forked from Minki/linux
208 lines
6.3 KiB
C
208 lines
6.3 KiB
C
|
/*
|
||
|
* mm/prio_tree.c - priority search tree for mapping->i_mmap
|
||
|
*
|
||
|
* Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
|
||
|
*
|
||
|
* This file is released under the GPL v2.
|
||
|
*
|
||
|
* Based on the radix priority search tree proposed by Edward M. McCreight
|
||
|
* SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
|
||
|
*
|
||
|
* 02Feb2004 Initial version
|
||
|
*/
|
||
|
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/prio_tree.h>
|
||
|
|
||
|
/*
|
||
|
* See lib/prio_tree.c for details on the general radix priority search tree
|
||
|
* code.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The following #defines are mirrored from lib/prio_tree.c. They're only used
|
||
|
* for debugging, and should be removed (along with the debugging code using
|
||
|
* them) when switching also VMAs to the regular prio_tree code.
|
||
|
*/
|
||
|
|
||
|
#define RADIX_INDEX(vma) ((vma)->vm_pgoff)
|
||
|
#define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
|
||
|
/* avoid overflow */
|
||
|
#define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
|
||
|
|
||
|
/*
|
||
|
* Radix priority search tree for address_space->i_mmap
|
||
|
*
|
||
|
* For each vma that map a unique set of file pages i.e., unique [radix_index,
|
||
|
* heap_index] value, we have a corresponing priority search tree node. If
|
||
|
* multiple vmas have identical [radix_index, heap_index] value, then one of
|
||
|
* them is used as a tree node and others are stored in a vm_set list. The tree
|
||
|
* node points to the first vma (head) of the list using vm_set.head.
|
||
|
*
|
||
|
* prio_tree_root
|
||
|
* |
|
||
|
* A vm_set.head
|
||
|
* / \ /
|
||
|
* L R -> H-I-J-K-M-N-O-P-Q-S
|
||
|
* ^ ^ <-- vm_set.list -->
|
||
|
* tree nodes
|
||
|
*
|
||
|
* We need some way to identify whether a vma is a tree node, head of a vm_set
|
||
|
* list, or just a member of a vm_set list. We cannot use vm_flags to store
|
||
|
* such information. The reason is, in the above figure, it is possible that
|
||
|
* vm_flags' of R and H are covered by the different mmap_sems. When R is
|
||
|
* removed under R->mmap_sem, H replaces R as a tree node. Since we do not hold
|
||
|
* H->mmap_sem, we cannot use H->vm_flags for marking that H is a tree node now.
|
||
|
* That's why some trick involving shared.vm_set.parent is used for identifying
|
||
|
* tree nodes and list head nodes.
|
||
|
*
|
||
|
* vma radix priority search tree node rules:
|
||
|
*
|
||
|
* vma->shared.vm_set.parent != NULL ==> a tree node
|
||
|
* vma->shared.vm_set.head != NULL ==> list of others mapping same range
|
||
|
* vma->shared.vm_set.head == NULL ==> no others map the same range
|
||
|
*
|
||
|
* vma->shared.vm_set.parent == NULL
|
||
|
* vma->shared.vm_set.head != NULL ==> list head of vmas mapping same range
|
||
|
* vma->shared.vm_set.head == NULL ==> a list node
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Add a new vma known to map the same set of pages as the old vma:
|
||
|
* useful for fork's dup_mmap as well as vma_prio_tree_insert below.
|
||
|
* Note that it just happens to work correctly on i_mmap_nonlinear too.
