linux/drivers/crypto/qat/qat_dh895xcc/adf_dh895xcc_hw_data.c

263 lines
8.2 KiB
C
Raw Normal View History

/*
This file is provided under a dual BSD/GPLv2 license. When using or
redistributing this file, you may do so under either license.
GPL LICENSE SUMMARY
Copyright(c) 2014 Intel Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of version 2 of the GNU General Public License as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Contact Information:
qat-linux@intel.com
BSD LICENSE
Copyright(c) 2014 Intel Corporation.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <adf_accel_devices.h>
#include <adf_pf2vf_msg.h>
#include <adf_common_drv.h>
#include "adf_dh895xcc_hw_data.h"
/* Worker thread to service arbiter mappings based on dev SKUs */
static const uint32_t thrd_to_arb_map_sku4[] = {
0x12222AAA, 0x11666666, 0x12222AAA, 0x11666666,
0x12222AAA, 0x11222222, 0x12222AAA, 0x11222222,
0x00000000, 0x00000000, 0x00000000, 0x00000000
};
static const uint32_t thrd_to_arb_map_sku6[] = {
0x12222AAA, 0x11666666, 0x12222AAA, 0x11666666,
0x12222AAA, 0x11222222, 0x12222AAA, 0x11222222,
0x12222AAA, 0x11222222, 0x12222AAA, 0x11222222
};
static struct adf_hw_device_class dh895xcc_class = {
.name = ADF_DH895XCC_DEVICE_NAME,
.type = DEV_DH895XCC,
.instances = 0
};
static uint32_t get_accel_mask(uint32_t fuse)
{
return (~fuse) >> ADF_DH895XCC_ACCELERATORS_REG_OFFSET &
ADF_DH895XCC_ACCELERATORS_MASK;
}
static uint32_t get_ae_mask(uint32_t fuse)
{
return (~fuse) & ADF_DH895XCC_ACCELENGINES_MASK;
}
static uint32_t get_num_accels(struct adf_hw_device_data *self)
{
uint32_t i, ctr = 0;
if (!self || !self->accel_mask)
return 0;
for (i = 0; i < ADF_DH895XCC_MAX_ACCELERATORS; i++) {
if (self->accel_mask & (1 << i))
ctr++;
}
return ctr;
}
static uint32_t get_num_aes(struct adf_hw_device_data *self)
{
uint32_t i, ctr = 0;
if (!self || !self->ae_mask)
return 0;
for (i = 0; i < ADF_DH895XCC_MAX_ACCELENGINES; i++) {
if (self->ae_mask & (1 << i))
ctr++;
}
return ctr;
}
static uint32_t get_misc_bar_id(struct adf_hw_device_data *self)
{
return ADF_DH895XCC_PMISC_BAR;
}
static uint32_t get_etr_bar_id(struct adf_hw_device_data *self)
{
return ADF_DH895XCC_ETR_BAR;
}
static uint32_t get_sram_bar_id(struct adf_hw_device_data *self)
{
return ADF_DH895XCC_SRAM_BAR;
}
static enum dev_sku_info get_sku(struct adf_hw_device_data *self)
{
int sku = (self->fuses & ADF_DH895XCC_FUSECTL_SKU_MASK)
>> ADF_DH895XCC_FUSECTL_SKU_SHIFT;
switch (sku) {
case ADF_DH895XCC_FUSECTL_SKU_1:
return DEV_SKU_1;
case ADF_DH895XCC_FUSECTL_SKU_2:
return DEV_SKU_2;
case ADF_DH895XCC_FUSECTL_SKU_3:
return DEV_SKU_3;
case ADF_DH895XCC_FUSECTL_SKU_4:
return DEV_SKU_4;
default:
return DEV_SKU_UNKNOWN;
}
return DEV_SKU_UNKNOWN;
}
static void adf_get_arbiter_mapping(struct adf_accel_dev *accel_dev,
u32 const **arb_map_config)
{
switch (accel_dev->accel_pci_dev.sku) {
case DEV_SKU_1:
*arb_map_config = thrd_to_arb_map_sku4;
break;
case DEV_SKU_2:
case DEV_SKU_4:
*arb_map_config = thrd_to_arb_map_sku6;
break;
default:
dev_err(&GET_DEV(accel_dev),
"The configuration doesn't match any SKU");
*arb_map_config = NULL;
}
}
static uint32_t get_pf2vf_offset(uint32_t i)
{
return ADF_DH895XCC_PF2VF_OFFSET(i);
}
static uint32_t get_vintmsk_offset(uint32_t i)
{
return ADF_DH895XCC_VINTMSK_OFFSET(i);
}
static void adf_enable_error_correction(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_device = accel_dev->hw_device;
struct adf_bar *misc_bar = &GET_BARS(accel_dev)[ADF_DH895XCC_PMISC_BAR];
void __iomem *csr = misc_bar->virt_addr;
unsigned int val, i;
/* Enable Accel Engine error detection & correction */
for (i = 0; i < hw_device->get_num_aes(hw_device); i++) {
val = ADF_CSR_RD(csr, ADF_DH895XCC_AE_CTX_ENABLES(i));
val |= ADF_DH895XCC_ENABLE_AE_ECC_ERR;
ADF_CSR_WR(csr, ADF_DH895XCC_AE_CTX_ENABLES(i), val);
val = ADF_CSR_RD(csr, ADF_DH895XCC_AE_MISC_CONTROL(i));
val |= ADF_DH895XCC_ENABLE_AE_ECC_PARITY_CORR;
ADF_CSR_WR(csr, ADF_DH895XCC_AE_MISC_CONTROL(i), val);
}
/* Enable shared memory error detection & correction */
for (i = 0; i < hw_device->get_num_accels(hw_device); i++) {
val = ADF_CSR_RD(csr, ADF_DH895XCC_UERRSSMSH(i));
val |= ADF_DH895XCC_ERRSSMSH_EN;
ADF_CSR_WR(csr, ADF_DH895XCC_UERRSSMSH(i), val);
val = ADF_CSR_RD(csr, ADF_DH895XCC_CERRSSMSH(i));
val |= ADF_DH895XCC_ERRSSMSH_EN;
ADF_CSR_WR(csr, ADF_DH895XCC_CERRSSMSH(i), val);
}
}
