2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* lib/kernel_lock.c
|
|
|
|
*
|
|
|
|
* This is the traditional BKL - big kernel lock. Largely
|
2007-10-19 23:29:18 +00:00
|
|
|
* relegated to obsolescence, but used by various less
|
2005-04-16 22:20:36 +00:00
|
|
|
* important (or lazy) subsystems.
|
|
|
|
*/
|
|
|
|
#include <linux/smp_lock.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/kallsyms.h>
|
2008-04-19 02:21:05 +00:00
|
|
|
#include <linux/semaphore.h>
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2008-05-11 03:58:02 +00:00
|
|
|
* The 'big kernel lock'
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2008-05-11 03:58:02 +00:00
|
|
|
* This spinlock is taken and released recursively by lock_kernel()
|
2006-06-26 16:35:02 +00:00
|
|
|
* and unlock_kernel(). It is transparently dropped and reacquired
|
2005-04-16 22:20:36 +00:00
|
|
|
* over schedule(). It is used to protect legacy code that hasn't
|
|
|
|
* been migrated to a proper locking design yet.
|
|
|
|
*
|
|
|
|
* Don't use in new code.
|
|
|
|
*/
|
2008-05-11 03:58:02 +00:00
|
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2008-05-11 03:58:02 +00:00
|
|
|
* Acquire/release the underlying lock from the scheduler.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2008-05-11 03:58:02 +00:00
|
|
|
* This is called with preemption disabled, and should
|
|
|
|
* return an error value if it cannot get the lock and
|
|
|
|
* TIF_NEED_RESCHED gets set.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2008-05-11 03:58:02 +00:00
|
|
|
* If it successfully gets the lock, it should increment
|
|
|
|
* the preemption count like any spinlock does.
|
|
|
|
*
|
|
|
|
* (This works on UP too - _raw_spin_trylock will never
|
|
|
|
* return false in that case)
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
int __lockfunc __reacquire_kernel_lock(void)
|
|
|
|
{
|
2008-05-11 03:58:02 +00:00
|
|
|
while (!_raw_spin_trylock(&kernel_flag)) {
|
|
|
|
if (test_thread_flag(TIF_NEED_RESCHED))
|
|
|
|
return -EAGAIN;
|
|
|
|
cpu_relax();
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
preempt_disable();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void __lockfunc __release_kernel_lock(void)
|
|
|
|
{
|
2008-05-11 03:58:02 +00:00
|
|
|
_raw_spin_unlock(&kernel_flag);
|
|
|
|
preempt_enable_no_resched();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2008-05-11 03:58:02 +00:00
|
|
|
* These are the BKL spinlocks - we try to be polite about preemption.
|
|
|
|
* If SMP is not on (ie UP preemption), this all goes away because the
|
|
|
|
* _raw_spin_trylock() will always succeed.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2008-05-11 03:58:02 +00:00
|
|
|
#ifdef CONFIG_PREEMPT
|
|
|
|
static inline void __lock_kernel(void)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-05-11 03:58:02 +00:00
|
|
|
preempt_disable();
|
|
|
|
if (unlikely(!_raw_spin_trylock(&kernel_flag))) {
|
|
|
|
/*
|
|
|
|
* If preemption was disabled even before this
|
|
|
|
* was called, there's nothing we can be polite
|
|
|
|
* about - just spin.
|
|
|
|
*/
|
|
|
|
if (preempt_count() > 1) {
|
|
|
|
_raw_spin_lock(&kernel_flag);
|
|
|
|
return;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2008-05-11 03:58:02 +00:00
|
|
|
* Otherwise, let's wait for the kernel lock
|
|
|
|
* with preemption enabled..
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2008-05-11 03:58:02 +00:00
|
|
|
do {
|
|
|
|
preempt_enable();
|
|
|
|
while (spin_is_locked(&kernel_flag))
|
|
|
|
cpu_relax();
|
|
|
|
preempt_disable();
|
|
|
|
} while (!_raw_spin_trylock(&kernel_flag));
|
|
|
|
}
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-05-11 03:58:02 +00:00
|
|
|
#else
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Non-preemption case - just get the spinlock
|
|
|
|
*/
|
|
|
|
static inline void __lock_kernel(void)
|
|
|
|
{
|
|
|
|
_raw_spin_lock(&kernel_flag);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2008-05-11 03:58:02 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-05-11 03:58:02 +00:00
|
|
|
static inline void __unlock_kernel(void)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-05-11 03:58:02 +00:00
|
|
|
/*
|
|
|
|
* the BKL is not covered by lockdep, so we open-code the
|
|
|
|
* unlocking sequence (and thus avoid the dep-chain ops):
|
|
|
|
*/
|
|
|
|
_raw_spin_unlock(&kernel_flag);
|
|
|
|
preempt_enable();
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-05-11 03:58:02 +00:00
|
|
|
/*
|
|
|
|
* Getting the big kernel lock.
|
|
|
|
*
|
|
|
|
* This cannot happen asynchronously, so we only need to
|
|
|
|
* worry about other CPU's.
|
|
|
|
*/
|
|
|
|
void __lockfunc lock_kernel(void)
|
|
|
|
{
|
|
|
|
int depth = current->lock_depth+1;
|
|
|
|
if (likely(!depth))
|
|
|
|
__lock_kernel();
|
|
|
|
current->lock_depth = depth;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-05-11 03:58:02 +00:00
|
|
|
void __lockfunc unlock_kernel(void)
|
|
|
|
{
|
|
|
|
BUG_ON(current->lock_depth < 0);
|
|
|
|
if (likely(--current->lock_depth < 0))
|
|
|
|
__unlock_kernel();
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
EXPORT_SYMBOL(lock_kernel);
|
|
|
|
EXPORT_SYMBOL(unlock_kernel);
|
|
|
|
|