2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2005-11-02 03:58:39 +00:00
|
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
|
|
* All Rights Reserved.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2005-11-02 03:58:39 +00:00
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License as
|
2005-04-16 22:20:36 +00:00
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
2005-11-02 03:58:39 +00:00
|
|
|
* This program is distributed in the hope that it would be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
2005-11-02 03:58:39 +00:00
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
#include "xfs.h"
|
2005-11-02 03:38:42 +00:00
|
|
|
#include "xfs_fs.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
#include "xfs_types.h"
|
|
|
|
#include "xfs_log.h"
|
|
|
|
#include "xfs_trans.h"
|
2005-11-02 03:38:42 +00:00
|
|
|
#include "xfs_sb.h"
|
|
|
|
#include "xfs_ag.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
#include "xfs_mount.h"
|
|
|
|
#include "xfs_error.h"
|
|
|
|
#include "xfs_log_priv.h"
|
|
|
|
#include "xfs_buf_item.h"
|
2005-11-02 03:38:42 +00:00
|
|
|
#include "xfs_bmap_btree.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
#include "xfs_alloc_btree.h"
|
2005-11-02 03:38:42 +00:00
|
|
|
#include "xfs_ialloc_btree.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
#include "xfs_log_recover.h"
|
|
|
|
#include "xfs_trans_priv.h"
|
2005-11-02 03:38:42 +00:00
|
|
|
#include "xfs_dinode.h"
|
|
|
|
#include "xfs_inode.h"
|
2009-12-14 23:14:59 +00:00
|
|
|
#include "xfs_trace.h"
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-04-10 02:18:46 +00:00
|
|
|
kmem_zone_t *xfs_log_ticket_zone;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Local miscellaneous function prototypes */
|
2010-03-23 00:43:17 +00:00
|
|
|
STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_in_core_t **, xfs_lsn_t *);
|
|
|
|
STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
|
|
|
|
xfs_buftarg_t *log_target,
|
|
|
|
xfs_daddr_t blk_offset,
|
|
|
|
int num_bblks);
|
2010-12-03 13:02:40 +00:00
|
|
|
STATIC int xlog_space_left(struct log *log, atomic64_t *head);
|
2005-04-16 22:20:36 +00:00
|
|
|
STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
|
2006-03-28 22:55:14 +00:00
|
|
|
STATIC void xlog_dealloc_log(xlog_t *log);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* local state machine functions */
|
|
|
|
STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
|
|
|
|
STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
|
|
|
|
STATIC int xlog_state_get_iclog_space(xlog_t *log,
|
|
|
|
int len,
|
|
|
|
xlog_in_core_t **iclog,
|
|
|
|
xlog_ticket_t *ticket,
|
|
|
|
int *continued_write,
|
|
|
|
int *logoffsetp);
|
|
|
|
STATIC int xlog_state_release_iclog(xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog);
|
|
|
|
STATIC void xlog_state_switch_iclogs(xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog,
|
|
|
|
int eventual_size);
|
|
|
|
STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
|
|
|
|
|
2010-12-21 01:09:20 +00:00
|
|
|
STATIC void xlog_grant_push_ail(struct log *log,
|
2005-04-16 22:20:36 +00:00
|
|
|
int need_bytes);
|
|
|
|
STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
|
|
|
|
xlog_ticket_t *ticket);
|
|
|
|
STATIC void xlog_ungrant_log_space(xlog_t *log,
|
|
|
|
xlog_ticket_t *ticket);
|
|
|
|
|
2005-11-02 04:12:04 +00:00
|
|
|
#if defined(DEBUG)
|
2010-03-23 00:47:38 +00:00
|
|
|
STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
|
2010-12-21 01:02:52 +00:00
|
|
|
STATIC void xlog_verify_grant_tail(struct log *log);
|
2005-04-16 22:20:36 +00:00
|
|
|
STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
|
|
|
|
int count, boolean_t syncing);
|
|
|
|
STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
|
|
|
|
xfs_lsn_t tail_lsn);
|
|
|
|
#else
|
|
|
|
#define xlog_verify_dest_ptr(a,b)
|
2010-12-21 01:02:52 +00:00
|
|
|
#define xlog_verify_grant_tail(a)
|
2005-04-16 22:20:36 +00:00
|
|
|
#define xlog_verify_iclog(a,b,c,d)
|
|
|
|
#define xlog_verify_tail_lsn(a,b,c)
|
|
|
|
#endif
|
|
|
|
|
2005-06-21 05:36:52 +00:00
|
|
|
STATIC int xlog_iclogs_empty(xlog_t *log);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-01-11 04:34:50 +00:00
|
|
|
static void
|
2010-12-21 01:06:05 +00:00
|
|
|
xlog_grant_sub_space(
|
|
|
|
struct log *log,
|
2010-12-03 13:02:40 +00:00
|
|
|
atomic64_t *head,
|
2010-12-21 01:06:05 +00:00
|
|
|
int bytes)
|
2006-01-11 04:34:50 +00:00
|
|
|
{
|
2010-12-21 01:29:14 +00:00
|
|
|
int64_t head_val = atomic64_read(head);
|
|
|
|
int64_t new, old;
|
2010-12-21 01:08:20 +00:00
|
|
|
|
2010-12-21 01:29:14 +00:00
|
|
|
do {
|
|
|
|
int cycle, space;
|
2010-12-21 01:08:20 +00:00
|
|
|
|
2010-12-21 01:29:14 +00:00
|
|
|
xlog_crack_grant_head_val(head_val, &cycle, &space);
|
2010-12-21 01:08:20 +00:00
|
|
|
|
2010-12-21 01:29:14 +00:00
|
|
|
space -= bytes;
|
|
|
|
if (space < 0) {
|
|
|
|
space += log->l_logsize;
|
|
|
|
cycle--;
|
|
|
|
}
|
|
|
|
|
|
|
|
old = head_val;
|
|
|
|
new = xlog_assign_grant_head_val(cycle, space);
|
|
|
|
head_val = atomic64_cmpxchg(head, old, new);
|
|
|
|
} while (head_val != old);
|
2006-01-11 04:34:50 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-12-21 01:06:05 +00:00
|
|
|
xlog_grant_add_space(
|
|
|
|
struct log *log,
|
2010-12-03 13:02:40 +00:00
|
|
|
atomic64_t *head,
|
2010-12-21 01:06:05 +00:00
|
|
|
int bytes)
|
2006-01-11 04:34:50 +00:00
|
|
|
{
|
2010-12-21 01:29:14 +00:00
|
|
|
int64_t head_val = atomic64_read(head);
|
|
|
|
int64_t new, old;
|
2010-12-21 01:08:20 +00:00
|
|
|
|
2010-12-21 01:29:14 +00:00
|
|
|
do {
|
|
|
|
int tmp;
|
|
|
|
int cycle, space;
|
2010-12-21 01:08:20 +00:00
|
|
|
|
2010-12-21 01:29:14 +00:00
|
|
|
xlog_crack_grant_head_val(head_val, &cycle, &space);
|
2010-12-21 01:08:20 +00:00
|
|
|
|
2010-12-21 01:29:14 +00:00
|
|
|
tmp = log->l_logsize - space;
|
|
|
|
if (tmp > bytes)
|
|
|
|
space += bytes;
|
|
|
|
else {
|
|
|
|
space = bytes - tmp;
|
|
|
|
cycle++;
|
|
|
|
}
|
|
|
|
|
|
|
|
old = head_val;
|
|
|
|
new = xlog_assign_grant_head_val(cycle, space);
|
|
|
|
head_val = atomic64_cmpxchg(head, old, new);
|
|
|
|
} while (head_val != old);
|
2006-01-11 04:34:50 +00:00
|
|
|
}
|
2010-12-21 01:08:20 +00:00
|
|
|
|
2012-02-20 02:31:26 +00:00
|
|
|
STATIC void
|
|
|
|
xlog_grant_head_init(
|
|
|
|
struct xlog_grant_head *head)
|
|
|
|
{
|
|
|
|
xlog_assign_grant_head(&head->grant, 1, 0);
|
|
|
|
INIT_LIST_HEAD(&head->waiters);
|
|
|
|
spin_lock_init(&head->lock);
|
|
|
|
}
|
|
|
|
|
2012-02-20 02:31:27 +00:00
|
|
|
STATIC void
|
|
|
|
xlog_grant_head_wake_all(
|
|
|
|
struct xlog_grant_head *head)
|
|
|
|
{
|
|
|
|
struct xlog_ticket *tic;
|
|
|
|
|
|
|
|
spin_lock(&head->lock);
|
|
|
|
list_for_each_entry(tic, &head->waiters, t_queue)
|
|
|
|
wake_up_process(tic->t_task);
|
|
|
|
spin_unlock(&head->lock);
|
|
|
|
}
|
|
|
|
|
2012-02-20 02:31:29 +00:00
|
|
|
static inline int
|
|
|
|
xlog_ticket_reservation(
|
2011-11-28 08:17:36 +00:00
|
|
|
struct log *log,
|
2012-02-20 02:31:29 +00:00
|
|
|
struct xlog_grant_head *head,
|
|
|
|
struct xlog_ticket *tic)
|
2011-11-28 08:17:36 +00:00
|
|
|
{
|
2012-02-20 02:31:29 +00:00
|
|
|
if (head == &log->l_write_head) {
|
|
|
|
ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
|
|
|
|
return tic->t_unit_res;
|
|
|
|
} else {
|
2011-11-28 08:17:36 +00:00
|
|
|
if (tic->t_flags & XLOG_TIC_PERM_RESERV)
|
2012-02-20 02:31:29 +00:00
|
|
|
return tic->t_unit_res * tic->t_cnt;
|
2011-11-28 08:17:36 +00:00
|
|
|
else
|
2012-02-20 02:31:29 +00:00
|
|
|
return tic->t_unit_res;
|
2011-11-28 08:17:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
STATIC bool
|
2012-02-20 02:31:29 +00:00
|
|
|
xlog_grant_head_wake(
|
2011-11-28 08:17:36 +00:00
|
|
|
struct log *log,
|
2012-02-20 02:31:29 +00:00
|
|
|
struct xlog_grant_head *head,
|
2011-11-28 08:17:36 +00:00
|
|
|
int *free_bytes)
|
|
|
|
{
|
|
|
|
struct xlog_ticket *tic;
|
|
|
|
int need_bytes;
|
|
|
|
|
2012-02-20 02:31:29 +00:00
|
|
|
list_for_each_entry(tic, &head->waiters, t_queue) {
|
|
|
|
need_bytes = xlog_ticket_reservation(log, head, tic);
|
2011-11-28 08:17:36 +00:00
|
|
|
if (*free_bytes < need_bytes)
|
|
|
|
return false;
|
|
|
|
|
2012-02-20 02:31:29 +00:00
|
|
|
*free_bytes -= need_bytes;
|
|
|
|
trace_xfs_log_grant_wake_up(log, tic);
|
2012-02-20 02:31:24 +00:00
|
|
|
wake_up_process(tic->t_task);
|
2011-11-28 08:17:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
STATIC int
|
2012-02-20 02:31:28 +00:00
|
|
|
xlog_grant_head_wait(
|
2011-11-28 08:17:36 +00:00
|
|
|
struct log *log,
|
2012-02-20 02:31:28 +00:00
|
|
|
struct xlog_grant_head *head,
|
2011-11-28 08:17:36 +00:00
|
|
|
struct xlog_ticket *tic,
|
|
|
|
int need_bytes)
|
|
|
|
{
|
2012-02-20 02:31:28 +00:00
|
|
|
list_add_tail(&tic->t_queue, &head->waiters);
|
2011-11-28 08:17:36 +00:00
|
|
|
|
|
|
|
do {
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
|
|
goto shutdown;
|
|
|
|
xlog_grant_push_ail(log, need_bytes);
|
|
|
|
|
2012-02-20 02:31:24 +00:00
|
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
2012-02-20 02:31:28 +00:00
|
|
|
spin_unlock(&head->lock);
|
2012-02-20 02:31:24 +00:00
|
|
|
|
2011-11-28 08:17:36 +00:00
|
|
|
XFS_STATS_INC(xs_sleep_logspace);
|
|
|
|
|
2012-02-20 02:31:24 +00:00
|
|
|
trace_xfs_log_grant_sleep(log, tic);
|
|
|
|
schedule();
|
2011-11-28 08:17:36 +00:00
|
|
|
trace_xfs_log_grant_wake(log, tic);
|
|
|
|
|
2012-02-20 02:31:28 +00:00
|
|
|
spin_lock(&head->lock);
|
2011-11-28 08:17:36 +00:00
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
|
|
goto shutdown;
|
2012-02-20 02:31:28 +00:00
|
|
|
} while (xlog_space_left(log, &head->grant) < need_bytes);
|
2011-11-28 08:17:36 +00:00
|
|
|
|
|
|
|
list_del_init(&tic->t_queue);
|
|
|
|
return 0;
|
|
|
|
shutdown:
|
|
|
|
list_del_init(&tic->t_queue);
|
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
}
|
|
|
|
|
2012-02-20 02:31:30 +00:00
|
|
|
/*
|
|
|
|
* Atomically get the log space required for a log ticket.
|
|
|
|
*
|
|
|
|
* Once a ticket gets put onto head->waiters, it will only return after the
|
|
|
|
* needed reservation is satisfied.
|
|
|
|
*
|
|
|
|
* This function is structured so that it has a lock free fast path. This is
|
|
|
|
* necessary because every new transaction reservation will come through this
|
|
|
|
* path. Hence any lock will be globally hot if we take it unconditionally on
|
|
|
|
* every pass.
|
|
|
|
*
|
|
|
|
* As tickets are only ever moved on and off head->waiters under head->lock, we
|
|
|
|
* only need to take that lock if we are going to add the ticket to the queue
|
|
|
|
* and sleep. We can avoid taking the lock if the ticket was never added to
|
|
|
|
* head->waiters because the t_queue list head will be empty and we hold the
|
|
|
|
* only reference to it so it can safely be checked unlocked.
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xlog_grant_head_check(
|
|
|
|
struct log *log,
|
|
|
|
struct xlog_grant_head *head,
|
|
|
|
struct xlog_ticket *tic,
|
|
|
|
int *need_bytes)
|
|
|
|
{
|
|
|
|
int free_bytes;
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there are other waiters on the queue then give them a chance at
|
|
|
|
* logspace before us. Wake up the first waiters, if we do not wake
|
|
|
|
* up all the waiters then go to sleep waiting for more free space,
|
|
|
|
* otherwise try to get some space for this transaction.
|
|
|
|
*/
|
|
|
|
*need_bytes = xlog_ticket_reservation(log, head, tic);
|
|
|
|
free_bytes = xlog_space_left(log, &head->grant);
|
|
|
|
if (!list_empty_careful(&head->waiters)) {
|
|
|
|
spin_lock(&head->lock);
|
|
|
|
if (!xlog_grant_head_wake(log, head, &free_bytes) ||
|
|
|
|
free_bytes < *need_bytes) {
|
|
|
|
error = xlog_grant_head_wait(log, head, tic,
|
|
|
|
*need_bytes);
|
|
|
|
}
|
|
|
|
spin_unlock(&head->lock);
|
|
|
|
} else if (free_bytes < *need_bytes) {
|
|
|
|
spin_lock(&head->lock);
|
|
|
|
error = xlog_grant_head_wait(log, head, tic, *need_bytes);
|
|
|
|
spin_unlock(&head->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
2007-08-30 07:21:46 +00:00
|
|
|
static void
|
|
|
|
xlog_tic_reset_res(xlog_ticket_t *tic)
|
|
|
|
{
|
|
|
|
tic->t_res_num = 0;
|
|
|
|
tic->t_res_arr_sum = 0;
|
|
|
|
tic->t_res_num_ophdrs = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
|
|
|
|
{
|
|
|
|
if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
|
|
|
|
/* add to overflow and start again */
|
|
|
|
tic->t_res_o_flow += tic->t_res_arr_sum;
|
|
|
|
tic->t_res_num = 0;
|
|
|
|
tic->t_res_arr_sum = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
tic->t_res_arr[tic->t_res_num].r_len = len;
|
|
|
|
tic->t_res_arr[tic->t_res_num].r_type = type;
|
|
|
|
tic->t_res_arr_sum += len;
|
|
|
|
tic->t_res_num++;
|
|
|
|
}
|
2006-01-11 04:34:50 +00:00
|
|
|
|
2012-02-20 02:31:31 +00:00
|
|
|
/*
|
|
|
|
* Replenish the byte reservation required by moving the grant write head.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_log_regrant(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
struct xlog_ticket *tic)
|
|
|
|
{
|
|
|
|
struct log *log = mp->m_log;
|
|
|
|
int need_bytes;
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
|
|
|
|
XFS_STATS_INC(xs_try_logspace);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is a new transaction on the ticket, so we need to change the
|
|
|
|
* transaction ID so that the next transaction has a different TID in
|
|
|
|
* the log. Just add one to the existing tid so that we can see chains
|
|
|
|
* of rolling transactions in the log easily.
|
|
|
|
*/
|
|
|
|
tic->t_tid++;
|
|
|
|
|
|
|
|
xlog_grant_push_ail(log, tic->t_unit_res);
|
|
|
|
|
|
|
|
tic->t_curr_res = tic->t_unit_res;
|
|
|
|
xlog_tic_reset_res(tic);
|
|
|
|
|
|
|
|
if (tic->t_cnt > 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
trace_xfs_log_regrant(log, tic);
|
|
|
|
|
|
|
|
error = xlog_grant_head_check(log, &log->l_write_head, tic,
|
|
|
|
&need_bytes);
|
|
|
|
if (error)
|
|
|
|
goto out_error;
|
|
|
|
|
|
|
|
xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
|
|
|
|
trace_xfs_log_regrant_exit(log, tic);
|
|
|
|
xlog_verify_grant_tail(log);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_error:
|
|
|
|
/*
|
|
|
|
* If we are failing, make sure the ticket doesn't have any current
|
|
|
|
* reservations. We don't want to add this back when the ticket/
|
|
|
|
* transaction gets cancelled.
|
|
|
|
*/
|
|
|
|
tic->t_curr_res = 0;
|
|
|
|
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reserve log space and return a ticket corresponding the reservation.
|
|
|
|
*
|
|
|
|
* Each reservation is going to reserve extra space for a log record header.