crypto: qat - fix device reset flow When the device needs a reset, e.g. when an uncorrectable PCIe AER event occurs, various services/data structures need to be cleaned up, the hardware reset and the services/data structures initialized and started. The code to perform the cleanup and initialization was not performed when a device reset was done. This patch moves some of the initialization code out of the .probe entry- point into a separate function that is now called during probe as well as after the hardware has been reset. Similarly, a new function is added for first cleaning up these services/data structures prior to resetting. The new functions are adf_dev_init() and adf_dev_shutdown(), respectively, for which there are already prototypes but no actual functions just yet and are now called when the device is reset and during probe/cleanup of the driver. The down and up flows via ioctl calls has similarly been updated. In addition, there are two other bugs in the reset flow - one in the logic for determining whether to schedule a device reset upon receiving an uncorrectable AER event which prevents the reset flow from being initiated, and another with clearing the status bit indicating a device is configured (when resetting the device the configuration remains across the reset so the bit should not be cleared, otherwise, the necessary services will not be re-started in adf_dev_start() after the reset - clear the bit only when actually deleting the configuration). Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-01-09 19:54:58 +00:00
static void adf_enable_ints(struct adf_accel_dev *accel_dev)
{
void __iomem *addr;
addr = (&GET_BARS(accel_dev)[ADF_DH895XCC_PMISC_BAR])->virt_addr;
/* Enable bundle and misc interrupts */
ADF_CSR_WR(addr, ADF_DH895XCC_SMIAPF0_MASK_OFFSET,
accel_dev->pf.vf_info ? 0 :
GENMASK_ULL(GET_MAX_BANKS(accel_dev) - 1, 0));
crypto: qat - fix device reset flow When the device needs a reset, e.g. when an uncorrectable PCIe AER event occurs, various services/data structures need to be cleaned up, the hardware reset and the services/data structures initialized and started. The code to perform the cleanup and initialization was not performed when a device reset was done. This patch moves some of the initialization code out of the .probe entry- point into a separate function that is now called during probe as well as after the hardware has been reset. Similarly, a new function is added for first cleaning up these services/data structures prior to resetting. The new functions are adf_dev_init() and adf_dev_shutdown(), respectively, for which there are already prototypes but no actual functions just yet and are now called when the device is reset and during probe/cleanup of the driver. The down and up flows via ioctl calls has similarly been updated. In addition, there are two other bugs in the reset flow - one in the logic for determining whether to schedule a device reset upon receiving an uncorrectable AER event which prevents the reset flow from being initiated, and another with clearing the status bit indicating a device is configured (when resetting the device the configuration remains across the reset so the bit should not be cleared, otherwise, the necessary services will not be re-started in adf_dev_start() after the reset - clear the bit only when actually deleting the configuration). Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-01-09 19:54:58 +00:00
ADF_CSR_WR(addr, ADF_DH895XCC_SMIAPF1_MASK_OFFSET,
ADF_DH895XCC_SMIA1_MASK);
}
static int adf_pf_enable_vf2pf_comms(struct adf_accel_dev *accel_dev)
{
return 0;
}
void adf_init_hw_data_dh895xcc(struct adf_hw_device_data *hw_data)
{
hw_data->dev_class = &dh895xcc_class;
hw_data->instance_id = dh895xcc_class.instances++;
hw_data->num_banks = ADF_DH895XCC_ETR_MAX_BANKS;
hw_data->num_accel = ADF_DH895XCC_MAX_ACCELERATORS;
hw_data->num_logical_accel = 1;
hw_data->num_engines = ADF_DH895XCC_MAX_ACCELENGINES;
hw_data->tx_rx_gap = ADF_DH895XCC_RX_RINGS_OFFSET;
hw_data->tx_rings_mask = ADF_DH895XCC_TX_RINGS_MASK;
hw_data->alloc_irq = adf_isr_resource_alloc;
hw_data->free_irq = adf_isr_resource_free;
hw_data->enable_error_correction = adf_enable_error_correction;
hw_data->get_accel_mask = get_accel_mask;
hw_data->get_ae_mask = get_ae_mask;
hw_data->get_num_accels = get_num_accels;
hw_data->get_num_aes = get_num_aes;
hw_data->get_etr_bar_id = get_etr_bar_id;
hw_data->get_misc_bar_id = get_misc_bar_id;
hw_data->get_pf2vf_offset = get_pf2vf_offset;
hw_data->get_vintmsk_offset = get_vintmsk_offset;
hw_data->get_sram_bar_id = get_sram_bar_id;
hw_data->get_sku = get_sku;
hw_data->fw_name = ADF_DH895XCC_FW;
hw_data->fw_mmp_name = ADF_DH895XCC_MMP;
