linux/net/decnet/dn_nsp_in.c

918 lines
21 KiB
C
Raw Normal View History

/*
* DECnet An implementation of the DECnet protocol suite for the LINUX
* operating system. DECnet is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* DECnet Network Services Protocol (Input)
*
* Author: Eduardo Marcelo Serrat <emserrat@geocities.com>
*
* Changes:
*
* Steve Whitehouse: Split into dn_nsp_in.c and dn_nsp_out.c from
* original dn_nsp.c.
* Steve Whitehouse: Updated to work with my new routing architecture.
* Steve Whitehouse: Add changes from Eduardo Serrat's patches.
* Steve Whitehouse: Put all ack handling code in a common routine.
* Steve Whitehouse: Put other common bits into dn_nsp_rx()
* Steve Whitehouse: More checks on skb->len to catch bogus packets
* Fixed various race conditions and possible nasties.
* Steve Whitehouse: Now handles returned conninit frames.
* David S. Miller: New socket locking
* Steve Whitehouse: Fixed lockup when socket filtering was enabled.
* Paul Koning: Fix to push CC sockets into RUN when acks are
* received.
* Steve Whitehouse:
* Patrick Caulfield: Checking conninits for correctness & sending of error
* responses.
* Steve Whitehouse: Added backlog congestion level return codes.
* Patrick Caulfield:
* Steve Whitehouse: Added flow control support (outbound)
* Steve Whitehouse: Prepare for nonlinear skbs
*/
/******************************************************************************
(c) 1995-1998 E.M. Serrat emserrat@geocities.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*******************************************************************************/
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/netdevice.h>
#include <linux/inet.h>
#include <linux/route.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/termios.h>
#include <linux/interrupt.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/netfilter_decnet.h>
#include <net/neighbour.h>
#include <net/dst.h>
#include <net/dn.h>
#include <net/dn_nsp.h>
#include <net/dn_dev.h>
#include <net/dn_route.h>
extern int decnet_log_martians;
static void dn_log_martian(struct sk_buff *skb, const char *msg)
{
if (decnet_log_martians) {
char *devname = skb->dev ? skb->dev->name : "???";
struct dn_skb_cb *cb = DN_SKB_CB(skb);
net_info_ratelimited("DECnet: Martian packet (%s) dev=%s src=0x%04hx dst=0x%04hx srcport=0x%04hx dstport=0x%04hx\n",
msg, devname,
le16_to_cpu(cb->src),
le16_to_cpu(cb->dst),
le16_to_cpu(cb->src_port),
le16_to_cpu(cb->dst_port));
}
}
/*
* For this function we've flipped the cross-subchannel bit
* if the message is an otherdata or linkservice message. Thus
* we can use it to work out what to update.
*/
static void dn_ack(struct sock *sk, struct sk_buff *skb, unsigned short ack)
{
struct dn_scp *scp = DN_SK(sk);
unsigned short type = ((ack >> 12) & 0x0003);
int wakeup = 0;
switch (type) {
case 0: /* ACK - Data */
if (dn_after(ack, scp->ackrcv_dat)) {
scp->ackrcv_dat = ack & 0x0fff;
wakeup |= dn_nsp_check_xmit_queue(sk, skb,
&scp->data_xmit_queue,
ack);
}
break;
case 1: /* NAK - Data */
break;
case 2: /* ACK - OtherData */
if (dn_after(ack, scp->ackrcv_oth)) {
scp->ackrcv_oth = ack & 0x0fff;
wakeup |= dn_nsp_check_xmit_queue(sk, skb,
&scp->other_xmit_queue,
ack);
}
break;
case 3: /* NAK - OtherData */
break;
}
if (wakeup && !sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
}
/*
* This function is a universal ack processor.
*/
static int dn_process_ack(struct sock *sk, struct sk_buff *skb, int oth)
{
__le16 *ptr = (__le16 *)skb->data;
int len = 0;
unsigned short ack;
if (skb->len < 2)
return len;
if ((ack = le16_to_cpu(*ptr)) & 0x8000) {
skb_pull(skb, 2);
ptr++;
len += 2;
if ((ack & 0x4000) == 0) {
if (oth)
ack ^= 0x2000;
dn_ack(sk, skb, ack);
}
}
if (skb->len < 2)
return len;
if ((ack = le16_to_cpu(*ptr)) & 0x8000) {
skb_pull(skb, 2);
len += 2;
if ((ack & 0x4000) == 0) {
if (oth)
ack ^= 0x2000;
dn_ack(sk, skb, ack);
}
}
return len;
}
/**
* dn_check_idf - Check an image data field format is correct.