|
|
|
|
* When writes happen to the on-disk log, we don't subtract the length of the
|
|
|
|
* log record header from any reservation. By wasting space in each
|
|
|
|
* reservation, we prevent over allocation problems.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_log_reserve(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
int unit_bytes,
|
|
|
|
int cnt,
|
|
|
|
struct xlog_ticket **ticp,
|
|
|
|
__uint8_t client,
|
|
|
|
bool permanent,
|
|
|
|
uint t_type)
|
|
|
|
{
|
|
|
|
struct log *log = mp->m_log;
|
|
|
|
struct xlog_ticket *tic;
|
|
|
|
int need_bytes;
|
|
|
|
int error = 0;
|
|
|
|
|
|
|
|
ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
|
|
|
|
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
|
|
|
|
XFS_STATS_INC(xs_try_logspace);
|
|
|
|
|
|
|
|
ASSERT(*ticp == NULL);
|
|
|
|
tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
|
|
|
|
KM_SLEEP | KM_MAYFAIL);
|
|
|
|
if (!tic)
|
|
|
|
return XFS_ERROR(ENOMEM);
|
|
|
|
|
|
|
|
tic->t_trans_type = t_type;
|
|
|
|
*ticp = tic;
|
|
|
|
|
|
|
|
xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
|
|
|
|
|
|
|
|
trace_xfs_log_reserve(log, tic);
|
|
|
|
|
|
|
|
error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
|
|
|
|
&need_bytes);
|
|
|
|
if (error)
|
|
|
|
goto out_error;
|
|
|
|
|
|
|
|
xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
|
|
|
|
xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
|
|
|
|
trace_xfs_log_reserve_exit(log, tic);
|
|
|
|
xlog_verify_grant_tail(log);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_error:
|
|
|
|
/*
|
|
|
|
* If we are failing, make sure the ticket doesn't have any current
|
|
|
|
* reservations. We don't want to add this back when the ticket/
|
|
|
|
* transaction gets cancelled.
|
|
|
|
*/
|
|
|
|
tic->t_curr_res = 0;
|
|
|
|
tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* NOTES:
|
|
|
|
*
|
|
|
|
* 1. currblock field gets updated at startup and after in-core logs
|
|
|
|
* marked as with WANT_SYNC.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine is called when a user of a log manager ticket is done with
|
|
|
|
* the reservation. If the ticket was ever used, then a commit record for
|
|
|
|
* the associated transaction is written out as a log operation header with
|
|
|
|
* no data. The flag XLOG_TIC_INITED is set when the first write occurs with
|
|
|
|
* a given ticket. If the ticket was one with a permanent reservation, then
|
|
|
|
* a few operations are done differently. Permanent reservation tickets by
|
|
|
|
* default don't release the reservation. They just commit the current
|
|
|
|
* transaction with the belief that the reservation is still needed. A flag
|
|
|
|
* must be passed in before permanent reservations are actually released.
|
|
|
|
* When these type of tickets are not released, they need to be set into
|
|
|
|
* the inited state again. By doing this, a start record will be written
|
|
|
|
* out when the next write occurs.
|
|
|
|
*/
|
|
|
|
xfs_lsn_t
|
2010-02-15 23:34:54 +00:00
|
|
|
xfs_log_done(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
struct xlog_ticket *ticket,
|
|
|
|
struct xlog_in_core **iclog,
|
|
|
|
uint flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-02-15 23:34:54 +00:00
|
|
|
struct log *log = mp->m_log;
|
|
|
|
xfs_lsn_t lsn = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log) ||
|
|
|
|
/*
|
|
|
|
* If nothing was ever written, don't write out commit record.
|
|
|
|
* If we get an error, just continue and give back the log ticket.
|
|
|
|
*/
|
|
|
|
(((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
|
2010-03-23 00:43:17 +00:00
|
|
|
(xlog_commit_record(log, ticket, iclog, &lsn)))) {
|
2005-04-16 22:20:36 +00:00
|
|
|
lsn = (xfs_lsn_t) -1;
|
|
|
|
if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
|
|
|
|
flags |= XFS_LOG_REL_PERM_RESERV;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
|
|
|
|
(flags & XFS_LOG_REL_PERM_RESERV)) {
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_log_done_nonperm(log, ticket);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2006-03-28 22:55:14 +00:00
|
|
|
* Release ticket if not permanent reservation or a specific
|
2005-04-16 22:20:36 +00:00
|
|
|
* request has been made to release a permanent reservation.
|
|
|
|
*/
|
|
|
|
xlog_ungrant_log_space(log, ticket);
|
2008-11-17 06:37:10 +00:00
|
|
|
xfs_log_ticket_put(ticket);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_log_done_perm(log, ticket);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_regrant_reserve_log_space(log, ticket);
|
2008-08-13 06:52:50 +00:00
|
|
|
/* If this ticket was a permanent reservation and we aren't
|
|
|
|
* trying to release it, reset the inited flags; so next time
|
|
|
|
* we write, a start record will be written out.
|
|
|
|
*/
|
2005-04-16 22:20:36 +00:00
|
|
|
ticket->t_flags |= XLOG_TIC_INITED;
|
2008-08-13 06:52:50 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
return lsn;
|
2010-02-15 23:34:54 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Attaches a new iclog I/O completion callback routine during
|
|
|
|
* transaction commit. If the log is in error state, a non-zero
|
|
|
|
* return code is handed back and the caller is responsible for
|
|
|
|
* executing the callback at an appropriate time.
|
|
|
|
*/
|
|
|
|
int
|
2010-02-15 23:34:54 +00:00
|
|
|
xfs_log_notify(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
struct xlog_in_core *iclog,
|
|
|
|
xfs_log_callback_t *cb)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2007-10-11 07:37:10 +00:00
|
|
|
int abortflg;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-04-10 02:18:39 +00:00
|
|
|
spin_lock(&iclog->ic_callback_lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
|
|
|
|
if (!abortflg) {
|
|
|
|
ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
|
|
|
|
(iclog->ic_state == XLOG_STATE_WANT_SYNC));
|
|
|
|
cb->cb_next = NULL;
|
|
|
|
*(iclog->ic_callback_tail) = cb;
|
|
|
|
iclog->ic_callback_tail = &(cb->cb_next);
|
|
|
|
}
|
2008-04-10 02:18:39 +00:00
|
|
|
spin_unlock(&iclog->ic_callback_lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
return abortflg;
|
2010-02-15 23:34:54 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
int
|
2010-02-15 23:34:54 +00:00
|
|
|
xfs_log_release_iclog(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
struct xlog_in_core *iclog)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-02-15 23:34:54 +00:00
|
|
|
if (xlog_state_release_iclog(mp->m_log, iclog)) {
|
2006-06-09 04:58:38 +00:00
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
|
2006-01-15 01:37:08 +00:00
|
|
|
return EIO;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Mount a log filesystem
|
|
|
|
*
|
|
|
|
* mp - ubiquitous xfs mount point structure
|
|
|
|
* log_target - buftarg of on-disk log device
|
|
|
|
* blk_offset - Start block # where block size is 512 bytes (BBSIZE)
|
|
|
|
* num_bblocks - Number of BBSIZE blocks in on-disk log
|
|
|
|
*
|
|
|
|
* Return error or zero.
|
|
|
|
*/
|
|
|
|
int
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
xfs_log_mount(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_buftarg_t *log_target,
|
|
|
|
xfs_daddr_t blk_offset,
|
|
|
|
int num_bblks)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
int error;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_notice(mp, "Mounting Filesystem");
|
2005-04-16 22:20:36 +00:00
|
|
|
else {
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_notice(mp,
|
|
|
|
"Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
|
2007-08-30 07:21:12 +00:00
|
|
|
ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
|
2009-04-06 16:39:27 +00:00
|
|
|
if (IS_ERR(mp->m_log)) {
|
|
|
|
error = -PTR_ERR(mp->m_log);
|
2008-11-10 05:50:24 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
/*
|
|
|
|
* Initialize the AIL now we have a log.
|
|
|
|
*/
|
|
|
|
error = xfs_trans_ail_init(mp);
|
|
|
|
if (error) {
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(mp, "AIL initialisation failed: error %d", error);
|
2009-02-12 18:55:48 +00:00
|
|
|
goto out_free_log;
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
}
|
2008-10-30 06:39:35 +00:00
|
|
|
mp->m_log->l_ailp = mp->m_ail;
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* skip log recovery on a norecovery mount. pretend it all
|
|
|
|
* just worked.
|
|
|
|
*/
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (readonly)
|
2007-08-30 07:21:12 +00:00
|
|
|
mp->m_flags &= ~XFS_MOUNT_RDONLY;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2006-01-11 04:34:19 +00:00
|
|
|
error = xlog_recover(mp->m_log);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (readonly)
|
2007-08-30 07:21:12 +00:00
|
|
|
mp->m_flags |= XFS_MOUNT_RDONLY;
|
2005-04-16 22:20:36 +00:00
|
|
|
if (error) {
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(mp, "log mount/recovery failed: error %d",
|
|
|
|
error);
|
2009-02-12 18:55:48 +00:00
|
|
|
goto out_destroy_ail;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Normal transactions can now occur */
|
|
|
|
mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
|
|
|
|
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
/*
|
|
|
|
* Now the log has been fully initialised and we know were our
|
|
|
|
* space grant counters are, we can initialise the permanent ticket
|
|
|
|
* needed for delayed logging to work.
|
|
|
|
*/
|
|
|
|
xlog_cil_init_post_recovery(mp->m_log);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
2009-02-12 18:55:48 +00:00
|
|
|
|
|
|
|
out_destroy_ail:
|
|
|
|
xfs_trans_ail_destroy(mp);
|
|
|
|
out_free_log:
|
|
|
|
xlog_dealloc_log(mp->m_log);
|
2008-11-10 05:50:24 +00:00
|
|
|
out:
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
return error;
|
2009-02-12 18:55:48 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Finish the recovery of the file system. This is separate from
|
|
|
|
* the xfs_log_mount() call, because it depends on the code in
|
|
|
|
* xfs_mountfs() to read in the root and real-time bitmap inodes
|
|
|
|
* between calling xfs_log_mount() and here.
|
|
|
|
*
|
|
|
|
* mp - ubiquitous xfs mount point structure
|
|
|
|
*/
|
|
|
|
int
|
2008-08-13 06:49:32 +00:00
|
|
|
xfs_log_mount_finish(xfs_mount_t *mp)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
|
2008-08-13 06:49:32 +00:00
|
|
|
error = xlog_recover_finish(mp->m_log);
|
2005-04-16 22:20:36 +00:00
|
|
|
else {
|
|
|
|
error = 0;
|
2007-08-30 07:21:12 +00:00
|
|
|
ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Final log writes as part of unmount.
|
|
|
|
*
|
|
|
|
* Mark the filesystem clean as unmount happens. Note that during relocation
|
|
|
|
* this routine needs to be executed as part of source-bag while the
|
|
|
|
* deallocation must not be done until source-end.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Unmount record used to have a string "Unmount filesystem--" in the
|
|
|
|
* data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
|
|
|
|
* We just write the magic number now since that particular field isn't
|
|
|
|
* currently architecture converted and "nUmount" is a bit foo.
|
|
|
|
* As far as I know, there weren't any dependencies on the old behaviour.
|
|
|
|
*/
|
|
|
|
|
|
|
|
int
|
|
|
|
xfs_log_unmount_write(xfs_mount_t *mp)
|
|
|
|
{
|
|
|
|
xlog_t *log = mp->m_log;
|
|
|
|
xlog_in_core_t *iclog;
|
|
|
|
#ifdef DEBUG
|
|
|
|
xlog_in_core_t *first_iclog;
|
|
|
|
#endif
|
2010-02-15 23:34:54 +00:00
|
|
|
xlog_ticket_t *tic = NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
xfs_lsn_t lsn;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Don't write out unmount record on read-only mounts.
|
|
|
|
* Or, if we are doing a forced umount (typically because of IO errors).
|
|
|
|
*/
|
2007-08-30 07:21:12 +00:00
|
|
|
if (mp->m_flags & XFS_MOUNT_RDONLY)
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
|
2008-04-10 02:24:30 +00:00
|
|
|
ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
first_iclog = iclog = log->l_iclog;
|
|
|
|
do {
|
|
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
|
|
ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
|
|
|
|
ASSERT(iclog->ic_offset == 0);
|
|
|
|
}
|
|
|
|
iclog = iclog->ic_next;
|
|
|
|
} while (iclog != first_iclog);
|
|
|
|
#endif
|
|
|
|
if (! (XLOG_FORCED_SHUTDOWN(log))) {
|
2006-09-28 01:04:16 +00:00
|
|
|
error = xfs_log_reserve(mp, 600, 1, &tic,
|
|
|
|
XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!error) {
|
2010-03-23 00:43:17 +00:00
|
|
|
/* the data section must be 32 bit size aligned */
|
|
|
|
struct {
|
|
|
|
__uint16_t magic;
|
|
|
|
__uint16_t pad1;
|
|
|
|
__uint32_t pad2; /* may as well make it 64 bits */
|
|
|
|
} magic = {
|
|
|
|
.magic = XLOG_UNMOUNT_TYPE,
|
|
|
|
};
|
|
|
|
struct xfs_log_iovec reg = {
|
2010-06-23 08:11:15 +00:00
|
|
|
.i_addr = &magic,
|
2010-03-23 00:43:17 +00:00
|
|
|
.i_len = sizeof(magic),
|
|
|
|
.i_type = XLOG_REG_TYPE_UNMOUNT,
|
|
|
|
};
|
|
|
|
struct xfs_log_vec vec = {
|
|
|
|
.lv_niovecs = 1,
|
|
|
|
.lv_iovecp = ®,
|
|
|
|
};
|
|
|
|
|
2012-03-22 05:15:11 +00:00
|
|
|
/* remove inited flag, and account for space used */
|
2010-03-23 00:43:17 +00:00
|
|
|
tic->t_flags = 0;
|
2012-03-22 05:15:11 +00:00
|
|
|
tic->t_curr_res -= sizeof(magic);
|
2010-03-23 00:43:17 +00:00
|
|
|
error = xlog_write(log, &vec, tic, &lsn,
|
2005-04-16 22:20:36 +00:00
|
|
|
NULL, XLOG_UNMOUNT_TRANS);
|
|
|
|
/*
|
|
|
|
* At this point, we're umounting anyway,
|
|
|
|
* so there's no point in transitioning log state
|
|
|
|
* to IOERROR. Just continue...
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
2011-03-06 23:01:35 +00:00
|
|
|
if (error)
|
|
|
|
xfs_alert(mp, "%s: unmount record failed", __func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = log->l_iclog;
|
2008-03-06 02:44:14 +00:00
|
|
|
atomic_inc(&iclog->ic_refcnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_want_sync(log, iclog);
|
2008-12-03 11:20:28 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2008-04-10 02:24:38 +00:00
|
|
|
error = xlog_state_release_iclog(log, iclog);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
|
|
iclog->ic_state == XLOG_STATE_DIRTY)) {
|
|
|
|
if (!XLOG_FORCED_SHUTDOWN(log)) {
|
2010-12-21 01:09:01 +00:00
|
|
|
xlog_wait(&iclog->ic_force_wait,
|
|
|
|
&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
} else {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2006-09-28 01:04:16 +00:00
|
|
|
if (tic) {
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_log_umount_write(log, tic);
|
2006-09-28 01:04:16 +00:00
|
|
|
xlog_ungrant_log_space(log, tic);
|
2008-11-17 06:37:10 +00:00
|
|
|
xfs_log_ticket_put(tic);
|
2006-09-28 01:04:16 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We're already in forced_shutdown mode, couldn't
|
|
|
|
* even attempt to write out the unmount transaction.
|
|
|
|
*
|
|
|
|
* Go through the motions of sync'ing and releasing
|
|
|
|
* the iclog, even though no I/O will actually happen,
|
2006-03-28 22:55:14 +00:00
|
|
|
* we need to wait for other log I/Os that may already
|
2005-04-16 22:20:36 +00:00
|
|
|
* be in progress. Do this as a separate section of
|
|
|
|
* code so we'll know if we ever get stuck here that
|
|
|
|
* we're in this odd situation of trying to unmount
|
|
|
|
* a file system that went into forced_shutdown as
|
|
|
|
* the result of an unmount..
|
|
|
|
*/
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = log->l_iclog;
|
2008-03-06 02:44:14 +00:00
|
|
|
atomic_inc(&iclog->ic_refcnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
xlog_state_want_sync(log, iclog);
|
2008-12-03 11:20:28 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2008-04-10 02:24:38 +00:00
|
|
|
error = xlog_state_release_iclog(log, iclog);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
|
|
|
|
|| iclog->ic_state == XLOG_STATE_DIRTY
|
|
|
|
|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
|
|
|
|
|
2010-12-21 01:09:01 +00:00
|
|
|
xlog_wait(&iclog->ic_force_wait,
|
|
|
|
&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-04-10 02:24:38 +00:00
|
|
|
return error;
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xfs_log_unmount_write */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Deallocate log structures for unmount/relocation.
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
*
|
|
|
|
* We need to stop the aild from running before we destroy
|
|
|
|
* and deallocate the log as the aild references the log.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
void
|
2009-03-16 07:19:29 +00:00
|
|
|
xfs_log_unmount(xfs_mount_t *mp)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
[XFS] Move AIL pushing into it's own thread
When many hundreds to thousands of threads all try to do simultaneous
transactions and the log is in a tail-pushing situation (i.e. full), we
can get multiple threads walking the AIL list and contending on the AIL
lock.
The AIL push is, in effect, a simple I/O dispatch algorithm complicated by
the ordering constraints placed on it by the transaction subsystem. It
really does not need multiple threads to push on it - even when only a
single CPU is pushing the AIL, it can push the I/O out far faster that
pretty much any disk subsystem can handle.
So, to avoid contention problems stemming from multiple list walkers, move
the list walk off into another thread and simply provide a "target" to
push to. When a thread requires a push, it sets the target and wakes the
push thread, then goes to sleep waiting for the required amount of space
to become available in the log.
This mechanism should also be a lot fairer under heavy load as the waiters
will queue in arrival order, rather than queuing in "who completed a push
first" order.
Also, by moving the pushing to a separate thread we can do more
effectively overload detection and prevention as we can keep context from
loop iteration to loop iteration. That is, we can push only part of the
list each loop and not have to loop back to the start of the list every
time we run. This should also help by reducing the number of items we try
to lock and/or push items that we cannot move.
