_low_pfn -
contig_page_data.bdata->node_min_pfn;
/* pass the memory from the bootmem allocator to the main allocator */
free_area_init(zones_size);
2010-10-27 16:28:56 +00:00
#ifdef CONFIG_MN10300_HAS_ATOMIC_OPS_UNIT
/* The Atomic Operation Unit registers need to be mapped to userspace
* for all processes. The following uses vm_area_register_early() to
* reserve the first page of the vmalloc area and sets the pte for that
* page.
*
* glibc hardcodes this virtual mapping, so we're pretty much stuck with
* it from now on.
*/
user_iomap_vm.flags = VM_USERMAP;
user_iomap_vm.size = 1 << PAGE_SHIFT;
vm_area_register_early(&user_iomap_vm, PAGE_SIZE);
ppte = kernel_vmalloc_ptes;
set_pte(ppte, pfn_pte(USER_ATOMIC_OPS_PAGE_ADDR >> PAGE_SHIFT,
PAGE_USERIO));
#endif
local_flush_tlb_all();
}
/*
* transfer all the memory from the bootmem allocator to the runtime allocator
*/
void __init mem_init(void)
{
int codesize, reservedpages, datasize, initsize;
int tmp;
BUG_ON(!mem_map);
#define START_PFN (contig_page_data.bdata->node_min_pfn)
#define MAX_LOW_PFN (contig_page_data.bdata->node_low_pfn)
max_mapnr = num_physpages = MAX_LOW_PFN - START_PFN;
high_memory = (void *) __va(MAX_LOW_PFN * PAGE_SIZE);
/* clear the zero-page */
memset(empty_zero_page, 0, PAGE_SIZE);
/* this will put all low memory onto the freelists */
totalram_pages += free_all_bootmem();
reservedpages = 0;
for (tmp = 0; tmp < num_physpages; tmp++)
if (PageReserved(&mem_map[tmp]))
reservedpages++;
codesize = (unsigned long) &_etext - (unsigned long) &_stext;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
printk(KERN_INFO
"Memory: %luk/%luk available"
" (%dk kernel code, %dk reserved, %dk data, %dk init,"
" %ldk highmem)\n",
nr_free_pages() << (PAGE_SHIFT - 10),
max_mapnr << (PAGE_SHIFT - 10),
codesize >> 10,
reservedpages << (PAGE_SHIFT - 10),
datasize >> 10,
initsize >> 10,
totalhigh_pages << (PAGE_SHIFT - 10));
}
/*
*
*/
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *) addr, 0xcc, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}
/*
* recycle memory containing stuff only required for initialisation
*/
void free_initmem(void)
{
free_init_pages("unused kernel memory",
(unsigned long) &__init_begin,
(unsigned long) &__init_end);
}
/*
* dispose of the memory on which the initial ramdisk resided
*/
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_init_pages("initrd memory", start, end);
}
#endif