* @pptr: Pointer to pointer to image data
* @len: Pointer to length of image data
* @max: The maximum allowed length of the data in the image data field
* @follow_on: Check that this many bytes exist beyond the end of the image data
*
* Returns: 0 if ok, -1 on error
*/
static inline int dn_check_idf(unsigned char **pptr, int *len, unsigned char max, unsigned char follow_on)
{
unsigned char *ptr = *pptr;
unsigned char flen = *ptr++;
(*len)--;
if (flen > max)
return -1;
if ((flen + follow_on) > *len)
return -1;
*len -= flen;
*pptr = ptr + flen;
return 0;
}
/*
* Table of reason codes to pass back to node which sent us a badly
* formed message, plus text messages for the log. A zero entry in
* the reason field means "don't reply" otherwise a disc init is sent with
* the specified reason code.
*/
static struct {
unsigned short reason;
const char *text;
} ci_err_table[] = {
{ 0, "CI: Truncated message" },
{ NSP_REASON_ID, "CI: Destination username error" },
{ NSP_REASON_ID, "CI: Destination username type" },
{ NSP_REASON_US, "CI: Source username error" },
{ 0, "CI: Truncated at menuver" },
{ 0, "CI: Truncated before access or user data" },
{ NSP_REASON_IO, "CI: Access data format error" },
{ NSP_REASON_IO, "CI: User data format error" }
};
/*
* This function uses a slightly different lookup method
* to find its sockets, since it searches on object name/number
* rather than port numbers. Various tests are done to ensure that
* the incoming data is in the correct format before it is queued to
* a socket.
*/
static struct sock *dn_find_listener(struct sk_buff *skb, unsigned short *reason)
{
struct dn_skb_cb *cb = DN_SKB_CB(skb);
struct nsp_conn_init_msg *msg = (struct nsp_conn_init_msg *)skb->data;
struct sockaddr_dn dstaddr;
struct sockaddr_dn srcaddr;
unsigned char type = 0;
int dstlen;
int srclen;
unsigned char *ptr;
int len;
int err = 0;
unsigned char menuver;
memset(&dstaddr, 0, sizeof(struct sockaddr_dn));
memset(&srcaddr, 0, sizeof(struct sockaddr_dn));
/*
* 1. Decode & remove message header
*/
cb->src_port = msg->srcaddr;
cb->dst_port = msg->dstaddr;
cb->services = msg->services;
cb->info = msg->info;
cb->segsize = le16_to_cpu(msg->segsize);
if (!pskb_may_pull(skb, sizeof(*msg)))
goto err_out;
skb_pull(skb, sizeof(*msg));
len = skb->len;
ptr = skb->data;
/*
* 2. Check destination end username format
*/
dstlen = dn_username2sockaddr(ptr, len, &dstaddr, &type);
err++;
if (dstlen < 0)
goto err_out;
err++;
if (type > 1)
goto err_out;
len -= dstlen;
ptr += dstlen;
/*
* 3. Check source end username format
*/
srclen = dn_username2sockaddr(ptr, len, &srcaddr, &type);
err++;
if (srclen < 0)
goto err_out;
len -= srclen;
ptr += srclen;
err++;
if (len < 1)
goto err_out;
menuver = *ptr;
ptr++;
len--;
/*
* 4. Check that optional data actually exists if menuver says it does
*/
err++;
if ((menuver & (DN_MENUVER_ACC | DN_MENUVER_USR)) && (len < 1))
goto err_out;
/*
* 5. Check optional access data format
*/
err++;
if (menuver & DN_MENUVER_ACC) {
if (dn_check_idf(&ptr, &len, 39, 1))
goto err_out;
if (dn_check_idf(&ptr, &len, 39, 1))