Note that this patch is not intended to solve the inefficiencies in the
AIL structure and the associated issues with extremely large list
contents. That needs to be addresses separately; parallel access would
cause problems to any new structure as well, so I'm only aiming to isolate
the structure from unbounded parallelism here.
SGI-PV: 972759
SGI-Modid: xfs-linux-melb:xfs-kern:30371a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
2008-02-05 01:13:32 +00:00
|
|
|
xfs_trans_ail_destroy(mp);
|
2006-03-28 22:55:14 +00:00
|
|
|
xlog_dealloc_log(mp->m_log);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2010-03-22 23:10:00 +00:00
|
|
|
void
|
|
|
|
xfs_log_item_init(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
struct xfs_log_item *item,
|
|
|
|
int type,
|
2011-10-28 09:54:24 +00:00
|
|
|
const struct xfs_item_ops *ops)
|
2010-03-22 23:10:00 +00:00
|
|
|
{
|
|
|
|
item->li_mountp = mp;
|
|
|
|
item->li_ailp = mp->m_ail;
|
|
|
|
item->li_type = type;
|
|
|
|
item->li_ops = ops;
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
item->li_lv = NULL;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&item->li_ail);
|
|
|
|
INIT_LIST_HEAD(&item->li_cil);
|
2010-03-22 23:10:00 +00:00
|
|
|
}
|
|
|
|
|
2012-02-20 02:31:20 +00:00
|
|
|
/*
|
|
|
|
* Wake up processes waiting for log space after we have moved the log tail.
|
|
|
|
*/
|
2005-04-16 22:20:36 +00:00
|
|
|
void
|
2012-02-20 02:31:20 +00:00
|
|
|
xfs_log_space_wake(
|
2012-02-20 02:31:23 +00:00
|
|
|
struct xfs_mount *mp)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2012-02-20 02:31:20 +00:00
|
|
|
struct log *log = mp->m_log;
|
2012-02-20 02:31:23 +00:00
|
|
|
int free_bytes;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (XLOG_FORCED_SHUTDOWN(log))
|
|
|
|
return;
|
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
if (!list_empty_careful(&log->l_write_head.waiters)) {
|
2012-02-20 02:31:20 +00:00
|
|
|
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
|
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
spin_lock(&log->l_write_head.lock);
|
|
|
|
free_bytes = xlog_space_left(log, &log->l_write_head.grant);
|
2012-02-20 02:31:29 +00:00
|
|
|
xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
|
2012-02-20 02:31:25 +00:00
|
|
|
spin_unlock(&log->l_write_head.lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2010-12-21 01:02:25 +00:00
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
if (!list_empty_careful(&log->l_reserve_head.waiters)) {
|
2012-02-20 02:31:20 +00:00
|
|
|
ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
|
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
spin_lock(&log->l_reserve_head.lock);
|
|
|
|
free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
|
2012-02-20 02:31:29 +00:00
|
|
|
xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
|
2012-02-20 02:31:25 +00:00
|
|
|
spin_unlock(&log->l_reserve_head.lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2010-12-21 01:29:01 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine if we have a transaction that has gone to disk
|
xfs: ensure that sync updates the log tail correctly
Updates to the VFS layer removed an extra ->sync_fs call into the
filesystem during the sync process (from the quota code).
Unfortunately the sync code was unknowingly relying on this call to
make sure metadata buffers were flushed via a xfs_buftarg_flush()
call to move the tail of the log forward in memory before the final
transactions of the sync process were issued.
As a result, the old code would write a very recent log tail value
to the log by the end of the sync process, and so a subsequent crash
would leave nothing for log recovery to do. Hence in qa test 182,
log recovery only replayed a small handle for inode fsync
transactions in this case.
However, with the removal of the extra ->sync_fs call, the log tail
was now not moved forward with the inode fsync transactions near the
end of the sync procese the first (and only) buftarg flush occurred
after these transactions went to disk. The result is that log
recovery now sees a large number of transactions for metadata that
is already on disk.
This usually isn't a problem, but when the transactions include
inode chunk allocation, the inode create transactions and all
subsequent changes are replayed as we cannt rely on what is on disk
is valid. As a result, if the inode was written and contains
unlogged changes, the unlogged changes are lost, thereby violating
sync semantics.
The fix is to always issue a transaction after the buftarg flush
occurs is the log iѕ not idle or covered. This results in a dummy
transaction being written that contains the up-to-date log tail
value, which will be very recent. Indeed, it will be at least as
recent as the old code would have left on disk, so log recovery
will behave exactly as it used to in this situation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-04-13 05:06:44 +00:00
|
|
|
* that needs to be covered. To begin the transition to the idle state
|
|
|
|
* firstly the log needs to be idle (no AIL and nothing in the iclogs).
|
|
|
|
* If we are then in a state where covering is needed, the caller is informed
|
|
|
|
* that dummy transactions are required to move the log into the idle state.
|
|
|
|
*
|
|
|
|
* Because this is called as part of the sync process, we should also indicate
|
|
|
|
* that dummy transactions should be issued in anything but the covered or
|
|
|
|
* idle states. This ensures that the log tail is accurately reflected in
|
|
|
|
* the log at the end of the sync, hence if a crash occurrs avoids replay
|
|
|
|
* of transactions where the metadata is already on disk.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_log_need_covered(xfs_mount_t *mp)
|
|
|
|
{
|
2008-10-30 06:38:39 +00:00
|
|
|
int needed = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_t *log = mp->m_log;
|
|
|
|
|
[XFS] Lazy Superblock Counters
When we have a couple of hundred transactions on the fly at once, they all
typically modify the on disk superblock in some way.
create/unclink/mkdir/rmdir modify inode counts, allocation/freeing modify
free block counts.
When these counts are modified in a transaction, they must eventually lock
the superblock buffer and apply the mods. The buffer then remains locked
until the transaction is committed into the incore log buffer. The result
of this is that with enough transactions on the fly the incore superblock
buffer becomes a bottleneck.
The result of contention on the incore superblock buffer is that
transaction rates fall - the more pressure that is put on the superblock
buffer, the slower things go.
The key to removing the contention is to not require the superblock fields
in question to be locked. We do that by not marking the superblock dirty
in the transaction. IOWs, we modify the incore superblock but do not
modify the cached superblock buffer. In short, we do not log superblock
modifications to critical fields in the superblock on every transaction.
In fact we only do it just before we write the superblock to disk every
sync period or just before unmount.
This creates an interesting problem - if we don't log or write out the
fields in every transaction, then how do the values get recovered after a
crash? the answer is simple - we keep enough duplicate, logged information
in other structures that we can reconstruct the correct count after log
recovery has been performed.
It is the AGF and AGI structures that contain the duplicate information;
after recovery, we walk every AGI and AGF and sum their individual
counters to get the correct value, and we do a transaction into the log to
correct them. An optimisation of this is that if we have a clean unmount
record, we know the value in the superblock is correct, so we can avoid
the summation walk under normal conditions and so mount/recovery times do
not change under normal operation.
One wrinkle that was discovered during development was that the blocks
used in the freespace btrees are never accounted for in the AGF counters.
This was once a valid optimisation to make; when the filesystem is full,
the free space btrees are empty and consume no space. Hence when it
matters, the "accounting" is correct. But that means the when we do the
AGF summations, we would not have a correct count and xfs_check would
complain. Hence a new counter was added to track the number of blocks used
by the free space btrees. This is an *on-disk format change*.
As a result of this, lazy superblock counters are a mkfs option and at the
moment on linux there is no way to convert an old filesystem. This is
possible - xfs_db can be used to twiddle the right bits and then
xfs_repair will do the format conversion for you. Similarly, you can
convert backwards as well. At some point we'll add functionality to
xfs_admin to do the bit twiddling easily....
SGI-PV: 964999
SGI-Modid: xfs-linux-melb:xfs-kern:28652a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
2007-05-24 05:26:31 +00:00
|
|
|
if (!xfs_fs_writable(mp))
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
xfs: ensure that sync updates the log tail correctly
Updates to the VFS layer removed an extra ->sync_fs call into the
filesystem during the sync process (from the quota code).
Unfortunately the sync code was unknowingly relying on this call to
make sure metadata buffers were flushed via a xfs_buftarg_flush()
call to move the tail of the log forward in memory before the final
transactions of the sync process were issued.
As a result, the old code would write a very recent log tail value
to the log by the end of the sync process, and so a subsequent crash
would leave nothing for log recovery to do. Hence in qa test 182,
log recovery only replayed a small handle for inode fsync
transactions in this case.
However, with the removal of the extra ->sync_fs call, the log tail
was now not moved forward with the inode fsync transactions near the
end of the sync procese the first (and only) buftarg flush occurred
after these transactions went to disk. The result is that log
recovery now sees a large number of transactions for metadata that
is already on disk.
This usually isn't a problem, but when the transactions include
inode chunk allocation, the inode create transactions and all
subsequent changes are replayed as we cannt rely on what is on disk
is valid. As a result, if the inode was written and contains
unlogged changes, the unlogged changes are lost, thereby violating
sync semantics.
The fix is to always issue a transaction after the buftarg flush
occurs is the log iѕ not idle or covered. This results in a dummy
transaction being written that contains the up-to-date log tail
value, which will be very recent. Indeed, it will be at least as
recent as the old code would have left on disk, so log recovery
will behave exactly as it used to in this situation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-04-13 05:06:44 +00:00
|
|
|
switch (log->l_covered_state) {
|
|
|
|
case XLOG_STATE_COVER_DONE:
|
|
|
|
case XLOG_STATE_COVER_DONE2:
|
|
|
|
case XLOG_STATE_COVER_IDLE:
|
|
|
|
break;
|
|
|
|
case XLOG_STATE_COVER_NEED:
|
|
|
|
case XLOG_STATE_COVER_NEED2:
|
2011-04-08 02:45:07 +00:00
|
|
|
if (!xfs_ail_min_lsn(log->l_ailp) &&
|
xfs: ensure that sync updates the log tail correctly
Updates to the VFS layer removed an extra ->sync_fs call into the
filesystem during the sync process (from the quota code).
Unfortunately the sync code was unknowingly relying on this call to
make sure metadata buffers were flushed via a xfs_buftarg_flush()
call to move the tail of the log forward in memory before the final
transactions of the sync process were issued.
As a result, the old code would write a very recent log tail value
to the log by the end of the sync process, and so a subsequent crash
would leave nothing for log recovery to do. Hence in qa test 182,
log recovery only replayed a small handle for inode fsync
transactions in this case.
However, with the removal of the extra ->sync_fs call, the log tail
was now not moved forward with the inode fsync transactions near the
end of the sync procese the first (and only) buftarg flush occurred
after these transactions went to disk. The result is that log
recovery now sees a large number of transactions for metadata that
is already on disk.
This usually isn't a problem, but when the transactions include
inode chunk allocation, the inode create transactions and all
subsequent changes are replayed as we cannt rely on what is on disk
is valid. As a result, if the inode was written and contains
unlogged changes, the unlogged changes are lost, thereby violating
sync semantics.
The fix is to always issue a transaction after the buftarg flush
occurs is the log iѕ not idle or covered. This results in a dummy
transaction being written that contains the up-to-date log tail
value, which will be very recent. Indeed, it will be at least as
recent as the old code would have left on disk, so log recovery
will behave exactly as it used to in this situation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-04-13 05:06:44 +00:00
|
|
|
xlog_iclogs_empty(log)) {
|
|
|
|
if (log->l_covered_state == XLOG_STATE_COVER_NEED)
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_DONE;
|
|
|
|
else
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_DONE2;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
xfs: ensure that sync updates the log tail correctly
Updates to the VFS layer removed an extra ->sync_fs call into the
filesystem during the sync process (from the quota code).
Unfortunately the sync code was unknowingly relying on this call to
make sure metadata buffers were flushed via a xfs_buftarg_flush()
call to move the tail of the log forward in memory before the final
transactions of the sync process were issued.
As a result, the old code would write a very recent log tail value
to the log by the end of the sync process, and so a subsequent crash
would leave nothing for log recovery to do. Hence in qa test 182,
log recovery only replayed a small handle for inode fsync
transactions in this case.
However, with the removal of the extra ->sync_fs call, the log tail
was now not moved forward with the inode fsync transactions near the
end of the sync procese the first (and only) buftarg flush occurred
after these transactions went to disk. The result is that log
recovery now sees a large number of transactions for metadata that
is already on disk.
This usually isn't a problem, but when the transactions include
inode chunk allocation, the inode create transactions and all
subsequent changes are replayed as we cannt rely on what is on disk
is valid. As a result, if the inode was written and contains
unlogged changes, the unlogged changes are lost, thereby violating
sync semantics.
The fix is to always issue a transaction after the buftarg flush
occurs is the log iѕ not idle or covered. This results in a dummy
transaction being written that contains the up-to-date log tail
value, which will be very recent. Indeed, it will be at least as
recent as the old code would have left on disk, so log recovery
will behave exactly as it used to in this situation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-04-13 05:06:44 +00:00
|
|
|
/* FALLTHRU */
|
|
|
|
default:
|
2005-04-16 22:20:36 +00:00
|
|
|
needed = 1;
|
xfs: ensure that sync updates the log tail correctly
Updates to the VFS layer removed an extra ->sync_fs call into the
filesystem during the sync process (from the quota code).
Unfortunately the sync code was unknowingly relying on this call to
make sure metadata buffers were flushed via a xfs_buftarg_flush()
call to move the tail of the log forward in memory before the final
transactions of the sync process were issued.
As a result, the old code would write a very recent log tail value
to the log by the end of the sync process, and so a subsequent crash
would leave nothing for log recovery to do. Hence in qa test 182,
log recovery only replayed a small handle for inode fsync
transactions in this case.
However, with the removal of the extra ->sync_fs call, the log tail
was now not moved forward with the inode fsync transactions near the
end of the sync procese the first (and only) buftarg flush occurred
after these transactions went to disk. The result is that log
recovery now sees a large number of transactions for metadata that
is already on disk.
This usually isn't a problem, but when the transactions include
inode chunk allocation, the inode create transactions and all
subsequent changes are replayed as we cannt rely on what is on disk
is valid. As a result, if the inode was written and contains
unlogged changes, the unlogged changes are lost, thereby violating
sync semantics.
The fix is to always issue a transaction after the buftarg flush
occurs is the log iѕ not idle or covered. This results in a dummy
transaction being written that contains the up-to-date log tail
value, which will be very recent. Indeed, it will be at least as
recent as the old code would have left on disk, so log recovery
will behave exactly as it used to in this situation.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-04-13 05:06:44 +00:00
|
|
|
break;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2006-01-15 01:37:08 +00:00
|
|
|
return needed;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2012-02-20 02:31:20 +00:00
|
|
|
/*
|
2005-04-16 22:20:36 +00:00
|
|
|
* We may be holding the log iclog lock upon entering this routine.
|
|
|
|
*/
|
|
|
|
xfs_lsn_t
|
2012-04-23 05:58:33 +00:00
|
|
|
xlog_assign_tail_lsn_locked(
|
2010-12-21 01:28:39 +00:00
|
|
|
struct xfs_mount *mp)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-12-21 01:28:39 +00:00
|
|
|
struct log *log = mp->m_log;
|
2012-04-23 05:58:33 +00:00
|
|
|
struct xfs_log_item *lip;
|
|
|
|
xfs_lsn_t tail_lsn;
|
|
|
|
|
|
|
|
assert_spin_locked(&mp->m_ail->xa_lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-02-20 02:31:20 +00:00
|
|
|
/*
|
|
|
|
* To make sure we always have a valid LSN for the log tail we keep
|
|
|
|
* track of the last LSN which was committed in log->l_last_sync_lsn,
|
2012-04-23 05:58:33 +00:00
|
|
|
* and use that when the AIL was empty.
|
2012-02-20 02:31:20 +00:00
|
|
|
*/
|
2012-04-23 05:58:33 +00:00
|
|
|
lip = xfs_ail_min(mp->m_ail);
|
|
|
|
if (lip)
|
|
|
|
tail_lsn = lip->li_lsn;
|
|
|
|
else
|
2010-12-03 11:11:29 +00:00
|
|
|
tail_lsn = atomic64_read(&log->l_last_sync_lsn);
|
2010-12-21 01:28:39 +00:00
|
|
|
atomic64_set(&log->l_tail_lsn, tail_lsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
return tail_lsn;
|
2010-12-21 01:28:39 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-04-23 05:58:33 +00:00
|
|
|
xfs_lsn_t
|
|
|
|
xlog_assign_tail_lsn(
|
|
|
|
struct xfs_mount *mp)
|
|
|
|
{
|
|
|
|
xfs_lsn_t tail_lsn;
|
|
|
|
|
|
|
|
spin_lock(&mp->m_ail->xa_lock);
|
|
|
|
tail_lsn = xlog_assign_tail_lsn_locked(mp);
|
|
|
|
spin_unlock(&mp->m_ail->xa_lock);
|
|
|
|
|
|
|
|
return tail_lsn;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Return the space in the log between the tail and the head. The head
|
|
|
|
* is passed in the cycle/bytes formal parms. In the special case where
|
|
|
|
* the reserve head has wrapped passed the tail, this calculation is no
|
|
|
|
* longer valid. In this case, just return 0 which means there is no space
|
|
|
|
* in the log. This works for all places where this function is called
|
|
|
|
* with the reserve head. Of course, if the write head were to ever
|
|
|
|
* wrap the tail, we should blow up. Rather than catch this case here,
|
|
|
|
* we depend on other ASSERTions in other parts of the code. XXXmiken
|
|
|
|
*
|
|
|
|
* This code also handles the case where the reservation head is behind
|
|
|
|
* the tail. The details of this case are described below, but the end
|
|
|
|
* result is that we return the size of the log as the amount of space left.
|
|
|
|
*/
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC int
|
2010-12-21 01:08:20 +00:00
|
|
|
xlog_space_left(
|
|
|
|
struct log *log,
|
2010-12-03 13:02:40 +00:00
|
|
|
atomic64_t *head)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-12-21 01:08:20 +00:00
|
|
|
int free_bytes;
|
|
|
|
int tail_bytes;
|
|
|
|
int tail_cycle;
|
|
|
|
int head_cycle;
|
|
|
|
int head_bytes;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-12-21 01:08:20 +00:00
|
|
|
xlog_crack_grant_head(head, &head_cycle, &head_bytes);
|
2010-12-21 01:28:39 +00:00
|
|
|
xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
|
|
|
|
tail_bytes = BBTOB(tail_bytes);
|
2010-12-21 01:08:20 +00:00
|
|
|
if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
|
|
|
|
free_bytes = log->l_logsize - (head_bytes - tail_bytes);
|
|
|
|
else if (tail_cycle + 1 < head_cycle)
|
2005-04-16 22:20:36 +00:00
|
|
|
return 0;
|
2010-12-21 01:08:20 +00:00
|
|
|
else if (tail_cycle < head_cycle) {
|
|
|
|
ASSERT(tail_cycle == (head_cycle - 1));
|
|
|
|
free_bytes = tail_bytes - head_bytes;
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* The reservation head is behind the tail.
