linux/drivers/net/ipa/gsi.h

257 lines
7.9 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2020 Linaro Ltd.
*/
#ifndef _GSI_H_
#define _GSI_H_
#include <linux/types.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/completion.h>
#include <linux/platform_device.h>
#include <linux/netdevice.h>
/* Maximum number of channels and event rings supported by the driver */
#define GSI_CHANNEL_COUNT_MAX 17
#define GSI_EVT_RING_COUNT_MAX 13
/* Maximum TLV FIFO size for a channel; 64 here is arbitrary (and high) */
#define GSI_TLV_MAX 64
struct device;
struct scatterlist;
struct platform_device;
struct gsi;
struct gsi_trans;
struct gsi_channel_data;
struct ipa_gsi_endpoint_data;
/* Execution environment IDs */
enum gsi_ee_id {
GSI_EE_AP = 0,
GSI_EE_MODEM = 1,
GSI_EE_UC = 2,
GSI_EE_TZ = 3,
};
struct gsi_ring {
void *virt; /* ring array base address */
dma_addr_t addr; /* primarily low 32 bits used */
u32 count; /* number of elements in ring */
/* The ring index value indicates the next "open" entry in the ring.
*
* A channel ring consists of TRE entries filled by the AP and passed
* to the hardware for processing. For a channel ring, the ring index
* identifies the next unused entry to be filled by the AP.
*
* An event ring consists of event structures filled by the hardware
* and passed to the AP. For event rings, the ring index identifies
* the next ring entry that is not known to have been filled by the
* hardware.
*/
u32 index;
};
/* Transactions use several resources that can be allocated dynamically
* but taken from a fixed-size pool. The number of elements required for
* the pool is limited by the total number of TREs that can be outstanding.
*
* If sufficient TREs are available to reserve for a transaction,
* allocation from these pools is guaranteed to succeed. Furthermore,
* these resources are implicitly freed whenever the TREs in the
* transaction they're associated with are released.
*
* The result of a pool allocation of multiple elements is always
* contiguous.
*/
struct gsi_trans_pool {
void *base; /* base address of element pool */
u32 count; /* # elements in the pool */
u32 free; /* next free element in pool (modulo) */
u32 size; /* size (bytes) of an element */
u32 max_alloc; /* max allocation request */
dma_addr_t addr; /* DMA address if DMA pool (or 0) */
};
struct gsi_trans_info {
atomic_t tre_avail; /* TREs available for allocation */
struct gsi_trans_pool pool; /* transaction pool */
struct gsi_trans_pool sg_pool; /* scatterlist pool */
struct gsi_trans_pool cmd_pool; /* command payload DMA pool */
struct gsi_trans_pool info_pool;/* command information pool */
struct gsi_trans **map; /* TRE -> transaction map */
spinlock_t spinlock; /* protects updates to the lists */
struct list_head alloc; /* allocated, not committed */
struct list_head pending; /* committed, awaiting completion */
struct list_head complete; /* completed, awaiting poll */
struct list_head polled; /* returned by gsi_channel_poll_one() */
};
/* Hardware values signifying the state of a channel */
enum gsi_channel_state {
GSI_CHANNEL_STATE_NOT_ALLOCATED = 0x0,
GSI_CHANNEL_STATE_ALLOCATED = 0x1,
GSI_CHANNEL_STATE_STARTED = 0x2,
GSI_CHANNEL_STATE_STOPPED = 0x3,
GSI_CHANNEL_STATE_STOP_IN_PROC = 0x4,
GSI_CHANNEL_STATE_ERROR = 0xf,
};
/* We only care about channels between IPA and AP */
struct gsi_channel {
struct gsi *gsi;
bool toward_ipa;
bool command; /* AP command TX channel or not */
bool use_prefetch; /* use prefetch (else escape buf) */
u8 tlv_count; /* # entries in TLV FIFO */
u16 tre_count;
u16 event_count;
struct completion completion; /* signals channel command completion */
struct gsi_ring tre_ring;
u32 evt_ring_id;
u64 byte_count; /* total # bytes transferred */
u64 trans_count; /* total # transactions */
/* The following counts are used only for TX endpoints */
u64 queued_byte_count; /* last reported queued byte count */