goto err_out;
if (dn_check_idf(&ptr, &len, 39, (menuver & DN_MENUVER_USR) ? 1 : 0))
goto err_out;
}
/*
* 6. Check optional user data format
*/
err++;
if (menuver & DN_MENUVER_USR) {
if (dn_check_idf(&ptr, &len, 16, 0))
goto err_out;
}
/*
* 7. Look up socket based on destination end username
*/
return dn_sklist_find_listener(&dstaddr);
err_out:
dn_log_martian(skb, ci_err_table[err].text);
*reason = ci_err_table[err].reason;
return NULL;
}
static void dn_nsp_conn_init(struct sock *sk, struct sk_buff *skb)
{
if (sk_acceptq_is_full(sk)) {
kfree_skb(skb);
return;
}
sk->sk_ack_backlog++;
skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_state_change(sk);
}
static void dn_nsp_conn_conf(struct sock *sk, struct sk_buff *skb)
{
struct dn_skb_cb *cb = DN_SKB_CB(skb);
struct dn_scp *scp = DN_SK(sk);
unsigned char *ptr;
if (skb->len < 4)
goto out;
ptr = skb->data;
cb->services = *ptr++;
cb->info = *ptr++;
cb->segsize = le16_to_cpu(*(__le16 *)ptr);
if ((scp->state == DN_CI) || (scp->state == DN_CD)) {
scp->persist = 0;
scp->addrrem = cb->src_port;
sk->sk_state = TCP_ESTABLISHED;
scp->state = DN_RUN;
scp->services_rem = cb->services;
scp->info_rem = cb->info;
scp->segsize_rem = cb->segsize;
if ((scp->services_rem & NSP_FC_MASK) == NSP_FC_NONE)
scp->max_window = decnet_no_fc_max_cwnd;
if (skb->len > 0) {
u16 dlen = *skb->data;
if ((dlen <= 16) && (dlen <= skb->len)) {
scp->conndata_in.opt_optl = cpu_to_le16(dlen);
skb_copy_from_linear_data_offset(skb, 1,
scp->conndata_in.opt_data, dlen);
}
}
dn_nsp_send_link(sk, DN_NOCHANGE, 0);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
}
out:
kfree_skb(skb);
}
static void dn_nsp_conn_ack(struct sock *sk, struct sk_buff *skb)
{
struct dn_scp *scp = DN_SK(sk);
if (scp->state == DN_CI) {
scp->state = DN_CD;
scp->persist = 0;
}
kfree_skb(skb);
}
static void dn_nsp_disc_init(struct sock *sk, struct sk_buff *skb)
{
struct dn_scp *scp = DN_SK(sk);
struct dn_skb_cb *cb = DN_SKB_CB(skb);
unsigned short reason;
if (skb->len < 2)
goto out;
reason = le16_to_cpu(*(__le16 *)skb->data);
skb_pull(skb, 2);
scp->discdata_in.opt_status = cpu_to_le16(reason);
scp->discdata_in.opt_optl = 0;
memset(scp->discdata_in.opt_data, 0, 16);
if (skb->len > 0) {
u16 dlen = *skb->data;
if ((dlen <= 16) && (dlen <= skb->len)) {
scp->discdata_in.opt_optl = cpu_to_le16(dlen);
skb_copy_from_linear_data_offset(skb, 1, scp->discdata_in.opt_data, dlen);
}
}
scp->addrrem = cb->src_port;
sk->sk_state = TCP_CLOSE;
switch (scp->state) {
case DN_CI:
case DN_CD:
scp->state = DN_RJ;
sk->sk_err = ECONNREFUSED;
break;
case DN_RUN:
sk->sk_shutdown |= SHUTDOWN_MASK;
scp->state = DN_DN;
break;
case DN_DI:
scp->state = DN_DIC;
break;
}
if (!sock_flag(sk, SOCK_DEAD)) {
if (sk->sk_socket->state != SS_UNCONNECTED)
sk->sk_socket->state = SS_DISCONNECTING;
sk->sk_state_change(sk);
}
/*
* It appears that its possible for remote machines to send disc
* init messages with no port identifier if we are in the CI and
* possibly also the CD state. Obviously we shouldn't reply with
* a message if we don't know what the end point is.