|
|
|
|
* In this case we just want to return the size of the
|
|
|
|
* log as the amount of space left.
|
|
|
|
*/
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_alert(log->l_mp,
|
2005-04-16 22:20:36 +00:00
|
|
|
"xlog_space_left: head behind tail\n"
|
|
|
|
" tail_cycle = %d, tail_bytes = %d\n"
|
|
|
|
" GH cycle = %d, GH bytes = %d",
|
2010-12-21 01:08:20 +00:00
|
|
|
tail_cycle, tail_bytes, head_cycle, head_bytes);
|
2005-04-16 22:20:36 +00:00
|
|
|
ASSERT(0);
|
|
|
|
free_bytes = log->l_logsize;
|
|
|
|
}
|
|
|
|
return free_bytes;
|
2010-12-21 01:08:20 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Log function which is called when an io completes.
|
|
|
|
*
|
|
|
|
* The log manager needs its own routine, in order to control what
|
|
|
|
* happens with the buffer after the write completes.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xlog_iodone(xfs_buf_t *bp)
|
|
|
|
{
|
2011-07-13 11:43:49 +00:00
|
|
|
xlog_in_core_t *iclog = bp->b_fspriv;
|
|
|
|
xlog_t *l = iclog->ic_log;
|
|
|
|
int aborted = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Race to shutdown the filesystem if we see an error.
|
|
|
|
*/
|
2011-07-22 23:39:51 +00:00
|
|
|
if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
|
2005-04-16 22:20:36 +00:00
|
|
|
XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
|
2011-10-10 16:52:49 +00:00
|
|
|
xfs_buf_ioerror_alert(bp, __func__);
|
2011-10-10 16:52:46 +00:00
|
|
|
xfs_buf_stale(bp);
|
2006-06-09 04:58:38 +00:00
|
|
|
xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* This flag will be propagated to the trans-committed
|
|
|
|
* callback routines to let them know that the log-commit
|
|
|
|
* didn't succeed.
|
|
|
|
*/
|
|
|
|
aborted = XFS_LI_ABORTED;
|
|
|
|
} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
|
|
aborted = XFS_LI_ABORTED;
|
|
|
|
}
|
2007-05-14 08:24:16 +00:00
|
|
|
|
|
|
|
/* log I/O is always issued ASYNC */
|
|
|
|
ASSERT(XFS_BUF_ISASYNC(bp));
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_done_syncing(iclog, aborted);
|
2007-05-14 08:24:16 +00:00
|
|
|
/*
|
|
|
|
* do not reference the buffer (bp) here as we could race
|
|
|
|
* with it being freed after writing the unmount record to the
|
|
|
|
* log.
|
|
|
|
*/
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xlog_iodone */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return size of each in-core log record buffer.
|
|
|
|
*
|
2009-03-29 07:55:42 +00:00
|
|
|
* All machines get 8 x 32kB buffers by default, unless tuned otherwise.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* If the filesystem blocksize is too large, we may need to choose a
|
|
|
|
* larger size since the directory code currently logs entire blocks.
|
|
|
|
*/
|
|
|
|
|
|
|
|
STATIC void
|
|
|
|
xlog_get_iclog_buffer_size(xfs_mount_t *mp,
|
|
|
|
xlog_t *log)
|
|
|
|
{
|
|
|
|
int size;
|
|
|
|
int xhdrs;
|
|
|
|
|
2007-08-16 06:24:43 +00:00
|
|
|
if (mp->m_logbufs <= 0)
|
|
|
|
log->l_iclog_bufs = XLOG_MAX_ICLOGS;
|
|
|
|
else
|
2005-11-02 04:12:04 +00:00
|
|
|
log->l_iclog_bufs = mp->m_logbufs;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Buffer size passed in from mount system call.
|
|
|
|
*/
|
2005-11-02 04:12:04 +00:00
|
|
|
if (mp->m_logbsize > 0) {
|
2005-04-16 22:20:36 +00:00
|
|
|
size = log->l_iclog_size = mp->m_logbsize;
|
|
|
|
log->l_iclog_size_log = 0;
|
|
|
|
while (size != 1) {
|
|
|
|
log->l_iclog_size_log++;
|
|
|
|
size >>= 1;
|
|
|
|
}
|
|
|
|
|
2008-03-06 02:44:28 +00:00
|
|
|
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
|
2009-03-29 07:55:42 +00:00
|
|
|
/* # headers = size / 32k
|
|
|
|
* one header holds cycles from 32k of data
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
|
|
|
|
if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
|
|
|
|
xhdrs++;
|
|
|
|
log->l_iclog_hsize = xhdrs << BBSHIFT;
|
|
|
|
log->l_iclog_heads = xhdrs;
|
|
|
|
} else {
|
|
|
|
ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
|
|
|
|
log->l_iclog_hsize = BBSIZE;
|
|
|
|
log->l_iclog_heads = 1;
|
|
|
|
}
|
2005-11-02 04:12:04 +00:00
|
|
|
goto done;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2009-03-29 07:55:42 +00:00
|
|
|
/* All machines use 32kB buffers by default. */
|
2007-08-16 06:24:43 +00:00
|
|
|
log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
|
|
|
|
log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* the default log size is 16k or 32k which is one header sector */
|
|
|
|
log->l_iclog_hsize = BBSIZE;
|
|
|
|
log->l_iclog_heads = 1;
|
|
|
|
|
2009-02-09 07:36:46 +00:00
|
|
|
done:
|
|
|
|
/* are we being asked to make the sizes selected above visible? */
|
2005-11-02 04:12:04 +00:00
|
|
|
if (mp->m_logbufs == 0)
|
|
|
|
mp->m_logbufs = log->l_iclog_bufs;
|
|
|
|
if (mp->m_logbsize == 0)
|
|
|
|
mp->m_logbsize = log->l_iclog_size;
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xlog_get_iclog_buffer_size */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine initializes some of the log structure for a given mount point.
|
|
|
|
* Its primary purpose is to fill in enough, so recovery can occur. However,
|
|
|
|
* some other stuff may be filled in too.
|
|
|
|
*/
|
|
|
|
STATIC xlog_t *
|
|
|
|
xlog_alloc_log(xfs_mount_t *mp,
|
|
|
|
xfs_buftarg_t *log_target,
|
|
|
|
xfs_daddr_t blk_offset,
|
|
|
|
int num_bblks)
|
|
|
|
{
|
|
|
|
xlog_t *log;
|
|
|
|
xlog_rec_header_t *head;
|
|
|
|
xlog_in_core_t **iclogp;
|
|
|
|
xlog_in_core_t *iclog, *prev_iclog=NULL;
|
|
|
|
xfs_buf_t *bp;
|
|
|
|
int i;
|
2009-04-06 16:39:27 +00:00
|
|
|
int error = ENOMEM;
|
2010-04-20 07:09:59 +00:00
|
|
|
uint log2_size = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-11-10 05:50:24 +00:00
|
|
|
log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
|
2009-04-06 16:39:27 +00:00
|
|
|
if (!log) {
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(mp, "Log allocation failed: No memory!");
|
2009-04-06 16:39:27 +00:00
|
|
|
goto out;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
log->l_mp = mp;
|
|
|
|
log->l_targ = log_target;
|
|
|
|
log->l_logsize = BBTOB(num_bblks);
|
|
|
|
log->l_logBBstart = blk_offset;
|
|
|
|
log->l_logBBsize = num_bblks;
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_IDLE;
|
|
|
|
log->l_flags |= XLOG_ACTIVE_RECOVERY;
|
|
|
|
|
|
|
|
log->l_prev_block = -1;
|
|
|
|
/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
|
2010-12-21 01:28:39 +00:00
|
|
|
xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
|
|
|
|
xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
|
2012-02-20 02:31:26 +00:00
|
|
|
|
|
|
|
xlog_grant_head_init(&log->l_reserve_head);
|
|
|
|
xlog_grant_head_init(&log->l_write_head);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-04-06 16:39:27 +00:00
|
|
|
error = EFSCORRUPTED;
|
2008-03-06 02:44:28 +00:00
|
|
|
if (xfs_sb_version_hassector(&mp->m_sb)) {
|
2010-04-20 07:09:59 +00:00
|
|
|
log2_size = mp->m_sb.sb_logsectlog;
|
|
|
|
if (log2_size < BBSHIFT) {
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
|
|
|
|
log2_size, BBSHIFT);
|
2009-04-06 16:39:27 +00:00
|
|
|
goto out_free_log;
|
|
|
|
}
|
|
|
|
|
2010-04-20 07:09:59 +00:00
|
|
|
log2_size -= BBSHIFT;
|
|
|
|
if (log2_size > mp->m_sectbb_log) {
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
|
|
|
|
log2_size, mp->m_sectbb_log);
|
2009-04-06 16:39:27 +00:00
|
|
|
goto out_free_log;
|
|
|
|
}
|
2010-04-20 07:09:59 +00:00
|
|
|
|
|
|
|
/* for larger sector sizes, must have v2 or external log */
|
|
|
|
if (log2_size && log->l_logBBstart > 0 &&
|
|
|
|
!xfs_sb_version_haslogv2(&mp->m_sb)) {
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(mp,
|
|
|
|
"log sector size (0x%x) invalid for configuration.",
|
|
|
|
log2_size);
|
2009-04-06 16:39:27 +00:00
|
|
|
goto out_free_log;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2010-04-20 07:09:59 +00:00
|
|
|
log->l_sectBBsize = 1 << log2_size;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
xlog_get_iclog_buffer_size(mp, log);
|
|
|
|
|
2009-04-06 16:39:27 +00:00
|
|
|
error = ENOMEM;
|
2012-04-23 05:58:49 +00:00
|
|
|
bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
|
2008-11-10 05:50:24 +00:00
|
|
|
if (!bp)
|
|
|
|
goto out_free_log;
|
2011-07-13 11:43:49 +00:00
|
|
|
bp->b_iodone = xlog_iodone;
|
2011-07-08 12:36:19 +00:00
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
2005-04-16 22:20:36 +00:00
|
|
|
log->l_xbuf = bp;
|
|
|
|
|
2007-10-11 07:43:56 +00:00
|
|
|
spin_lock_init(&log->l_icloglock);
|
2010-12-21 01:09:01 +00:00
|
|
|
init_waitqueue_head(&log->l_flush_wait);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
iclogp = &log->l_iclog;
|
|
|
|
/*
|
|
|
|
* The amount of memory to allocate for the iclog structure is
|
|
|
|
* rather funky due to the way the structure is defined. It is
|
|
|
|
* done this way so that we can use different sizes for machines
|
|
|
|
* with different amounts of memory. See the definition of
|
|
|
|
* xlog_in_core_t in xfs_log_priv.h for details.
|
|
|
|
*/
|
|
|
|
ASSERT(log->l_iclog_size >= 4096);
|
|
|
|
for (i=0; i < log->l_iclog_bufs; i++) {
|
2008-11-10 05:50:24 +00:00
|
|
|
*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
|
|
|
|
if (!*iclogp)
|
|
|
|
goto out_free_iclog;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = *iclogp;
|
|
|
|
iclog->ic_prev = prev_iclog;
|
|
|
|
prev_iclog = iclog;
|
2007-05-14 08:23:50 +00:00
|
|
|
|
2010-09-24 10:07:47 +00:00
|
|
|
bp = xfs_buf_get_uncached(mp->m_logdev_targp,
|
2012-04-23 05:58:49 +00:00
|
|
|
BTOBB(log->l_iclog_size), 0);
|
2008-11-10 05:50:24 +00:00
|
|
|
if (!bp)
|
|
|
|
goto out_free_iclog;
|
2011-07-08 12:36:25 +00:00
|
|
|
|
2011-07-13 11:43:49 +00:00
|
|
|
bp->b_iodone = xlog_iodone;
|
2007-05-14 08:23:50 +00:00
|
|
|
iclog->ic_bp = bp;
|
2008-11-28 03:23:38 +00:00
|
|
|
iclog->ic_data = bp->b_addr;
|
2008-04-10 02:18:54 +00:00
|
|
|
#ifdef DEBUG
|
2005-04-16 22:20:36 +00:00
|
|
|
log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
|
2008-04-10 02:18:54 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
head = &iclog->ic_header;
|
|
|
|
memset(head, 0, sizeof(xlog_rec_header_t));
|
2007-10-12 00:59:34 +00:00
|
|
|
head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
|
|
|
|
head->h_version = cpu_to_be32(
|
2008-03-06 02:44:28 +00:00
|
|
|
xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
|
2007-10-12 00:59:34 +00:00
|
|
|
head->h_size = cpu_to_be32(log->l_iclog_size);
|
2005-04-16 22:20:36 +00:00
|
|
|
/* new fields */
|
2007-10-12 00:59:34 +00:00
|
|
|
head->h_fmt = cpu_to_be32(XLOG_FMT);
|
2005-04-16 22:20:36 +00:00
|
|
|
memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
|
|
|
|
|
2012-04-23 05:58:51 +00:00
|
|
|
iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog->ic_state = XLOG_STATE_ACTIVE;
|
|
|
|
iclog->ic_log = log;
|
2008-04-10 02:18:39 +00:00
|
|
|
atomic_set(&iclog->ic_refcnt, 0);
|
|
|
|
spin_lock_init(&iclog->ic_callback_lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog->ic_callback_tail = &(iclog->ic_callback);
|
2008-11-28 03:23:38 +00:00
|
|
|
iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2011-07-08 12:36:19 +00:00
|
|
|
ASSERT(xfs_buf_islocked(iclog->ic_bp));
|
2010-12-21 01:09:01 +00:00
|
|
|
init_waitqueue_head(&iclog->ic_force_wait);
|
|
|
|
init_waitqueue_head(&iclog->ic_write_wait);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
iclogp = &iclog->ic_next;
|
|
|
|
}
|
|
|
|
*iclogp = log->l_iclog; /* complete ring */
|
|
|
|
log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
|
|
|
|
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
error = xlog_cil_init(log);
|
|
|
|
if (error)
|
|
|
|
goto out_free_iclog;
|
2005-04-16 22:20:36 +00:00
|
|
|
return log;
|
2008-11-10 05:50:24 +00:00
|
|
|
|
|
|
|
out_free_iclog:
|
|
|
|
for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
|
|
|
|
prev_iclog = iclog->ic_next;
|
2010-12-21 01:09:01 +00:00
|
|
|
if (iclog->ic_bp)
|
2008-11-10 05:50:24 +00:00
|
|
|
xfs_buf_free(iclog->ic_bp);
|
|
|
|
kmem_free(iclog);
|
|
|
|
}
|
|
|
|
spinlock_destroy(&log->l_icloglock);
|
|
|
|
xfs_buf_free(log->l_xbuf);
|
|
|
|
out_free_log:
|
|
|
|
kmem_free(log);
|
2009-04-06 16:39:27 +00:00
|
|
|
out:
|
|
|
|
return ERR_PTR(-error);
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xlog_alloc_log */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write out the commit record of a transaction associated with the given
|
|
|
|
* ticket. Return the lsn of the commit record.
|
|
|
|
*/
|
|
|
|
STATIC int
|
2010-03-23 00:43:17 +00:00
|
|
|
xlog_commit_record(
|
|
|
|
struct log *log,
|
|
|
|
struct xlog_ticket *ticket,
|
|
|
|
struct xlog_in_core **iclog,
|
|
|
|
xfs_lsn_t *commitlsnp)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-03-23 00:43:17 +00:00
|
|
|
struct xfs_mount *mp = log->l_mp;
|
|
|
|
int error;
|
|
|
|
struct xfs_log_iovec reg = {
|
|
|
|
.i_addr = NULL,
|
|
|
|
.i_len = 0,
|
|
|
|
.i_type = XLOG_REG_TYPE_COMMIT,
|
|
|
|
};
|
|
|
|
struct xfs_log_vec vec = {
|
|
|
|
.lv_niovecs = 1,
|
|
|
|
.lv_iovecp = ®,
|
|
|
|
};
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
ASSERT_ALWAYS(iclog);
|
2010-03-23 00:43:17 +00:00
|
|
|
error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
|
|
|
|
XLOG_COMMIT_TRANS);
|
|
|
|
if (error)
|
2006-06-09 04:58:38 +00:00
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
|
2006-01-15 01:37:08 +00:00
|
|
|
return error;
|
2010-03-23 00:43:17 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Push on the buffer cache code if we ever use more than 75% of the on-disk
|
|
|
|
* log space. This code pushes on the lsn which would supposedly free up
|
|
|
|
* the 25% which we want to leave free. We may need to adopt a policy which
|
|
|
|
* pushes on an lsn which is further along in the log once we reach the high
|
|
|
|
* water mark. In this manner, we would be creating a low water mark.
|
|
|
|
*/
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC void
|
2010-12-21 01:09:20 +00:00
|
|
|
xlog_grant_push_ail(
|
|
|
|
struct log *log,
|
|
|
|
int need_bytes)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-12-21 01:09:20 +00:00
|
|
|
xfs_lsn_t threshold_lsn = 0;
|
2010-12-03 11:11:29 +00:00
|
|
|
xfs_lsn_t last_sync_lsn;
|
2010-12-21 01:09:20 +00:00
|
|
|
int free_blocks;
|
|
|
|
int free_bytes;
|
|
|
|
int threshold_block;
|
|
|
|
int threshold_cycle;
|
|
|
|
int free_threshold;
|
|
|
|
|
|
|
|
ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
|
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
|
2010-12-21 01:09:20 +00:00
|
|
|
free_blocks = BTOBBT(free_bytes);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the threshold for the minimum number of free blocks in the
|
|
|
|
* log to the maximum of what the caller needs, one quarter of the
|
|
|
|
* log, and 256 blocks.