|
||
|
*/
|
||
|
void vma_prio_tree_add(struct vm_area_struct *vma, struct vm_area_struct *old)
|
||
|
{
|
||
|
/* Leave these BUG_ONs till prio_tree patch stabilizes */
|
||
|
BUG_ON(RADIX_INDEX(vma) != RADIX_INDEX(old));
|
||
|
BUG_ON(HEAP_INDEX(vma) != HEAP_INDEX(old));
|
||
|
|
||
|
vma->shared.vm_set.head = NULL;
|
||
|
vma->shared.vm_set.parent = NULL;
|
||
|
|
||
|
if (!old->shared.vm_set.parent)
|
||
|
list_add(&vma->shared.vm_set.list,
|
||
|
&old->shared.vm_set.list);
|
||
|
else if (old->shared.vm_set.head)
|
||
|
list_add_tail(&vma->shared.vm_set.list,
|
||
|
&old->shared.vm_set.head->shared.vm_set.list);
|
||
|
else {
|
||
|
INIT_LIST_HEAD(&vma->shared.vm_set.list);
|
||
|
vma->shared.vm_set.head = old;
|
||
|
old->shared.vm_set.head = vma;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void vma_prio_tree_insert(struct vm_area_struct *vma,
|
||
|
struct prio_tree_root *root)
|
||
|
{
|
||
|
struct prio_tree_node *ptr;
|
||
|
struct vm_area_struct *old;
|
||
|
|
||
|
vma->shared.vm_set.head = NULL;
|
||
|
|
||
|
ptr = raw_prio_tree_insert(root, &vma->shared.prio_tree_node);
|
||
|
if (ptr != (struct prio_tree_node *) &vma->shared.prio_tree_node) {
|
||
|
old = prio_tree_entry(ptr, struct vm_area_struct,
|
||
|
shared.prio_tree_node);
|
||
|
vma_prio_tree_add(vma, old);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void vma_prio_tree_remove(struct vm_area_struct *vma,
|
||
|
struct prio_tree_root *root)
|
||
|
{
|
||
|
struct vm_area_struct *node, *head, *new_head;
|
||
|
|
||
|
if (!vma->shared.vm_set.head) {
|
||
|
if (!vma->shared.vm_set.parent)
|
||
|
list_del_init(&vma->shared.vm_set.list);
|
||
|
else
|
||
|
raw_prio_tree_remove(root, &vma->shared.prio_tree_node);
|
||
|
} else {
|
||
|
/* Leave this BUG_ON till prio_tree patch stabilizes */
|
||
|
BUG_ON(vma->shared.vm_set.head->shared.vm_set.head != vma);
|
||
|
if (vma->shared.vm_set.parent) {
|
||
|
head = vma->shared.vm_set.head;
|
||
|
if (!list_empty(&head->shared.vm_set.list)) {
|
||
|
new_head = list_entry(
|
||
|
head->shared.vm_set.list.next,
|
||
|
struct vm_area_struct,
|
||
|
shared.vm_set.list);
|
||
|
list_del_init(&head->shared.vm_set.list);
|
||
|
} else
|
||
|
new_head = NULL;
|
||
|
|
||
|
raw_prio_tree_replace(root, &vma->shared.prio_tree_node,
|
||
|
&head->shared.prio_tree_node);
|
||
|
head->shared.vm_set.head = new_head;
|
||
|
if (new_head)
|
||
|
new_head->shared.vm_set.head = head;
|
||
|
|
||
|
} else {
|
||
|
node = vma->shared.vm_set.head;
|
||
|
if (!list_empty(&vma->shared.vm_set.list)) {
|
||
|
new_head = list_entry(
|
||
|
vma->shared.vm_set.list.next,
|
||
|
struct vm_area_struct,
|
||
|
shared.vm_set.list);
|
||
|
list_del_init(&vma->shared.vm_set.list);
|
||
|
node->shared.vm_set.head = new_head;
|
||
|
new_head->shared.vm_set.head = node;
|
||
|
} else
|
||
|
node->shared.vm_set.head = NULL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Helper function to enumerate vmas that map a given file page or a set of
|
||
|
* contiguous file pages. The function returns vmas that at least map a single
|
||
|
* page in the given range of contiguous file pages.
|
||
|
*/
|
||
|
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
|
||
|
struct prio_tree_iter *iter)
|
||
|
{
|
||
|
struct prio_tree_node *ptr;
|
||
|
struct vm_area_struct *next;
|
||
|
|
||
|
if (!vma) {
|
||
|
/*
|
||
|
* First call is with NULL vma
|
||
|
*/
|
||
|
ptr = prio_tree_next(iter);
|
||
|
if (ptr) {
|
||
|
next = prio_tree_entry(ptr, struct vm_area_struct,
|
||
|
shared.prio_tree_node);
|
||
|
prefetch(next->shared.vm_set.head);
|
||
|
return next;
|
||
|
} else
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (vma->shared.vm_set.parent) {
|
||
|
if (vma->shared.vm_set.head) {
|
||
|
next = vma->shared.vm_set.head;
|
||
|
prefetch(next->shared.vm_set.list.next);
|
||
|
return next;
|
||
|
}
|
||
|
} else {
|
||
|
next = list_entry(vma->shared.vm_set.list.next,
|
||
|
struct vm_area_struct, shared.vm_set.list);
|
||
|
if (!next->shared.vm_set.head) {
|
||
|
prefetch(next->shared.vm_set.list.next);
|
||
|
return next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ptr = prio_tree_next(iter);
|
||
|
if (ptr) {
|
||
|
next = prio_tree_entry(ptr, struct vm_area_struct,
|
||
|
shared.prio_tree_node);
|
||
|
prefetch(next->shared.vm_set.head);
|
||
|
return next;
|
||
|
} else
|
||
|
return NULL;
|
||
|
}
|