*/
if (scp->addrrem) {
dn_nsp_send_disc(sk, NSP_DISCCONF, NSP_REASON_DC, GFP_ATOMIC);
}
scp->persist_fxn = dn_destroy_timer;
scp->persist = dn_nsp_persist(sk);
out:
kfree_skb(skb);
}
/*
* disc_conf messages are also called no_resources or no_link
* messages depending upon the "reason" field.
*/
static void dn_nsp_disc_conf(struct sock *sk, struct sk_buff *skb)
{
struct dn_scp *scp = DN_SK(sk);
unsigned short reason;
if (skb->len != 2)
goto out;
reason = le16_to_cpu(*(__le16 *)skb->data);
sk->sk_state = TCP_CLOSE;
switch (scp->state) {
case DN_CI:
scp->state = DN_NR;
break;
case DN_DR:
if (reason == NSP_REASON_DC)
scp->state = DN_DRC;
if (reason == NSP_REASON_NL)
scp->state = DN_CN;
break;
case DN_DI:
scp->state = DN_DIC;
break;
case DN_RUN:
sk->sk_shutdown |= SHUTDOWN_MASK;
case DN_CC:
scp->state = DN_CN;
}
if (!sock_flag(sk, SOCK_DEAD)) {
if (sk->sk_socket->state != SS_UNCONNECTED)
sk->sk_socket->state = SS_DISCONNECTING;
sk->sk_state_change(sk);
}
scp->persist_fxn = dn_destroy_timer;
scp->persist = dn_nsp_persist(sk);
out:
kfree_skb(skb);
}
static void dn_nsp_linkservice(struct sock *sk, struct sk_buff *skb)
{
struct dn_scp *scp = DN_SK(sk);
unsigned short segnum;
unsigned char lsflags;
signed char fcval;
int wake_up = 0;
char *ptr = skb->data;
unsigned char fctype = scp->services_rem & NSP_FC_MASK;
if (skb->len != 4)
goto out;
segnum = le16_to_cpu(*(__le16 *)ptr);
ptr += 2;
lsflags = *(unsigned char *)ptr++;
fcval = *ptr;
/*
* Here we ignore erronous packets which should really
* should cause a connection abort. It is not critical
* for now though.
*/
if (lsflags & 0xf8)
goto out;
if (seq_next(scp->numoth_rcv, segnum)) {
seq_add(&scp->numoth_rcv, 1);
switch(lsflags & 0x04) { /* FCVAL INT */
case 0x00: /* Normal Request */
switch(lsflags & 0x03) { /* FCVAL MOD */
case 0x00: /* Request count */
if (fcval < 0) {
unsigned char p_fcval = -fcval;
if ((scp->flowrem_dat > p_fcval) &&
(fctype == NSP_FC_SCMC)) {
scp->flowrem_dat -= p_fcval;
}
} else if (fcval > 0) {
scp->flowrem_dat += fcval;
wake_up = 1;
}
break;
case 0x01: /* Stop outgoing data */
scp->flowrem_sw = DN_DONTSEND;
break;
case 0x02: /* Ok to start again */
scp->flowrem_sw = DN_SEND;
dn_nsp_output(sk);
wake_up = 1;
}
break;
case 0x04: /* Interrupt Request */
if (fcval > 0) {
scp->flowrem_oth += fcval;
wake_up = 1;
}
break;
}
if (wake_up && !sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
}
dn_nsp_send_oth_ack(sk);
out:
kfree_skb(skb);
}
/*
* Copy of sock_queue_rcv_skb (from sock.h) without
* bh_lock_sock() (its already held when this is called) which
* also allows data and other data to be queued to a socket.