|
|
|
|
*/
|
|
|
|
free_threshold = BTOBB(need_bytes);
|
|
|
|
free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
|
|
|
|
free_threshold = MAX(free_threshold, 256);
|
|
|
|
if (free_blocks >= free_threshold)
|
|
|
|
return;
|
|
|
|
|
2010-12-21 01:28:39 +00:00
|
|
|
xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
|
|
|
|
&threshold_block);
|
|
|
|
threshold_block += free_threshold;
|
2005-04-16 22:20:36 +00:00
|
|
|
if (threshold_block >= log->l_logBBsize) {
|
2010-12-21 01:09:20 +00:00
|
|
|
threshold_block -= log->l_logBBsize;
|
|
|
|
threshold_cycle += 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
2010-12-21 01:09:20 +00:00
|
|
|
threshold_lsn = xlog_assign_lsn(threshold_cycle,
|
|
|
|
threshold_block);
|
|
|
|
/*
|
|
|
|
* Don't pass in an lsn greater than the lsn of the last
|
2010-12-03 11:11:29 +00:00
|
|
|
* log record known to be on disk. Use a snapshot of the last sync lsn
|
|
|
|
* so that it doesn't change between the compare and the set.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2010-12-03 11:11:29 +00:00
|
|
|
last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
|
|
|
|
if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
|
|
|
|
threshold_lsn = last_sync_lsn;
|
2010-12-21 01:09:20 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Get the transaction layer to kick the dirty buffers out to
|
|
|
|
* disk asynchronously. No point in trying to do this if
|
|
|
|
* the filesystem is shutting down.
|
|
|
|
*/
|
|
|
|
if (!XLOG_FORCED_SHUTDOWN(log))
|
2011-04-08 02:45:07 +00:00
|
|
|
xfs_ail_push(log->l_ailp, threshold_lsn);
|
2010-12-21 01:09:20 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-01-13 22:17:57 +00:00
|
|
|
/*
|
|
|
|
* The bdstrat callback function for log bufs. This gives us a central
|
|
|
|
* place to trap bufs in case we get hit by a log I/O error and need to
|
|
|
|
* shutdown. Actually, in practice, even when we didn't get a log error,
|
|
|
|
* we transition the iclogs to IOERROR state *after* flushing all existing
|
|
|
|
* iclogs to disk. This is because we don't want anymore new transactions to be
|
|
|
|
* started or completed afterwards.
|
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xlog_bdstrat(
|
|
|
|
struct xfs_buf *bp)
|
|
|
|
{
|
2011-07-13 11:43:49 +00:00
|
|
|
struct xlog_in_core *iclog = bp->b_fspriv;
|
2010-01-13 22:17:57 +00:00
|
|
|
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
2011-07-22 23:39:51 +00:00
|
|
|
xfs_buf_ioerror(bp, EIO);
|
2011-10-10 16:52:46 +00:00
|
|
|
xfs_buf_stale(bp);
|
2010-10-06 18:41:18 +00:00
|
|
|
xfs_buf_ioend(bp, 0);
|
2010-01-13 22:17:57 +00:00
|
|
|
/*
|
|
|
|
* It would seem logical to return EIO here, but we rely on
|
|
|
|
* the log state machine to propagate I/O errors instead of
|
|
|
|
* doing it here.
|
|
|
|
*/
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
xfs_buf_iorequest(bp);
|
|
|
|
return 0;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Flush out the in-core log (iclog) to the on-disk log in an asynchronous
|
|
|
|
* fashion. Previously, we should have moved the current iclog
|
|
|
|
* ptr in the log to point to the next available iclog. This allows further
|
|
|
|
* write to continue while this code syncs out an iclog ready to go.
|
|
|
|
* Before an in-core log can be written out, the data section must be scanned
|
|
|
|
* to save away the 1st word of each BBSIZE block into the header. We replace
|
|
|
|
* it with the current cycle count. Each BBSIZE block is tagged with the
|
|
|
|
* cycle count because there in an implicit assumption that drives will
|
|
|
|
* guarantee that entire 512 byte blocks get written at once. In other words,
|
|
|
|
* we can't have part of a 512 byte block written and part not written. By
|
|
|
|
* tagging each block, we will know which blocks are valid when recovering
|
|
|
|
* after an unclean shutdown.
|
|
|
|
*
|
|
|
|
* This routine is single threaded on the iclog. No other thread can be in
|
|
|
|
* this routine with the same iclog. Changing contents of iclog can there-
|
|
|
|
* fore be done without grabbing the state machine lock. Updating the global
|
|
|
|
* log will require grabbing the lock though.
|
|
|
|
*
|
|
|
|
* The entire log manager uses a logical block numbering scheme. Only
|
|
|
|
* log_sync (and then only bwrite()) know about the fact that the log may
|
|
|
|
* not start with block zero on a given device. The log block start offset
|
|
|
|
* is added immediately before calling bwrite().
|
|
|
|
*/
|
|
|
|
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC int
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_sync(xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog)
|
|
|
|
{
|
|
|
|
xfs_caddr_t dptr; /* pointer to byte sized element */
|
|
|
|
xfs_buf_t *bp;
|
2007-10-12 00:59:34 +00:00
|
|
|
int i;
|
2005-04-16 22:20:36 +00:00
|
|
|
uint count; /* byte count of bwrite */
|
|
|
|
uint count_init; /* initial count before roundup */
|
|
|
|
int roundoff; /* roundoff to BB or stripe */
|
|
|
|
int split = 0; /* split write into two regions */
|
|
|
|
int error;
|
2008-03-06 02:44:28 +00:00
|
|
|
int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
XFS_STATS_INC(xs_log_writes);
|
2008-03-06 02:44:14 +00:00
|
|
|
ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* Add for LR header */
|
|
|
|
count_init = log->l_iclog_hsize + iclog->ic_offset;
|
|
|
|
|
|
|
|
/* Round out the log write size */
|
|
|
|
if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
|
|
|
|
/* we have a v2 stripe unit to use */
|
|
|
|
count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
|
|
|
|
} else {
|
|
|
|
count = BBTOB(BTOBB(count_init));
|
|
|
|
}
|
|
|
|
roundoff = count - count_init;
|
|
|
|
ASSERT(roundoff >= 0);
|
|
|
|
ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
|
|
|
|
roundoff < log->l_mp->m_sb.sb_logsunit)
|
|
|
|
||
|
|
|
|
(log->l_mp->m_sb.sb_logsunit <= 1 &&
|
|
|
|
roundoff < BBTOB(1)));
|
|
|
|
|
|
|
|
/* move grant heads by roundoff in sync */
|
2012-02-20 02:31:25 +00:00
|
|
|
xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
|
|
|
|
xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* put cycle number in every block */
|
|
|
|
xlog_pack_data(log, iclog, roundoff);
|
|
|
|
|
|
|
|
/* real byte length */
|
|
|
|
if (v2) {
|
2007-10-12 00:59:34 +00:00
|
|
|
iclog->ic_header.h_len =
|
|
|
|
cpu_to_be32(iclog->ic_offset + roundoff);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2007-10-12 00:59:34 +00:00
|
|
|
iclog->ic_header.h_len =
|
|
|
|
cpu_to_be32(iclog->ic_offset);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2006-07-28 07:04:44 +00:00
|
|
|
bp = iclog->ic_bp;
|
2007-10-12 00:59:34 +00:00
|
|
|
XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
|
|
|
|
|
|
|
|
/* Do we need to split this write into 2 parts? */
|
|
|
|
if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
|
|
|
|
split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
|
|
|
|
count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
|
|
|
|
iclog->ic_bwritecnt = 2; /* split into 2 writes */
|
|
|
|
} else {
|
|
|
|
iclog->ic_bwritecnt = 1;
|
|
|
|
}
|
2012-04-23 05:58:52 +00:00
|
|
|
bp->b_io_length = BTOBB(count);
|
2011-07-13 11:43:49 +00:00
|
|
|
bp->b_fspriv = iclog;
|
2006-07-28 07:04:44 +00:00
|
|
|
XFS_BUF_ZEROFLAGS(bp);
|
2005-04-16 22:20:36 +00:00
|
|
|
XFS_BUF_ASYNC(bp);
|
2011-07-08 12:36:32 +00:00
|
|
|
bp->b_flags |= XBF_SYNCIO;
|
2010-06-28 14:34:34 +00:00
|
|
|
|
2011-06-16 12:02:23 +00:00
|
|
|
if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
|
2011-07-08 12:36:36 +00:00
|
|
|
bp->b_flags |= XBF_FUA;
|
|
|
|
|
2011-06-16 12:02:23 +00:00
|
|
|
/*
|
2011-07-08 12:36:36 +00:00
|
|
|
* Flush the data device before flushing the log to make
|
|
|
|
* sure all meta data written back from the AIL actually made
|
|
|
|
* it to disk before stamping the new log tail LSN into the
|
|
|
|
* log buffer. For an external log we need to issue the
|
|
|
|
* flush explicitly, and unfortunately synchronously here;
|
|
|
|
* for an internal log we can simply use the block layer
|
|
|
|
* state machine for preflushes.
|
2011-06-16 12:02:23 +00:00
|
|
|
*/
|
|
|
|
if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
|
|
|
|
xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
|
2011-07-08 12:36:36 +00:00
|
|
|
else
|
|
|
|
bp->b_flags |= XBF_FLUSH;
|
2011-06-16 12:02:23 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
|
|
|
|
|
|
|
|
xlog_verify_iclog(log, iclog, count, B_TRUE);
|
|
|
|
|
|
|
|
/* account for log which doesn't start at block #0 */
|
|
|
|
XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
|
|
|
|
/*
|
|
|
|
* Don't call xfs_bwrite here. We do log-syncs even when the filesystem
|
|
|
|
* is shutting down.
|
|
|
|
*/
|
|
|
|
XFS_BUF_WRITE(bp);
|
|
|
|
|
2011-10-10 16:52:49 +00:00
|
|
|
error = xlog_bdstrat(bp);
|
|
|
|
if (error) {
|
|
|
|
xfs_buf_ioerror_alert(bp, "xlog_sync");
|
2006-01-15 01:37:08 +00:00
|
|
|
return error;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
if (split) {
|
2006-07-28 07:04:44 +00:00
|
|
|
bp = iclog->ic_log->l_xbuf;
|
2005-04-16 22:20:36 +00:00
|
|
|
XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
|
2011-07-22 23:40:22 +00:00
|
|
|
xfs_buf_associate_memory(bp,
|
|
|
|
(char *)&iclog->ic_header + count, split);
|
2011-07-13 11:43:49 +00:00
|
|
|
bp->b_fspriv = iclog;
|
2006-07-28 07:04:44 +00:00
|
|
|
XFS_BUF_ZEROFLAGS(bp);
|
2005-04-16 22:20:36 +00:00
|
|
|
XFS_BUF_ASYNC(bp);
|
2011-07-08 12:36:32 +00:00
|
|
|
bp->b_flags |= XBF_SYNCIO;
|
2005-11-01 23:26:59 +00:00
|
|
|
if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
|
2011-07-08 12:36:36 +00:00
|
|
|
bp->b_flags |= XBF_FUA;
|
2011-07-22 23:40:15 +00:00
|
|
|
dptr = bp->b_addr;
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Bump the cycle numbers at the start of each block
|
|
|
|
* since this part of the buffer is at the start of
|
|
|
|
* a new cycle. Watch out for the header magic number
|
|
|
|
* case, though.
|
|
|
|
*/
|
2007-10-12 00:59:34 +00:00
|
|
|
for (i = 0; i < split; i += BBSIZE) {
|
2008-02-13 23:03:29 +00:00
|
|
|
be32_add_cpu((__be32 *)dptr, 1);
|
2007-10-12 00:59:34 +00:00
|
|
|
if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
|
2008-02-13 23:03:29 +00:00
|
|
|
be32_add_cpu((__be32 *)dptr, 1);
|
2005-04-16 22:20:36 +00:00
|
|
|
dptr += BBSIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
|
|
|
|
ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
|
|
|
|
|
2006-03-28 22:55:14 +00:00
|
|
|
/* account for internal log which doesn't start at block #0 */
|
2005-04-16 22:20:36 +00:00
|
|
|
XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
|
|
|
|
XFS_BUF_WRITE(bp);
|
2011-10-10 16:52:49 +00:00
|
|
|
error = xlog_bdstrat(bp);
|
|
|
|
if (error) {
|
|
|
|
xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
|
2006-01-15 01:37:08 +00:00
|
|
|
return error;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
2006-01-15 01:37:08 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xlog_sync */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
2006-03-28 22:55:14 +00:00
|
|
|
* Deallocate a log structure
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC void
|
2006-03-28 22:55:14 +00:00
|
|
|
xlog_dealloc_log(xlog_t *log)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
xlog_in_core_t *iclog, *next_iclog;
|
|
|
|
int i;
|
|
|
|
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
xlog_cil_destroy(log);
|
|
|
|
|
2011-04-21 09:34:27 +00:00
|
|
|
/*
|
|
|
|
* always need to ensure that the extra buffer does not point to memory
|
|
|
|
* owned by another log buffer before we free it.
|
|
|
|
*/
|
2012-04-23 05:58:49 +00:00
|
|
|
xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
|
2011-04-21 09:34:27 +00:00
|
|
|
xfs_buf_free(log->l_xbuf);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = log->l_iclog;
|
|
|
|
for (i=0; i<log->l_iclog_bufs; i++) {
|
|
|
|
xfs_buf_free(iclog->ic_bp);
|
|
|
|
next_iclog = iclog->ic_next;
|
2008-05-19 06:31:57 +00:00
|
|
|
kmem_free(iclog);
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = next_iclog;
|
|
|
|
}
|
|
|
|
spinlock_destroy(&log->l_icloglock);
|
|
|
|
|
|
|
|
log->l_mp->m_log = NULL;
|
2008-05-19 06:31:57 +00:00
|
|
|
kmem_free(log);
|
2006-03-28 22:55:14 +00:00
|
|
|
} /* xlog_dealloc_log */
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Update counters atomically now that memcpy is done.
|
|
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
|
|
static inline void
|
|
|
|
xlog_state_finish_copy(xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog,
|
|
|
|
int record_cnt,
|
|
|
|
int copy_bytes)
|
|
|
|
{
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-02-13 23:03:29 +00:00
|
|
|
be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog->ic_offset += copy_bytes;
|
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xlog_state_finish_copy */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2005-09-02 06:42:05 +00:00
|
|
|
/*
|
|
|
|
* print out info relating to regions written which consume
|
|
|
|
* the reservation
|
|
|
|
*/
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
void
|
|
|
|
xlog_print_tic_res(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
struct xlog_ticket *ticket)
|
2005-09-02 06:42:05 +00:00
|
|
|
{
|
|
|
|
uint i;
|
|
|
|
uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
|
|
|
|
|
|
|
|
/* match with XLOG_REG_TYPE_* in xfs_log.h */
|
|
|
|
static char *res_type_str[XLOG_REG_TYPE_MAX] = {
|
|
|
|
"bformat",
|
|
|
|
"bchunk",
|
|
|
|
"efi_format",
|
|
|
|
"efd_format",
|
|
|
|
"iformat",
|
|
|
|
"icore",
|
|
|
|
"iext",
|
|
|
|
"ibroot",
|
|
|
|
"ilocal",
|
|
|
|
"iattr_ext",
|
|
|
|
"iattr_broot",
|
|
|
|
"iattr_local",
|
|
|
|
"qformat",
|
|
|
|
"dquot",
|
|
|
|
"quotaoff",
|
|
|
|
"LR header",
|
|
|
|
"unmount",
|
|
|
|
"commit",
|
|
|
|
"trans header"
|
|
|
|
};
|
|
|
|
static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
|
|
|
|
"SETATTR_NOT_SIZE",
|
|
|
|
"SETATTR_SIZE",
|
|
|
|
"INACTIVE",
|
|
|
|
"CREATE",
|
|
|
|
"CREATE_TRUNC",
|
|
|
|
"TRUNCATE_FILE",
|
|
|
|
"REMOVE",
|
|
|
|
"LINK",
|
|
|
|
"RENAME",
|
|
|
|
"MKDIR",
|
|
|
|
"RMDIR",
|
|
|
|
"SYMLINK",
|
|
|
|
"SET_DMATTRS",
|
|
|
|
"GROWFS",
|
|
|
|
"STRAT_WRITE",
|
|
|
|
"DIOSTRAT",
|
|
|
|
"WRITE_SYNC",
|
|
|
|
"WRITEID",
|
|
|
|
"ADDAFORK",
|
|
|
|
"ATTRINVAL",
|
|
|
|
"ATRUNCATE",
|
|
|
|
"ATTR_SET",
|
|
|
|
"ATTR_RM",
|
|
|
|
"ATTR_FLAG",
|
|
|
|
"CLEAR_AGI_BUCKET",
|
|
|
|
"QM_SBCHANGE",
|
|
|
|
"DUMMY1",
|
|
|
|
"DUMMY2",
|
|
|
|
"QM_QUOTAOFF",
|
|
|
|
"QM_DQALLOC",
|
|
|
|
"QM_SETQLIM",
|
|
|
|
"QM_DQCLUSTER",
|
|
|
|
"QM_QINOCREATE",
|
|
|
|
"QM_QUOTAOFF_END",
|
|
|
|
"SB_UNIT",
|
|
|
|
"FSYNC_TS",
|
|
|
|
"GROWFSRT_ALLOC",
|
|
|
|
"GROWFSRT_ZERO",
|
|
|
|
"GROWFSRT_FREE",
|
|
|
|
"SWAPEXT"
|
|
|
|
};
|
|
|
|
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(mp,
|
2011-12-06 21:58:07 +00:00
|
|
|
"xlog_write: reservation summary:\n"
|
2011-03-06 23:01:35 +00:00
|
|
|
" trans type = %s (%u)\n"
|
|
|
|
" unit res = %d bytes\n"
|
|
|
|
" current res = %d bytes\n"
|
|
|
|
" total reg = %u bytes (o/flow = %u bytes)\n"
|
|
|
|
" ophdrs = %u (ophdr space = %u bytes)\n"
|
|
|
|
" ophdr + reg = %u bytes\n"
|
|
|
|
" num regions = %u\n",
|
|
|
|
((ticket->t_trans_type <= 0 ||
|
|
|
|
ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
|
|
|
|
"bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
|
|
|
|
ticket->t_trans_type,
|
|
|
|
ticket->t_unit_res,
|
|
|
|
ticket->t_curr_res,
|
|
|
|
ticket->t_res_arr_sum, ticket->t_res_o_flow,
|
|
|
|
ticket->t_res_num_ophdrs, ophdr_spc,
|
|
|
|
ticket->t_res_arr_sum +
|
|
|
|
ticket->t_res_o_flow + ophdr_spc,
|
|
|
|
ticket->t_res_num);
|
2005-09-02 06:42:05 +00:00
|
|
|
|
|
|
|
for (i = 0; i < ticket->t_res_num; i++) {
|
2011-03-06 23:01:35 +00:00
|
|
|
uint r_type = ticket->t_res_arr[i].r_type;
|
|
|
|
xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
|
2005-09-02 06:42:05 +00:00
|
|
|
((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
|
|
|
|
"bad-rtype" : res_type_str[r_type-1]),
|
|
|
|
ticket->t_res_arr[i].r_len);
|
|
|
|
}
|
2010-05-07 01:05:31 +00:00
|
|
|
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_alert_tag(mp, XFS_PTAG_LOGRES,
|
2011-12-06 21:58:07 +00:00
|
|
|
"xlog_write: reservation ran out. Need to up reservation");
|
2010-05-07 01:05:31 +00:00
|
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
2005-09-02 06:42:05 +00:00
|
|
|
}
|
|
|
|
|
2010-03-23 00:29:44 +00:00
|
|
|
/*
|
|
|
|
* Calculate the potential space needed by the log vector. Each region gets
|
|
|
|
* its own xlog_op_header_t and may need to be double word aligned.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
xlog_write_calc_vec_length(
|
|
|
|
struct xlog_ticket *ticket,
|
2010-03-23 00:43:17 +00:00
|
|
|
struct xfs_log_vec *log_vector)
|
2010-03-23 00:29:44 +00:00
|
|
|
{
|
2010-03-23 00:43:17 +00:00
|
|
|
struct xfs_log_vec *lv;
|
2010-03-23 00:29:44 +00:00
|
|
|
int headers = 0;
|
|
|
|
int len = 0;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* acct for start rec of xact */
|
|
|
|
if (ticket->t_flags & XLOG_TIC_INITED)
|
|
|
|
headers++;
|
|
|
|
|
2010-03-23 00:43:17 +00:00
|
|
|
for (lv = log_vector; lv; lv = lv->lv_next) {
|
|
|
|
headers += lv->lv_niovecs;
|
|
|
|
|
|
|
|
for (i = 0; i < lv->lv_niovecs; i++) {
|
|
|
|
struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
|
2010-03-23 00:29:44 +00:00
|
|
|
|
2010-03-23 00:43:17 +00:00
|
|
|
len += vecp->i_len;
|
|
|
|
xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
|
|
|
|
}
|
2010-03-23 00:29:44 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
ticket->t_res_num_ophdrs += headers;
|
|
|
|
len += headers * sizeof(struct xlog_op_header);
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If first write for transaction, insert start record We can't be trying to
|
|
|
|
* commit if we are inited. We can't have any "partial_copy" if we are inited.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
xlog_write_start_rec(
|
2010-03-23 00:47:38 +00:00
|
|
|
struct xlog_op_header *ophdr,
|
2010-03-23 00:29:44 +00:00
|
|
|
struct xlog_ticket *ticket)
|
|
|
|
{
|
|
|
|
if (!(ticket->t_flags & XLOG_TIC_INITED))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
|
|
|
|
ophdr->oh_clientid = ticket->t_clientid;
|
|
|
|
ophdr->oh_len = 0;
|
|
|
|
ophdr->oh_flags = XLOG_START_TRANS;
|
|
|
|
ophdr->oh_res2 = 0;
|
|
|
|
|
|
|
|
ticket->t_flags &= ~XLOG_TIC_INITED;
|
|
|
|
|
|
|
|
return sizeof(struct xlog_op_header);
|
|
|
|
}
|
|
|
|
|
|
|
|
static xlog_op_header_t *
|
|
|
|
xlog_write_setup_ophdr(
|
|
|
|
struct log *log,
|
2010-03-23 00:47:38 +00:00
|
|
|
struct xlog_op_header *ophdr,
|
2010-03-23 00:29:44 +00:00
|
|
|
struct xlog_ticket *ticket,
|
|
|
|
uint flags)
|
|
|
|
{
|
|
|
|
ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
|
|
|
|
ophdr->oh_clientid = ticket->t_clientid;
|
|
|
|
ophdr->oh_res2 = 0;
|
|
|
|
|
|
|
|
/* are we copying a commit or unmount record? */
|
|
|
|
ophdr->oh_flags = flags;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We've seen logs corrupted with bad transaction client ids. This
|
|
|
|
* makes sure that XFS doesn't generate them on. Turn this into an EIO
|
|
|
|
* and shut down the filesystem.