crypto: qat - fix device reset flow When the device needs a reset, e.g. when an uncorrectable PCIe AER event occurs, various services/data structures need to be cleaned up, the hardware reset and the services/data structures initialized and started. The code to perform the cleanup and initialization was not performed when a device reset was done. This patch moves some of the initialization code out of the .probe entry- point into a separate function that is now called during probe as well as after the hardware has been reset. Similarly, a new function is added for first cleaning up these services/data structures prior to resetting. The new functions are adf_dev_init() and adf_dev_shutdown(), respectively, for which there are already prototypes but no actual functions just yet and are now called when the device is reset and during probe/cleanup of the driver. The down and up flows via ioctl calls has similarly been updated. In addition, there are two other bugs in the reset flow - one in the logic for determining whether to schedule a device reset upon receiving an uncorrectable AER event which prevents the reset flow from being initiated, and another with clearing the status bit indicating a device is configured (when resetting the device the configuration remains across the reset so the bit should not be cleared, otherwise, the necessary services will not be re-started in adf_dev_start() after the reset - clear the bit only when actually deleting the configuration). Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-01-09 19:54:58 +00:00
hw_data->init_admin_comms = adf_init_admin_comms;
hw_data->exit_admin_comms = adf_exit_admin_comms;
hw_data->disable_iov = adf_disable_sriov;
hw_data->send_admin_init = adf_send_admin_init;
crypto: qat - fix device reset flow When the device needs a reset, e.g. when an uncorrectable PCIe AER event occurs, various services/data structures need to be cleaned up, the hardware reset and the services/data structures initialized and started. The code to perform the cleanup and initialization was not performed when a device reset was done. This patch moves some of the initialization code out of the .probe entry- point into a separate function that is now called during probe as well as after the hardware has been reset. Similarly, a new function is added for first cleaning up these services/data structures prior to resetting. The new functions are adf_dev_init() and adf_dev_shutdown(), respectively, for which there are already prototypes but no actual functions just yet and are now called when the device is reset and during probe/cleanup of the driver. The down and up flows via ioctl calls has similarly been updated. In addition, there are two other bugs in the reset flow - one in the logic for determining whether to schedule a device reset upon receiving an uncorrectable AER event which prevents the reset flow from being initiated, and another with clearing the status bit indicating a device is configured (when resetting the device the configuration remains across the reset so the bit should not be cleared, otherwise, the necessary services will not be re-started in adf_dev_start() after the reset - clear the bit only when actually deleting the configuration). Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-01-09 19:54:58 +00:00
hw_data->init_arb = adf_init_arb;
hw_data->exit_arb = adf_exit_arb;
hw_data->get_arb_mapping = adf_get_arbiter_mapping;
crypto: qat - fix device reset flow When the device needs a reset, e.g. when an uncorrectable PCIe AER event occurs, various services/data structures need to be cleaned up, the hardware reset and the services/data structures initialized and started. The code to perform the cleanup and initialization was not performed when a device reset was done. This patch moves some of the initialization code out of the .probe entry- point into a separate function that is now called during probe as well as after the hardware has been reset. Similarly, a new function is added for first cleaning up these services/data structures prior to resetting. The new functions are adf_dev_init() and adf_dev_shutdown(), respectively, for which there are already prototypes but no actual functions just yet and are now called when the device is reset and during probe/cleanup of the driver. The down and up flows via ioctl calls has similarly been updated. In addition, there are two other bugs in the reset flow - one in the logic for determining whether to schedule a device reset upon receiving an uncorrectable AER event which prevents the reset flow from being initiated, and another with clearing the status bit indicating a device is configured (when resetting the device the configuration remains across the reset so the bit should not be cleared, otherwise, the necessary services will not be re-started in adf_dev_start() after the reset - clear the bit only when actually deleting the configuration). Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-01-09 19:54:58 +00:00
hw_data->enable_ints = adf_enable_ints;
hw_data->enable_vf2pf_comms = adf_pf_enable_vf2pf_comms;
hw_data->reset_device = adf_reset_sbr;
hw_data->min_iov_compat_ver = ADF_PFVF_COMPATIBILITY_VERSION;
}
void adf_clean_hw_data_dh895xcc(struct adf_hw_device_data *hw_data)
{
hw_data->dev_class->instances--;
}