*/
static __inline__ int dn_queue_skb(struct sock *sk, struct sk_buff *skb, int sig, struct sk_buff_head *queue)
{
int err;
/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
number of warnings when compiling with -W --ANK
*/
if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
(unsigned int)sk->sk_rcvbuf) {
err = -ENOMEM;
goto out;
}
err = sk_filter(sk, skb);
if (err)
goto out;
skb_set_owner_r(skb, sk);
skb_queue_tail(queue, skb);
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_data_ready(sk);
out:
return err;
}
static void dn_nsp_otherdata(struct sock *sk, struct sk_buff *skb)
{
struct dn_scp *scp = DN_SK(sk);
unsigned short segnum;
struct dn_skb_cb *cb = DN_SKB_CB(skb);
int queued = 0;
if (skb->len < 2)
goto out;
cb->segnum = segnum = le16_to_cpu(*(__le16 *)skb->data);
skb_pull(skb, 2);
if (seq_next(scp->numoth_rcv, segnum)) {
if (dn_queue_skb(sk, skb, SIGURG, &scp->other_receive_queue) == 0) {
seq_add(&scp->numoth_rcv, 1);
scp->other_report = 0;
queued = 1;
}
}
dn_nsp_send_oth_ack(sk);
out:
if (!queued)
kfree_skb(skb);
}
static void dn_nsp_data(struct sock *sk, struct sk_buff *skb)
{
int queued = 0;
unsigned short segnum;
struct dn_skb_cb *cb = DN_SKB_CB(skb);
struct dn_scp *scp = DN_SK(sk);
if (skb->len < 2)
goto out;
cb->segnum = segnum = le16_to_cpu(*(__le16 *)skb->data);
skb_pull(skb, 2);
if (seq_next(scp->numdat_rcv, segnum)) {
if (dn_queue_skb(sk, skb, SIGIO, &sk->sk_receive_queue) == 0) {
seq_add(&scp->numdat_rcv, 1);
queued = 1;
}
if ((scp->flowloc_sw == DN_SEND) && dn_congested(sk)) {
scp->flowloc_sw = DN_DONTSEND;
dn_nsp_send_link(sk, DN_DONTSEND, 0);
}
}
dn_nsp_send_data_ack(sk);
out:
if (!queued)
kfree_skb(skb);
}
/*
* If one of our conninit messages is returned, this function
* deals with it. It puts the socket into the NO_COMMUNICATION
* state.
*/
static void dn_returned_conn_init(struct sock *sk, struct sk_buff *skb)
{
struct dn_scp *scp = DN_SK(sk);
if (scp->state == DN_CI) {
scp->state = DN_NC;
sk->sk_state = TCP_CLOSE;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
}
kfree_skb(skb);
}
static int dn_nsp_no_socket(struct sk_buff *skb, unsigned short reason)
{
struct dn_skb_cb *cb = DN_SKB_CB(skb);
int ret = NET_RX_DROP;
/* Must not reply to returned packets */
if (cb->rt_flags & DN_RT_F_RTS)
goto out;
if ((reason != NSP_REASON_OK) && ((cb->nsp_flags & 0x0c) == 0x08)) {
switch (cb->nsp_flags & 0x70) {
case 0x10:
case 0x60: /* (Retransmitted) Connect Init */
dn_nsp_return_disc(skb, NSP_DISCINIT, reason);
ret = NET_RX_SUCCESS;
break;
case 0x20: /* Connect Confirm */
dn_nsp_return_disc(skb, NSP_DISCCONF, reason);
ret = NET_RX_SUCCESS;
break;
}
}
out:
kfree_skb(skb);
return ret;
}
static int dn_nsp_rx_packet(struct sock *sk2, struct sk_buff *skb)
{
struct dn_skb_cb *cb = DN_SKB_CB(skb);
struct sock *sk = NULL;
unsigned char *ptr = (unsigned char *)skb->data;
unsigned short reason = NSP_REASON_NL;
if (!pskb_may_pull(skb, 2))
goto free_out;
skb_reset_transport_header(skb);
cb->nsp_flags = *ptr++;
if (decnet_debug_level & 2)
printk(KERN_DEBUG "dn_nsp_rx: Message type 0x%02x\n", (int)cb->nsp_flags);
if (cb->nsp_flags & 0x83)
goto free_out;
/*
* Filter out conninits and useless packet types
*/
if ((cb->nsp_flags & 0x0c) == 0x08) {
switch (cb->nsp_flags & 0x70) {
case 0x00: /* NOP */
case 0x70: /* Reserved */
case 0x50: /* Reserved, Phase II node init */
goto free_out;
case 0x10:
case 0x60:
if (unlikely(cb->rt_flags & DN_RT_F_RTS))
goto free_out;
sk = dn_find_listener(skb, &reason);
goto got_it;
}
}
if (!pskb_may_pull(skb, 3))
goto free_out;
/*
* Grab the destination address.