|
|
|
|
*/
|
|
|
|
switch (ophdr->oh_clientid) {
|
|
|
|
case XFS_TRANSACTION:
|
|
|
|
case XFS_VOLUME:
|
|
|
|
case XFS_LOG:
|
|
|
|
break;
|
|
|
|
default:
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(log->l_mp,
|
2010-03-23 00:29:44 +00:00
|
|
|
"Bad XFS transaction clientid 0x%x in ticket 0x%p",
|
|
|
|
ophdr->oh_clientid, ticket);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ophdr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up the parameters of the region copy into the log. This has
|
|
|
|
* to handle region write split across multiple log buffers - this
|
|
|
|
* state is kept external to this function so that this code can
|
|
|
|
* can be written in an obvious, self documenting manner.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
xlog_write_setup_copy(
|
|
|
|
struct xlog_ticket *ticket,
|
|
|
|
struct xlog_op_header *ophdr,
|
|
|
|
int space_available,
|
|
|
|
int space_required,
|
|
|
|
int *copy_off,
|
|
|
|
int *copy_len,
|
|
|
|
int *last_was_partial_copy,
|
|
|
|
int *bytes_consumed)
|
|
|
|
{
|
|
|
|
int still_to_copy;
|
|
|
|
|
|
|
|
still_to_copy = space_required - *bytes_consumed;
|
|
|
|
*copy_off = *bytes_consumed;
|
|
|
|
|
|
|
|
if (still_to_copy <= space_available) {
|
|
|
|
/* write of region completes here */
|
|
|
|
*copy_len = still_to_copy;
|
|
|
|
ophdr->oh_len = cpu_to_be32(*copy_len);
|
|
|
|
if (*last_was_partial_copy)
|
|
|
|
ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
|
|
|
|
*last_was_partial_copy = 0;
|
|
|
|
*bytes_consumed = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* partial write of region, needs extra log op header reservation */
|
|
|
|
*copy_len = space_available;
|
|
|
|
ophdr->oh_len = cpu_to_be32(*copy_len);
|
|
|
|
ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
|
|
|
|
if (*last_was_partial_copy)
|
|
|
|
ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
|
|
|
|
*bytes_consumed += *copy_len;
|
|
|
|
(*last_was_partial_copy)++;
|
|
|
|
|
|
|
|
/* account for new log op header */
|
|
|
|
ticket->t_curr_res -= sizeof(struct xlog_op_header);
|
|
|
|
ticket->t_res_num_ophdrs++;
|
|
|
|
|
|
|
|
return sizeof(struct xlog_op_header);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
xlog_write_copy_finish(
|
|
|
|
struct log *log,
|
|
|
|
struct xlog_in_core *iclog,
|
|
|
|
uint flags,
|
|
|
|
int *record_cnt,
|
|
|
|
int *data_cnt,
|
|
|
|
int *partial_copy,
|
|
|
|
int *partial_copy_len,
|
|
|
|
int log_offset,
|
|
|
|
struct xlog_in_core **commit_iclog)
|
|
|
|
{
|
|
|
|
if (*partial_copy) {
|
|
|
|
/*
|
|
|
|
* This iclog has already been marked WANT_SYNC by
|
|
|
|
* xlog_state_get_iclog_space.
|
|
|
|
*/
|
|
|
|
xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
|
|
|
|
*record_cnt = 0;
|
|
|
|
*data_cnt = 0;
|
|
|
|
return xlog_state_release_iclog(log, iclog);
|
|
|
|
}
|
|
|
|
|
|
|
|
*partial_copy = 0;
|
|
|
|
*partial_copy_len = 0;
|
|
|
|
|
|
|
|
if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
|
|
|
|
/* no more space in this iclog - push it. */
|
|
|
|
xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
|
|
|
|
*record_cnt = 0;
|
|
|
|
*data_cnt = 0;
|
|
|
|
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
|
|
xlog_state_want_sync(log, iclog);
|
|
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
|
|
|
|
if (!commit_iclog)
|
|
|
|
return xlog_state_release_iclog(log, iclog);
|
|
|
|
ASSERT(flags & XLOG_COMMIT_TRANS);
|
|
|
|
*commit_iclog = iclog;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Write some region out to in-core log
|
|
|
|
*
|
|
|
|
* This will be called when writing externally provided regions or when
|
|
|
|
* writing out a commit record for a given transaction.
|
|
|
|
*
|
|
|
|
* General algorithm:
|
|
|
|
* 1. Find total length of this write. This may include adding to the
|
|
|
|
* lengths passed in.
|
|
|
|
* 2. Check whether we violate the tickets reservation.
|
|
|
|
* 3. While writing to this iclog
|
|
|
|
* A. Reserve as much space in this iclog as can get
|
|
|
|
* B. If this is first write, save away start lsn
|
|
|
|
* C. While writing this region:
|
|
|
|
* 1. If first write of transaction, write start record
|
|
|
|
* 2. Write log operation header (header per region)
|
|
|
|
* 3. Find out if we can fit entire region into this iclog
|
|
|
|
* 4. Potentially, verify destination memcpy ptr
|
|
|
|
* 5. Memcpy (partial) region
|
|
|
|
* 6. If partial copy, release iclog; otherwise, continue
|
|
|
|
* copying more regions into current iclog
|
|
|
|
* 4. Mark want sync bit (in simulation mode)
|
|
|
|
* 5. Release iclog for potential flush to on-disk log.
|
|
|
|
*
|
|
|
|
* ERRORS:
|
|
|
|
* 1. Panic if reservation is overrun. This should never happen since
|
|
|
|
* reservation amounts are generated internal to the filesystem.
|
|
|
|
* NOTES:
|
|
|
|
* 1. Tickets are single threaded data structures.
|
|
|
|
* 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
|
|
|
|
* syncing routine. When a single log_write region needs to span
|
|
|
|
* multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
|
|
|
|
* on all log operation writes which don't contain the end of the
|
|
|
|
* region. The XLOG_END_TRANS bit is used for the in-core log
|
|
|
|
* operation which contains the end of the continued log_write region.
|
|
|
|
* 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
|
|
|
|
* we don't really know exactly how much space will be used. As a result,
|
|
|
|
* we don't update ic_offset until the end when we know exactly how many
|
|
|
|
* bytes have been written out.
|
|
|
|
*/
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
int
|
2010-02-15 23:34:54 +00:00
|
|
|
xlog_write(
|
2010-03-23 00:43:17 +00:00
|
|
|
struct log *log,
|
|
|
|
struct xfs_log_vec *log_vector,
|
2010-02-15 23:34:54 +00:00
|
|
|
struct xlog_ticket *ticket,
|
|
|
|
xfs_lsn_t *start_lsn,
|
|
|
|
struct xlog_in_core **commit_iclog,
|
|
|
|
uint flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-03-23 00:35:45 +00:00
|
|
|
struct xlog_in_core *iclog = NULL;
|
2010-03-23 00:43:17 +00:00
|
|
|
struct xfs_log_iovec *vecp;
|
|
|
|
struct xfs_log_vec *lv;
|
2010-03-23 00:35:45 +00:00
|
|
|
int len;
|
|
|
|
int index;
|
|
|
|
int partial_copy = 0;
|
|
|
|
int partial_copy_len = 0;
|
|
|
|
int contwr = 0;
|
|
|
|
int record_cnt = 0;
|
|
|
|
int data_cnt = 0;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
*start_lsn = 0;
|
|
|
|
|
2010-03-23 00:43:17 +00:00
|
|
|
len = xlog_write_calc_vec_length(ticket, log_vector);
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
|
2011-12-06 21:58:07 +00:00
|
|
|
/*
|
|
|
|
* Region headers and bytes are already accounted for.
|
|
|
|
* We only need to take into account start records and
|
|
|
|
* split regions in this function.
|
|
|
|
*/
|
|
|
|
if (ticket->t_flags & XLOG_TIC_INITED)
|
|
|
|
ticket->t_curr_res -= sizeof(xlog_op_header_t);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Commit record headers need to be accounted for. These
|
|
|
|
* come in as separate writes so are easy to detect.
|
|
|
|
*/
|
|
|
|
if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
|
|
|
|
ticket->t_curr_res -= sizeof(xlog_op_header_t);
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
|
|
|
|
if (ticket->t_curr_res < 0)
|
2010-03-23 00:43:17 +00:00
|
|
|
xlog_print_tic_res(log->l_mp, ticket);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-03-23 00:43:17 +00:00
|
|
|
index = 0;
|
|
|
|
lv = log_vector;
|
|
|
|
vecp = lv->lv_iovecp;
|
|
|
|
while (lv && index < lv->lv_niovecs) {
|
2010-03-23 00:47:38 +00:00
|
|
|
void *ptr;
|
2010-03-23 00:35:45 +00:00
|
|
|
int log_offset;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-03-23 00:35:45 +00:00
|
|
|
error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
|
|
|
|
&contwr, &log_offset);
|
|
|
|
if (error)
|
|
|
|
return error;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-03-23 00:35:45 +00:00
|
|
|
ASSERT(log_offset <= iclog->ic_size - 1);
|
2010-03-23 00:47:38 +00:00
|
|
|
ptr = iclog->ic_datap + log_offset;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-03-23 00:35:45 +00:00
|
|
|
/* start_lsn is the first lsn written to. That's all we need. */
|
|
|
|
if (!*start_lsn)
|
|
|
|
*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
|
2010-03-23 00:29:44 +00:00
|
|
|
|
2010-03-23 00:35:45 +00:00
|
|
|
/*
|
|
|
|
* This loop writes out as many regions as can fit in the amount
|
|
|
|
* of space which was allocated by xlog_state_get_iclog_space().
|
|
|
|
*/
|
2010-03-23 00:43:17 +00:00
|
|
|
while (lv && index < lv->lv_niovecs) {
|
|
|
|
struct xfs_log_iovec *reg = &vecp[index];
|
2010-03-23 00:35:45 +00:00
|
|
|
struct xlog_op_header *ophdr;
|
|
|
|
int start_rec_copy;
|
|
|
|
int copy_len;
|
|
|
|
int copy_off;
|
|
|
|
|
2010-03-23 00:43:17 +00:00
|
|
|
ASSERT(reg->i_len % sizeof(__int32_t) == 0);
|
2010-03-23 00:47:38 +00:00
|
|
|
ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
|
2010-03-23 00:35:45 +00:00
|
|
|
|
|
|
|
start_rec_copy = xlog_write_start_rec(ptr, ticket);
|
|
|
|
if (start_rec_copy) {
|
|
|
|
record_cnt++;
|
2010-03-23 00:47:38 +00:00
|
|
|
xlog_write_adv_cnt(&ptr, &len, &log_offset,
|
2010-03-23 00:35:45 +00:00
|
|
|
start_rec_copy);
|
|
|
|
}
|
2010-03-23 00:29:44 +00:00
|
|
|
|
2010-03-23 00:35:45 +00:00
|
|
|
ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
|
|
|
|
if (!ophdr)
|
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
|
2010-03-23 00:47:38 +00:00
|
|
|
xlog_write_adv_cnt(&ptr, &len, &log_offset,
|
2010-03-23 00:35:45 +00:00
|
|
|
sizeof(struct xlog_op_header));
|
|
|
|
|
|
|
|
len += xlog_write_setup_copy(ticket, ophdr,
|
|
|
|
iclog->ic_size-log_offset,
|
2010-03-23 00:43:17 +00:00
|
|
|
reg->i_len,
|
2010-03-23 00:35:45 +00:00
|
|
|
©_off, ©_len,
|
|
|
|
&partial_copy,
|
|
|
|
&partial_copy_len);
|
|
|
|
xlog_verify_dest_ptr(log, ptr);
|
|
|
|
|
|
|
|
/* copy region */
|
|
|
|
ASSERT(copy_len >= 0);
|
2010-03-23 00:47:38 +00:00
|
|
|
memcpy(ptr, reg->i_addr + copy_off, copy_len);
|
|
|
|
xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
|
2010-03-23 00:35:45 +00:00
|
|
|
|
|
|
|
copy_len += start_rec_copy + sizeof(xlog_op_header_t);
|
|
|
|
record_cnt++;
|
|
|
|
data_cnt += contwr ? copy_len : 0;
|
|
|
|
|
|
|
|
error = xlog_write_copy_finish(log, iclog, flags,
|
|
|
|
&record_cnt, &data_cnt,
|
|
|
|
&partial_copy,
|
|
|
|
&partial_copy_len,
|
|
|
|
log_offset,
|
|
|
|
commit_iclog);
|
|
|
|
if (error)
|
|
|
|
return error;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* if we had a partial copy, we need to get more iclog
|
|
|
|
* space but we don't want to increment the region
|
|
|
|
* index because there is still more is this region to
|
|
|
|
* write.
|
|
|
|
*
|
|
|
|
* If we completed writing this region, and we flushed
|
|
|
|
* the iclog (indicated by resetting of the record
|
|
|
|
* count), then we also need to get more log space. If
|
|
|
|
* this was the last record, though, we are done and
|
|
|
|
* can just return.
|
|
|
|
*/
|
|
|
|
if (partial_copy)
|
|
|
|
break;
|
|
|
|
|
2010-03-23 00:43:17 +00:00
|
|
|
if (++index == lv->lv_niovecs) {
|
|
|
|
lv = lv->lv_next;
|
|
|
|
index = 0;
|
|
|
|
if (lv)
|
|
|
|
vecp = lv->lv_iovecp;
|
|
|
|
}
|
2010-03-23 00:35:45 +00:00
|
|
|
if (record_cnt == 0) {
|
2010-03-23 00:43:17 +00:00
|
|
|
if (!lv)
|
2010-03-23 00:35:45 +00:00
|
|
|
return 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT(len == 0);
|
|
|
|
|
|
|
|
xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
|
|
|
|
if (!commit_iclog)
|
|
|
|
return xlog_state_release_iclog(log, iclog);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
ASSERT(flags & XLOG_COMMIT_TRANS);
|
|
|
|
*commit_iclog = iclog;
|
|
|
|
return 0;
|
2010-03-23 00:35:45 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
*
|
|
|
|
* State Machine functions
|
|
|
|
*
|
|
|
|
*****************************************************************************
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Clean iclogs starting from the head. This ordering must be
|
|
|
|
* maintained, so an iclog doesn't become ACTIVE beyond one that
|
|
|
|
* is SYNCING. This is also required to maintain the notion that we use
|
2008-08-13 06:34:31 +00:00
|
|
|
* a ordered wait queue to hold off would be writers to the log when every
|
2005-04-16 22:20:36 +00:00
|
|
|
* iclog is trying to sync to disk.