u64 queued_trans_count; /* ...and queued trans count */
u64 compl_byte_count; /* last reported completed byte count */
u64 compl_trans_count; /* ...and completed trans count */
struct gsi_trans_info trans_info;
struct napi_struct napi;
};
/* Hardware values signifying the state of an event ring */
enum gsi_evt_ring_state {
GSI_EVT_RING_STATE_NOT_ALLOCATED = 0x0,
GSI_EVT_RING_STATE_ALLOCATED = 0x1,
GSI_EVT_RING_STATE_ERROR = 0xf,
};
struct gsi_evt_ring {
struct gsi_channel *channel;
struct completion completion; /* signals event ring state changes */
enum gsi_evt_ring_state state;
struct gsi_ring ring;
};
struct gsi {
struct device *dev; /* Same as IPA device */
struct net_device dummy_dev; /* needed for NAPI */
void __iomem *virt;
u32 irq;
bool irq_wake_enabled;
u32 channel_count;
u32 evt_ring_count;
struct gsi_channel channel[GSI_CHANNEL_COUNT_MAX];
struct gsi_evt_ring evt_ring[GSI_EVT_RING_COUNT_MAX];
u32 event_bitmap;
u32 event_enable_bitmap;
u32 modem_channel_bitmap;
struct completion completion; /* for global EE commands */
struct mutex mutex; /* protects commands, programming */
};
/**
* gsi_setup() - Set up the GSI subsystem
* @gsi: Address of GSI structure embedded in an IPA structure
* @legacy: Set up for legacy hardware
*
* @Return: 0 if successful, or a negative error code
*
* Performs initialization that must wait until the GSI hardware is
* ready (including firmware loaded).
*/
int gsi_setup(struct gsi *gsi, bool legacy);
/**
* gsi_teardown() - Tear down GSI subsystem
* @gsi: GSI address previously passed to a successful gsi_setup() call
*/
void gsi_teardown(struct gsi *gsi);
/**
* gsi_channel_tre_max() - Channel maximum number of in-flight TREs
* @gsi: GSI pointer
* @channel_id: Channel whose limit is to be returned
*
* @Return: The maximum number of TREs oustanding on the channel
*/
u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id);
/**
* gsi_channel_trans_tre_max() - Maximum TREs in a single transaction
* @gsi: GSI pointer
* @channel_id: Channel whose limit is to be returned
*
* @Return: The maximum TRE count per transaction on the channel
*/
u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id);
/**
* gsi_channel_start() - Start an allocated GSI channel
* @gsi: GSI pointer
* @channel_id: Channel to start
*
* @Return: 0 if successful, or a negative error code
*/
int gsi_channel_start(struct gsi *gsi, u32 channel_id);
/**
* gsi_channel_stop() - Stop a started GSI channel
* @gsi: GSI pointer returned by gsi_setup()
* @channel_id: Channel to stop
*
* @Return: 0 if successful, or a negative error code
*/
int gsi_channel_stop(struct gsi *gsi, u32 channel_id);
/**
* gsi_channel_reset() - Reset an allocated GSI channel
* @gsi: GSI pointer
* @channel_id: Channel to be reset
* @legacy: Legacy behavior
*
* Reset a channel and reconfigure it. The @legacy flag indicates
* that some steps should be done differently for legacy hardware.
*
* GSI hardware relinquishes ownership of all pending receive buffer
* transactions and they will complete with their cancelled flag set.
*/
void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool legacy);
int gsi_channel_suspend(struct gsi *gsi, u32 channel_id, bool stop);
int gsi_channel_resume(struct gsi *gsi, u32 channel_id, bool start);
/**
* gsi_init() - Initialize the GSI subsystem
* @gsi: Address of GSI structure embedded in an IPA structure
* @pdev: IPA platform device
*
* @Return: 0 if successful, or a negative error code
*
* Early stage initialization of the GSI subsystem, performing tasks
* that can be done before the GSI hardware is ready to use.
*/
int gsi_init(struct gsi *gsi, struct platform_device *pdev, bool prefetch,
u32 count, const struct ipa_gsi_endpoint_data *data,
bool modem_alloc);
/**
* gsi_exit() - Exit the GSI subsystem
* @gsi: GSI address previously passed to a successful gsi_init() call
*/
void gsi_exit(struct gsi *gsi);
#endif /* _GSI_H_ */