*/
cb->dst_port = *(__le16 *)ptr;
cb->src_port = 0;
ptr += 2;
/*
* If not a connack, grab the source address too.
*/
if (pskb_may_pull(skb, 5)) {
cb->src_port = *(__le16 *)ptr;
ptr += 2;
skb_pull(skb, 5);
}
/*
* Returned packets...
* Swap src & dst and look up in the normal way.
*/
if (unlikely(cb->rt_flags & DN_RT_F_RTS)) {
__le16 tmp = cb->dst_port;
cb->dst_port = cb->src_port;
cb->src_port = tmp;
tmp = cb->dst;
cb->dst = cb->src;
cb->src = tmp;
}
/*
* Find the socket to which this skb is destined.
*/
sk = dn_find_by_skb(skb);
got_it:
if (sk != NULL) {
struct dn_scp *scp = DN_SK(sk);
/* Reset backoff */
scp->nsp_rxtshift = 0;
/*
* We linearize everything except data segments here.
*/
if (cb->nsp_flags & ~0x60) {
if (unlikely(skb_linearize(skb)))
goto free_out;
}
return sk_receive_skb(sk, skb, 0);
}
return dn_nsp_no_socket(skb, reason);
free_out:
kfree_skb(skb);
return NET_RX_DROP;
}
int dn_nsp_rx(struct sk_buff *skb)
{
return NF_HOOK(NFPROTO_DECNET, NF_DN_LOCAL_IN, NULL, skb,
skb->dev, NULL,
dn_nsp_rx_packet);
}
/*
* This is the main receive routine for sockets. It is called
* from the above when the socket is not busy, and also from
* sock_release() when there is a backlog queued up.
*/
int dn_nsp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
{
struct dn_scp *scp = DN_SK(sk);
struct dn_skb_cb *cb = DN_SKB_CB(skb);
if (cb->rt_flags & DN_RT_F_RTS) {
if (cb->nsp_flags == 0x18 || cb->nsp_flags == 0x68)
dn_returned_conn_init(sk, skb);
else
kfree_skb(skb);
return NET_RX_SUCCESS;
}
/*
* Control packet.
*/
if ((cb->nsp_flags & 0x0c) == 0x08) {
switch (cb->nsp_flags & 0x70) {
case 0x10:
case 0x60:
dn_nsp_conn_init(sk, skb);
break;
case 0x20:
dn_nsp_conn_conf(sk, skb);
break;
case 0x30:
dn_nsp_disc_init(sk, skb);
break;
case 0x40:
dn_nsp_disc_conf(sk, skb);
break;
}
} else if (cb->nsp_flags == 0x24) {
/*
* Special for connacks, 'cos they don't have
* ack data or ack otherdata info.
*/
dn_nsp_conn_ack(sk, skb);
} else {
int other = 1;
/* both data and ack frames can kick a CC socket into RUN */
if ((scp->state == DN_CC) && !sock_flag(sk, SOCK_DEAD)) {
scp->state = DN_RUN;
sk->sk_state = TCP_ESTABLISHED;
sk->sk_state_change(sk);
}
if ((cb->nsp_flags & 0x1c) == 0)
other = 0;
if (cb->nsp_flags == 0x04)
other = 0;
/*
* Read out ack data here, this applies equally
* to data, other data, link serivce and both
* ack data and ack otherdata.
*/
dn_process_ack(sk, skb, other);
/*
* If we've some sort of data here then call a
* suitable routine for dealing with it, otherwise
* the packet is an ack and can be discarded.
*/
if ((cb->nsp_flags & 0x0c) == 0) {
if (scp->state != DN_RUN)
goto free_out;
switch (cb->nsp_flags) {
case 0x10: /* LS */
dn_nsp_linkservice(sk, skb);
break;
case 0x30: /* OD */
dn_nsp_otherdata(sk, skb);
break;
default:
dn_nsp_data(sk, skb);
}
} else { /* Ack, chuck it out here */
free_out:
kfree_skb(skb);
}
}
return NET_RX_SUCCESS;
}