|
|
|
|
*
|
|
|
|
* State Change: DIRTY -> ACTIVE
|
|
|
|
*/
|
2005-06-21 05:36:52 +00:00
|
|
|
STATIC void
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_clean_log(xlog_t *log)
|
|
|
|
{
|
|
|
|
xlog_in_core_t *iclog;
|
|
|
|
int changed = 0;
|
|
|
|
|
|
|
|
iclog = log->l_iclog;
|
|
|
|
do {
|
|
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
|
|
iclog->ic_state = XLOG_STATE_ACTIVE;
|
|
|
|
iclog->ic_offset = 0;
|
2008-04-10 02:18:39 +00:00
|
|
|
ASSERT(iclog->ic_callback == NULL);
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* If the number of ops in this iclog indicate it just
|
|
|
|
* contains the dummy transaction, we can
|
|
|
|
* change state into IDLE (the second time around).
|
|
|
|
* Otherwise we should change the state into
|
|
|
|
* NEED a dummy.
|
|
|
|
* We don't need to cover the dummy.
|
|
|
|
*/
|
|
|
|
if (!changed &&
|
2007-10-12 00:59:34 +00:00
|
|
|
(be32_to_cpu(iclog->ic_header.h_num_logops) ==
|
|
|
|
XLOG_COVER_OPS)) {
|
2005-04-16 22:20:36 +00:00
|
|
|
changed = 1;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We have two dirty iclogs so start over
|
|
|
|
* This could also be num of ops indicates
|
|
|
|
* this is not the dummy going out.
|
|
|
|
*/
|
|
|
|
changed = 2;
|
|
|
|
}
|
|
|
|
iclog->ic_header.h_num_logops = 0;
|
|
|
|
memset(iclog->ic_header.h_cycle_data, 0,
|
|
|
|
sizeof(iclog->ic_header.h_cycle_data));
|
|
|
|
iclog->ic_header.h_lsn = 0;
|
|
|
|
} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
|
|
|
|
/* do nothing */;
|
|
|
|
else
|
|
|
|
break; /* stop cleaning */
|
|
|
|
iclog = iclog->ic_next;
|
|
|
|
} while (iclog != log->l_iclog);
|
|
|
|
|
|
|
|
/* log is locked when we are called */
|
|
|
|
/*
|
|
|
|
* Change state for the dummy log recording.
|
|
|
|
* We usually go to NEED. But we go to NEED2 if the changed indicates
|
|
|
|
* we are done writing the dummy record.
|
|
|
|
* If we are done with the second dummy recored (DONE2), then
|
|
|
|
* we go to IDLE.
|
|
|
|
*/
|
|
|
|
if (changed) {
|
|
|
|
switch (log->l_covered_state) {
|
|
|
|
case XLOG_STATE_COVER_IDLE:
|
|
|
|
case XLOG_STATE_COVER_NEED:
|
|
|
|
case XLOG_STATE_COVER_NEED2:
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case XLOG_STATE_COVER_DONE:
|
|
|
|
if (changed == 1)
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED2;
|
|
|
|
else
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case XLOG_STATE_COVER_DONE2:
|
|
|
|
if (changed == 1)
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_IDLE;
|
|
|
|
else
|
|
|
|
log->l_covered_state = XLOG_STATE_COVER_NEED;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
ASSERT(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} /* xlog_state_clean_log */
|
|
|
|
|
|
|
|
STATIC xfs_lsn_t
|
|
|
|
xlog_get_lowest_lsn(
|
|
|
|
xlog_t *log)
|
|
|
|
{
|
|
|
|
xlog_in_core_t *lsn_log;
|
|
|
|
xfs_lsn_t lowest_lsn, lsn;
|
|
|
|
|
|
|
|
lsn_log = log->l_iclog;
|
|
|
|
lowest_lsn = 0;
|
|
|
|
do {
|
|
|
|
if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
|
2007-10-12 00:59:34 +00:00
|
|
|
lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
if ((lsn && !lowest_lsn) ||
|
|
|
|
(XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
|
|
|
|
lowest_lsn = lsn;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lsn_log = lsn_log->ic_next;
|
|
|
|
} while (lsn_log != log->l_iclog);
|
2006-01-15 01:37:08 +00:00
|
|
|
return lowest_lsn;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
STATIC void
|
|
|
|
xlog_state_do_callback(
|
|
|
|
xlog_t *log,
|
|
|
|
int aborted,
|
|
|
|
xlog_in_core_t *ciclog)
|
|
|
|
{
|
|
|
|
xlog_in_core_t *iclog;
|
|
|
|
xlog_in_core_t *first_iclog; /* used to know when we've
|
|
|
|
* processed all iclogs once */
|
|
|
|
xfs_log_callback_t *cb, *cb_next;
|
|
|
|
int flushcnt = 0;
|
|
|
|
xfs_lsn_t lowest_lsn;
|
|
|
|
int ioerrors; /* counter: iclogs with errors */
|
|
|
|
int loopdidcallbacks; /* flag: inner loop did callbacks*/
|
|
|
|
int funcdidcallbacks; /* flag: function did callbacks */
|
|
|
|
int repeats; /* for issuing console warnings if
|
|
|
|
* looping too many times */
|
2008-05-19 06:34:27 +00:00
|
|
|
int wake = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
first_iclog = iclog = log->l_iclog;
|
|
|
|
ioerrors = 0;
|
|
|
|
funcdidcallbacks = 0;
|
|
|
|
repeats = 0;
|
|
|
|
|
|
|
|
do {
|
|
|
|
/*
|
|
|
|
* Scan all iclogs starting with the one pointed to by the
|
|
|
|
* log. Reset this starting point each time the log is
|
|
|
|
* unlocked (during callbacks).
|
|
|
|
*
|
|
|
|
* Keep looping through iclogs until one full pass is made
|
|
|
|
* without running any callbacks.
|
|
|
|
*/
|
|
|
|
first_iclog = log->l_iclog;
|
|
|
|
iclog = log->l_iclog;
|
|
|
|
loopdidcallbacks = 0;
|
|
|
|
repeats++;
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
/* skip all iclogs in the ACTIVE & DIRTY states */
|
|
|
|
if (iclog->ic_state &
|
|
|
|
(XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
|
|
|
|
iclog = iclog->ic_next;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Between marking a filesystem SHUTDOWN and stopping
|
|
|
|
* the log, we do flush all iclogs to disk (if there
|
|
|
|
* wasn't a log I/O error). So, we do want things to
|
|
|
|
* go smoothly in case of just a SHUTDOWN w/o a
|
|
|
|
* LOG_IO_ERROR.
|
|
|
|
*/
|
|
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
|
|
/*
|
|
|
|
* Can only perform callbacks in order. Since
|
|
|
|
* this iclog is not in the DONE_SYNC/
|
|
|
|
* DO_CALLBACK state, we skip the rest and
|
|
|
|
* just try to clean up. If we set our iclog
|
|
|
|
* to DO_CALLBACK, we will not process it when
|
|
|
|
* we retry since a previous iclog is in the
|
|
|
|
* CALLBACK and the state cannot change since
|
2007-10-11 07:37:10 +00:00
|
|
|
* we are holding the l_icloglock.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
if (!(iclog->ic_state &
|
|
|
|
(XLOG_STATE_DONE_SYNC |
|
|
|
|
XLOG_STATE_DO_CALLBACK))) {
|
|
|
|
if (ciclog && (ciclog->ic_state ==
|
|
|
|
XLOG_STATE_DONE_SYNC)) {
|
|
|
|
ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* We now have an iclog that is in either the
|
|
|
|
* DO_CALLBACK or DONE_SYNC states. The other
|
|
|
|
* states (WANT_SYNC, SYNCING, or CALLBACK were
|
|
|
|
* caught by the above if and are going to
|
|
|
|
* clean (i.e. we aren't doing their callbacks)
|
|
|
|
* see the above if.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We will do one more check here to see if we
|
|
|
|
* have chased our tail around.
|
|
|
|
*/
|
|
|
|
|
|
|
|
lowest_lsn = xlog_get_lowest_lsn(log);
|
2007-10-12 00:59:34 +00:00
|
|
|
if (lowest_lsn &&
|
|
|
|
XFS_LSN_CMP(lowest_lsn,
|
2010-12-03 11:11:29 +00:00
|
|
|
be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = iclog->ic_next;
|
|
|
|
continue; /* Leave this iclog for
|
|
|
|
* another thread */
|
|
|
|
}
|
|
|
|
|
|
|
|
iclog->ic_state = XLOG_STATE_CALLBACK;
|
|
|
|
|
|
|
|
|
2010-12-03 11:11:29 +00:00
|
|
|
/*
|
|
|
|
* update the last_sync_lsn before we drop the
|
|
|
|
* icloglock to ensure we are the only one that
|
|
|
|
* can update it.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2010-12-03 11:11:29 +00:00
|
|
|
ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
|
|
|
|
be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
|
|
|
|
atomic64_set(&log->l_last_sync_lsn,
|
|
|
|
be64_to_cpu(iclog->ic_header.h_lsn));
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-12-03 11:11:29 +00:00
|
|
|
} else
|
2005-04-16 22:20:36 +00:00
|
|
|
ioerrors++;
|
2010-12-03 11:11:29 +00:00
|
|
|
|
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-04-10 02:18:39 +00:00
|
|
|
/*
|
|
|
|
* Keep processing entries in the callback list until
|
|
|
|
* we come around and it is empty. We need to
|
|
|
|
* atomically see that the list is empty and change the
|
|
|
|
* state to DIRTY so that we don't miss any more
|
|
|
|
* callbacks being added.
|
|
|
|
*/
|
|
|
|
spin_lock(&iclog->ic_callback_lock);
|
|
|
|
cb = iclog->ic_callback;
|
2007-08-16 05:37:36 +00:00
|
|
|
while (cb) {
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog->ic_callback_tail = &(iclog->ic_callback);
|
|
|
|
iclog->ic_callback = NULL;
|
2008-04-10 02:18:39 +00:00
|
|
|
spin_unlock(&iclog->ic_callback_lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* perform callbacks in the order given */
|
2007-08-16 05:37:36 +00:00
|
|
|
for (; cb; cb = cb_next) {
|
2005-04-16 22:20:36 +00:00
|
|
|
cb_next = cb->cb_next;
|
|
|
|
cb->cb_func(cb->cb_arg, aborted);
|
|
|
|
}
|
2008-04-10 02:18:39 +00:00
|
|
|
spin_lock(&iclog->ic_callback_lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
cb = iclog->ic_callback;
|
|
|
|
}
|
|
|
|
|
|
|
|
loopdidcallbacks++;
|
|
|
|
funcdidcallbacks++;
|
|
|
|
|
2008-04-10 02:18:39 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2007-08-16 05:37:36 +00:00
|
|
|
ASSERT(iclog->ic_callback == NULL);
|
2008-04-10 02:18:39 +00:00
|
|
|
spin_unlock(&iclog->ic_callback_lock);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (!(iclog->ic_state & XLOG_STATE_IOERROR))
|
|
|
|
iclog->ic_state = XLOG_STATE_DIRTY;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Transition from DIRTY to ACTIVE if applicable.
|
|
|
|
* NOP if STATE_IOERROR.
|
|
|
|
*/
|
|
|
|
xlog_state_clean_log(log);
|
|
|
|
|
|
|
|
/* wake up threads waiting in xfs_log_force() */
|
2010-12-21 01:09:01 +00:00
|
|
|
wake_up_all(&iclog->ic_force_wait);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
iclog = iclog->ic_next;
|
|
|
|
} while (first_iclog != iclog);
|
2006-09-28 01:02:14 +00:00
|
|
|
|
|
|
|
if (repeats > 5000) {
|
|
|
|
flushcnt += repeats;
|
|
|
|
repeats = 0;
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(log->l_mp,
|
2006-09-28 01:02:14 +00:00
|
|
|
"%s: possible infinite loop (%d iterations)",
|
2008-04-10 02:19:21 +00:00
|
|
|
__func__, flushcnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
} while (!ioerrors && loopdidcallbacks);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* make one last gasp attempt to see if iclogs are being left in
|
|
|
|
* limbo..
|
|
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
|
|
if (funcdidcallbacks) {
|
|
|
|
first_iclog = iclog = log->l_iclog;
|
|
|
|
do {
|
|
|
|
ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
|
|
|
|
/*
|
|
|
|
* Terminate the loop if iclogs are found in states
|
|
|
|
* which will cause other threads to clean up iclogs.
|
|
|
|
*
|
|
|
|
* SYNCING - i/o completion will go through logs
|
|
|
|
* DONE_SYNC - interrupt thread should be waiting for
|
2007-10-11 07:37:10 +00:00
|
|
|
* l_icloglock
|
2005-04-16 22:20:36 +00:00
|
|
|
* IOERROR - give up hope all ye who enter here
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
|
|
|
|
iclog->ic_state == XLOG_STATE_SYNCING ||
|
|
|
|
iclog->ic_state == XLOG_STATE_DONE_SYNC ||
|
|
|
|
iclog->ic_state == XLOG_STATE_IOERROR )
|
|
|
|
break;
|
|
|
|
iclog = iclog->ic_next;
|
|
|
|
} while (first_iclog != iclog);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2008-05-19 06:34:27 +00:00
|
|
|
if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
|
|
|
|
wake = 1;
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2008-05-19 06:34:27 +00:00
|
|
|
|
|
|
|
if (wake)
|
2010-12-21 01:09:01 +00:00
|
|
|
wake_up_all(&log->l_flush_wait);
|
2008-05-19 06:34:27 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Finish transitioning this iclog to the dirty state.
|
|
|
|
*
|
|
|
|
* Make sure that we completely execute this routine only when this is
|
|
|
|
* the last call to the iclog. There is a good chance that iclog flushes,
|
|
|
|
* when we reach the end of the physical log, get turned into 2 separate
|
|
|
|
* calls to bwrite. Hence, one iclog flush could generate two calls to this
|
|
|
|
* routine. By using the reference count bwritecnt, we guarantee that only
|
|
|
|
* the second completion goes through.
|
|
|
|
*
|
|
|
|
* Callbacks could take time, so they are done outside the scope of the
|
2008-08-13 06:34:31 +00:00
|
|
|
* global state machine log lock.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC void
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_done_syncing(
|
|
|
|
xlog_in_core_t *iclog,
|
|
|
|
int aborted)
|
|
|
|
{
|
|
|
|
xlog_t *log = iclog->ic_log;
|
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
|
|
|
|
iclog->ic_state == XLOG_STATE_IOERROR);
|
2008-03-06 02:44:14 +00:00
|
|
|
ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we got an error, either on the first buffer, or in the case of
|
|
|
|
* split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
|
|
|
|
* and none should ever be attempted to be written to disk
|
|
|
|
* again.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state != XLOG_STATE_IOERROR) {
|
|
|
|
if (--iclog->ic_bwritecnt == 1) {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
iclog->ic_state = XLOG_STATE_DONE_SYNC;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Someone could be sleeping prior to writing out the next
|
|
|
|
* iclog buffer, we wake them all, one will get to do the
|
|
|
|
* I/O, the others get to wait for the result.
|
|
|
|
*/
|
2010-12-21 01:09:01 +00:00
|
|
|
wake_up_all(&iclog->ic_write_wait);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
|
|
|
|
} /* xlog_state_done_syncing */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
|
2008-08-13 06:34:31 +00:00
|
|
|
* sleep. We wait on the flush queue on the head iclog as that should be
|
|
|
|
* the first iclog to complete flushing. Hence if all iclogs are syncing,
|
|
|
|
* we will wait here and all new writes will sleep until a sync completes.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* The in-core logs are used in a circular fashion. They are not used
|
|
|
|
* out-of-order even when an iclog past the head is free.
|
|
|
|
*
|
|
|
|
* return:
|
|
|
|
* * log_offset where xlog_write() can start writing into the in-core
|
|
|
|
* log's data space.
|
|
|
|
* * in-core log pointer to which xlog_write() should write.
|
|
|
|
* * boolean indicating this is a continued write to an in-core log.
|
|
|
|
* If this is the last write, then the in-core log's offset field
|
|
|
|
* needs to be incremented, depending on the amount of data which
|
|
|
|
* is copied.
|
|
|
|
*/
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC int
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_get_iclog_space(xlog_t *log,
|
|
|
|
int len,
|
|
|
|
xlog_in_core_t **iclogp,
|
|
|
|
xlog_ticket_t *ticket,
|
|
|
|
int *continued_write,
|
|
|
|
int *logoffsetp)
|
|
|
|
{
|
|
|
|
int log_offset;
|
|
|
|
xlog_rec_header_t *head;
|
|
|
|
xlog_in_core_t *iclog;
|
|
|
|
int error;
|
|
|
|
|
|
|
|
restart:
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (XLOG_FORCED_SHUTDOWN(log)) {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
iclog = log->l_iclog;
|
2008-05-19 06:34:27 +00:00
|
|
|
if (iclog->ic_state != XLOG_STATE_ACTIVE) {
|
2005-04-16 22:20:36 +00:00
|
|
|
XFS_STATS_INC(xs_log_noiclogs);
|
2008-05-19 06:34:27 +00:00
|
|
|
|
|
|
|
/* Wait for log writes to have flushed */
|
2010-12-21 01:09:01 +00:00
|
|
|
xlog_wait(&log->l_flush_wait, &log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
goto restart;
|
|
|
|
}
|
2008-05-19 06:34:27 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
head = &iclog->ic_header;
|
|
|
|
|
2008-03-06 02:44:14 +00:00
|
|
|
atomic_inc(&iclog->ic_refcnt); /* prevents sync */
|
2005-04-16 22:20:36 +00:00
|
|
|
log_offset = iclog->ic_offset;
|
|
|
|
|
|
|
|
/* On the 1st write to an iclog, figure out lsn. This works
|
|
|
|
* if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
|
|
|
|
* committing to. If the offset is set, that's how many blocks
|
|
|
|
* must be written.
|
|
|
|
*/
|
|
|
|
if (log_offset == 0) {
|
|
|
|
ticket->t_curr_res -= log->l_iclog_hsize;
|
2007-08-30 07:21:46 +00:00
|
|
|
xlog_tic_add_region(ticket,
|
2005-09-02 06:42:05 +00:00
|
|
|
log->l_iclog_hsize,
|
|
|
|
XLOG_REG_TYPE_LRHEADER);
|
2007-10-12 00:59:34 +00:00
|
|
|
head->h_cycle = cpu_to_be32(log->l_curr_cycle);
|
|
|
|
head->h_lsn = cpu_to_be64(
|
2007-10-12 00:58:05 +00:00
|
|
|
xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
|
2005-04-16 22:20:36 +00:00
|
|
|
ASSERT(log->l_curr_block >= 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If there is enough room to write everything, then do it. Otherwise,
|
|
|
|
* claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
|
|
|
|
* bit is on, so this will get flushed out. Don't update ic_offset
|
|
|
|
* until you know exactly how many bytes get copied. Therefore, wait
|
|
|
|
* until later to update ic_offset.
|
|
|
|
*
|
|
|
|
* xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
|
|
|
|
* can fit into remaining data section.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
|
|
|
|
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
|
|
|
|
|
2008-07-11 07:43:55 +00:00
|
|
|
/*
|
|
|
|
* If I'm the only one writing to this iclog, sync it to disk.
|
|
|
|
* We need to do an atomic compare and decrement here to avoid
|
|
|
|
* racing with concurrent atomic_dec_and_lock() calls in
|
|
|
|
* xlog_state_release_iclog() when there is more than one
|
|
|
|
* reference to the iclog.
|
|
|
|
*/
|
|
|
|
if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
|
|
|
|
/* we are the only one */
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2008-07-11 07:43:55 +00:00
|
|
|
error = xlog_state_release_iclog(log, iclog);
|
|
|
|
if (error)
|
2006-01-15 01:37:08 +00:00
|
|
|
return error;
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
goto restart;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Do we have enough room to write the full amount in the remainder
|
|
|
|
* of this iclog? Or must we continue a write on the next iclog and
|
|
|
|
* mark this iclog as completely taken? In the case where we switch
|
|
|
|
* iclogs (to mark it taken), this particular iclog will release/sync
|
|
|
|
* to disk in xlog_write().
|
|
|
|
*/
|
|
|
|
if (len <= iclog->ic_size - iclog->ic_offset) {
|
|
|
|
*continued_write = 0;
|
|
|
|
iclog->ic_offset += len;
|
|
|
|
} else {
|
|
|
|
*continued_write = 1;
|
|
|
|
xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
|
|
|
|
}
|
|
|
|
*iclogp = iclog;
|
|
|
|
|
|
|
|
ASSERT(iclog->ic_offset <= iclog->ic_size);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
*logoffsetp = log_offset;
|
|
|
|
return 0;
|
|
|
|
} /* xlog_state_get_iclog_space */
|
|
|
|
|
|
|
|
/* The first cnt-1 times through here we don't need to
|
|
|
|
* move the grant write head because the permanent
|
|
|
|
* reservation has reserved cnt times the unit amount.
|
|
|
|
* Release part of current permanent unit reservation and
|
|
|
|
* reset current reservation to be one units worth. Also
|
|
|
|
* move grant reservation head forward.
|
|
|
|
*/
|
|
|
|
STATIC void
|
|
|
|
xlog_regrant_reserve_log_space(xlog_t *log,
|
|
|
|
xlog_ticket_t *ticket)
|
|
|
|
{
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_log_regrant_reserve_enter(log, ticket);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (ticket->t_cnt > 0)
|
|
|
|
ticket->t_cnt--;
|
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
xlog_grant_sub_space(log, &log->l_reserve_head.grant,
|
2010-12-21 01:08:20 +00:00
|
|
|
ticket->t_curr_res);
|
2012-02-20 02:31:25 +00:00
|
|
|
xlog_grant_sub_space(log, &log->l_write_head.grant,
|
2010-12-21 01:08:20 +00:00
|
|
|
ticket->t_curr_res);
|
2005-04-16 22:20:36 +00:00
|
|
|
ticket->t_curr_res = ticket->t_unit_res;
|
2007-08-30 07:21:46 +00:00
|
|
|
xlog_tic_reset_res(ticket);
|
2009-12-14 23:14:59 +00:00
|
|
|
|
|
|
|
trace_xfs_log_regrant_reserve_sub(log, ticket);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* just return if we still have some of the pre-reserved space */
|
2010-12-21 01:29:14 +00:00
|
|
|
if (ticket->t_cnt > 0)
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
xlog_grant_add_space(log, &log->l_reserve_head.grant,
|
2010-12-21 01:08:20 +00:00
|
|
|
ticket->t_unit_res);
|
2009-12-14 23:14:59 +00:00
|
|
|
|
|
|
|
trace_xfs_log_regrant_reserve_exit(log, ticket);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
ticket->t_curr_res = ticket->t_unit_res;
|
2007-08-30 07:21:46 +00:00
|
|
|
xlog_tic_reset_res(ticket);
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xlog_regrant_reserve_log_space */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Give back the space left from a reservation.
|
|
|
|
*
|
|
|
|
* All the information we need to make a correct determination of space left
|
|
|
|
* is present. For non-permanent reservations, things are quite easy. The
|
|
|
|
* count should have been decremented to zero. We only need to deal with the
|
|
|
|
* space remaining in the current reservation part of the ticket. If the
|
|
|
|
* ticket contains a permanent reservation, there may be left over space which
|
|
|
|
* needs to be released. A count of N means that N-1 refills of the current
|
|
|
|
* reservation can be done before we need to ask for more space. The first
|
|
|
|
* one goes to fill up the first current reservation. Once we run out of
|
|
|
|
* space, the count will stay at zero and the only space remaining will be
|
|
|
|
* in the current reservation field.
|
|
|
|
*/
|
|
|
|
STATIC void
|
|
|
|
xlog_ungrant_log_space(xlog_t *log,
|
|
|
|
xlog_ticket_t *ticket)
|
|
|
|
{
|
2010-12-21 01:06:05 +00:00
|
|
|
int bytes;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (ticket->t_cnt > 0)
|
|
|
|
ticket->t_cnt--;
|
|
|
|
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_log_ungrant_enter(log, ticket);
|
|
|
|
trace_xfs_log_ungrant_sub(log, ticket);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-12-21 01:06:05 +00:00
|
|
|
/*
|
|
|
|
* If this is a permanent reservation ticket, we may be able to free
|
2005-04-16 22:20:36 +00:00
|
|
|
* up more space based on the remaining count.
|
|
|
|
*/
|
2010-12-21 01:06:05 +00:00
|
|
|
bytes = ticket->t_curr_res;
|
2005-04-16 22:20:36 +00:00
|
|
|
if (ticket->t_cnt > 0) {
|
|
|
|
ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
|
2010-12-21 01:06:05 +00:00
|
|
|
bytes += ticket->t_unit_res*ticket->t_cnt;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
|
|
|
|
xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
|
2010-12-21 01:06:05 +00:00
|
|
|
|
2009-12-14 23:14:59 +00:00
|
|
|
trace_xfs_log_ungrant_exit(log, ticket);
|
|
|
|
|
2012-02-20 02:31:23 +00:00
|
|
|
xfs_log_space_wake(log->l_mp);
|
2012-02-20 02:31:20 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Flush iclog to disk if this is the last reference to the given iclog and
|
|
|
|
* the WANT_SYNC bit is set.
|
|
|
|
*
|
|
|
|
* When this function is entered, the iclog is not necessarily in the
|
|
|
|
* WANT_SYNC state. It may be sitting around waiting to get filled.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
*/
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC int
|
2008-03-06 02:44:06 +00:00
|
|
|
xlog_state_release_iclog(
|
|
|
|
xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
int sync = 0; /* do we sync? */
|
|
|
|
|
2008-03-06 02:44:14 +00:00
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
|
|
|
|
ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
|
|
|
|
if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
|
|
|
|
return 0;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
}
|
|
|
|
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
|
|
iclog->ic_state == XLOG_STATE_WANT_SYNC);
|
|
|
|
|
2008-03-06 02:44:14 +00:00
|
|
|
if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
|
2008-03-06 02:44:06 +00:00
|
|
|
/* update tail before writing to iclog */
|
2010-12-21 01:28:39 +00:00
|
|
|
xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
|
2005-04-16 22:20:36 +00:00
|
|
|
sync++;
|
|
|
|
iclog->ic_state = XLOG_STATE_SYNCING;
|
2010-12-21 01:28:39 +00:00
|
|
|
iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
|
|
|
|
xlog_verify_tail_lsn(log, iclog, tail_lsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
/* cycle incremented when incrementing curr_block */
|
|
|
|
}
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We let the log lock go, so it's possible that we hit a log I/O
|
2006-03-28 22:55:14 +00:00
|
|
|
* error or some other SHUTDOWN condition that marks the iclog
|
2005-04-16 22:20:36 +00:00
|
|
|
* as XLOG_STATE_IOERROR before the bwrite. However, we know that
|
|
|
|
* this iclog has consistent data, so we ignore IOERROR
|
|
|
|
* flags after this point.
|
|
|
|
*/
|
2008-03-06 02:44:06 +00:00
|
|
|
if (sync)
|
2005-04-16 22:20:36 +00:00
|
|
|
return xlog_sync(log, iclog);
|
2006-01-15 01:37:08 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
} /* xlog_state_release_iclog */
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This routine will mark the current iclog in the ring as WANT_SYNC
|
|
|
|
* and move the current iclog pointer to the next iclog in the ring.
|
|
|
|
* When this routine is called from xlog_state_get_iclog_space(), the
|
|
|
|
* exact size of the iclog has not yet been determined. All we know is
|
|
|
|
* that every data block. We have run out of space in this log record.
|
|
|
|
*/
|
|
|
|
STATIC void
|
|
|
|
xlog_state_switch_iclogs(xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog,
|
|
|
|
int eventual_size)
|
|
|
|
{
|
|
|
|
ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
|
|
|
|
if (!eventual_size)
|
|
|
|
eventual_size = iclog->ic_offset;
|
|
|
|
iclog->ic_state = XLOG_STATE_WANT_SYNC;
|
2007-10-12 00:59:34 +00:00
|
|
|
iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
|
2005-04-16 22:20:36 +00:00
|
|
|
log->l_prev_block = log->l_curr_block;
|
|
|
|
log->l_prev_cycle = log->l_curr_cycle;
|
|
|
|
|
|
|
|
/* roll log?: ic_offset changed later */
|
|
|
|
log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
|
|
|
|
|
|
|
|
/* Round up to next log-sunit */
|
2008-03-06 02:44:28 +00:00
|
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
|
2005-04-16 22:20:36 +00:00
|
|
|
log->l_mp->m_sb.sb_logsunit > 1) {
|
|
|
|
__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
|
|
|
|
log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (log->l_curr_block >= log->l_logBBsize) {
|
|
|
|
log->l_curr_cycle++;
|
|
|
|
if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
|
|
|
|
log->l_curr_cycle++;
|
|
|
|
log->l_curr_block -= log->l_logBBsize;
|
|
|
|
ASSERT(log->l_curr_block >= 0);
|
|
|
|
}
|
|
|
|
ASSERT(iclog == log->l_iclog);
|
|
|
|
log->l_iclog = iclog->ic_next;
|
|
|
|
} /* xlog_state_switch_iclogs */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write out all data in the in-core log as of this exact moment in time.
|
|
|
|
*
|
|
|
|
* Data may be written to the in-core log during this call. However,
|
|
|
|
* we don't guarantee this data will be written out. A change from past
|
|
|
|
* implementation means this routine will *not* write out zero length LRs.
|
|
|
|
*
|
|
|
|
* Basically, we try and perform an intelligent scan of the in-core logs.
|
|
|
|
* If we determine there is no flushable data, we just return. There is no
|
|
|
|
* flushable data if:
|
|
|
|
*
|
|
|
|
* 1. the current iclog is active and has no data; the previous iclog
|
|
|
|
* is in the active or dirty state.
|
|
|
|
* 2. the current iclog is drity, and the previous iclog is in the
|
|
|
|
* active or dirty state.
|
|
|
|
*
|
2008-08-13 06:34:31 +00:00
|
|
|
* We may sleep if:
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* 1. the current iclog is not in the active nor dirty state.
|
|
|
|
* 2. the current iclog dirty, and the previous iclog is not in the
|
|
|
|
* active nor dirty state.
|
|
|
|
* 3. the current iclog is active, and there is another thread writing
|
|
|
|
* to this particular iclog.
|
|
|
|
* 4. a) the current iclog is active and has no other writers
|
|
|
|
* b) when we return from flushing out this iclog, it is still
|
|
|
|
* not in the active nor dirty state.
|
|
|
|
*/
|
2010-01-19 09:56:46 +00:00
|
|
|
int
|
|
|
|
_xfs_log_force(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
uint flags,
|
|
|
|
int *log_flushed)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-01-19 09:56:46 +00:00
|
|
|
struct log *log = mp->m_log;
|
|
|
|
struct xlog_in_core *iclog;
|
|
|
|
xfs_lsn_t lsn;
|
|
|
|
|
|
|
|
XFS_STATS_INC(xs_log_force);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2011-12-06 21:58:07 +00:00
|
|
|
xlog_cil_force(log);
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
iclog = log->l_iclog;
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the head iclog is not active nor dirty, we just attach
|
|
|
|
* ourselves to the head and go to sleep.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
|
|
iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
|
|
/*
|
|
|
|
* If the head is dirty or (active and empty), then
|
|
|
|
* we need to look at the previous iclog. If the previous
|
|
|
|
* iclog is active or dirty we are done. There is nothing
|
|
|
|
* to sync out. Otherwise, we attach ourselves to the
|
|
|
|
* previous iclog and go to sleep.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY ||
|
2008-03-06 02:44:14 +00:00
|
|
|
(atomic_read(&iclog->ic_refcnt) == 0
|
|
|
|
&& iclog->ic_offset == 0)) {
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = iclog->ic_prev;
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE ||
|
|
|
|
iclog->ic_state == XLOG_STATE_DIRTY)
|
|
|
|
goto no_sleep;
|
|
|
|
else
|
|
|
|
goto maybe_sleep;
|
|
|
|
} else {
|
2008-03-06 02:44:14 +00:00
|
|
|
if (atomic_read(&iclog->ic_refcnt) == 0) {
|
2005-04-16 22:20:36 +00:00
|
|
|
/* We are the only one with access to this
|
|
|
|
* iclog. Flush it out now. There should
|
|
|
|
* be a roundoff of zero to show that someone
|
|
|
|
* has already taken care of the roundoff from
|
|
|
|
* the previous sync.
|
|
|
|
*/
|
2008-03-06 02:44:14 +00:00
|
|
|
atomic_inc(&iclog->ic_refcnt);
|
2007-10-12 00:59:34 +00:00
|
|
|
lsn = be64_to_cpu(iclog->ic_header.h_lsn);
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (xlog_state_release_iclog(log, iclog))
|
|
|
|
return XFS_ERROR(EIO);
|
2010-01-19 09:56:46 +00:00
|
|
|
|
|
|
|
if (log_flushed)
|
|
|
|
*log_flushed = 1;
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2007-10-12 00:59:34 +00:00
|
|
|
if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog->ic_state != XLOG_STATE_DIRTY)
|
|
|
|
goto maybe_sleep;
|
|
|
|
else
|
|
|
|
goto no_sleep;
|
|
|
|
} else {
|
|
|
|
/* Someone else is writing to this iclog.
|
|
|
|
* Use its call to flush out the data. However,
|
|
|
|
* the other thread may not force out this LR,
|
|
|
|
* so we mark it WANT_SYNC.
|
|
|
|
*/
|
|
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
|
|
goto maybe_sleep;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* By the time we come around again, the iclog could've been filled
|
|
|
|
* which would give it another lsn. If we have a new lsn, just
|
|
|
|
* return because the relevant data has been flushed.
|
|
|
|
*/
|
|
|
|
maybe_sleep:
|
|
|
|
if (flags & XFS_LOG_SYNC) {
|
|
|
|
/*
|
|
|
|
* We must check if we're shutting down here, before
|
2007-10-11 07:37:10 +00:00
|
|
|
* we wait, while we're holding the l_icloglock.
|
2005-04-16 22:20:36 +00:00
|
|
|
* Then we check again after waking up, in case our
|
|
|
|
* sleep was disturbed by a bad news.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
}
|
|
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
2010-12-21 01:09:01 +00:00
|
|
|
xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* No need to grab the log lock here since we're
|
|
|
|
* only deciding whether or not to return EIO
|
|
|
|
* and the memory read should be atomic.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
|
|
return XFS_ERROR(EIO);
|
2010-01-19 09:56:46 +00:00
|
|
|
if (log_flushed)
|
|
|
|
*log_flushed = 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
|
|
|
|
|
|
|
no_sleep:
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
return 0;
|
2010-01-19 09:56:46 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
/*
|
|
|
|
* Wrapper for _xfs_log_force(), to be used when caller doesn't care
|
|
|
|
* about errors or whether the log was flushed or not. This is the normal
|
|
|
|
* interface to use when trying to unpin items or move the log forward.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_log_force(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
uint flags)
|
|
|
|
{
|
|
|
|
int error;
|
|
|
|
|
2012-04-24 06:33:31 +00:00
|
|
|
trace_xfs_log_force(mp, 0);
|
2010-01-19 09:56:46 +00:00
|
|
|
error = _xfs_log_force(mp, flags, NULL);
|
2011-03-06 23:01:35 +00:00
|
|
|
if (error)
|
|
|
|
xfs_warn(mp, "%s: error %d returned.", __func__, error);
|
2010-01-19 09:56:46 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2010-01-19 09:56:46 +00:00
|
|
|
* Force the in-core log to disk for a specific LSN.
|
2005-04-16 22:20:36 +00:00
|
|
|
*
|
|
|
|
* Find in-core log with lsn.
|
|
|
|
* If it is in the DIRTY state, just return.
|
|
|
|
* If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
|
|
|
|
* state and go to sleep or return.
|
|
|
|
* If it is in any other state, go to sleep or return.
|
|
|
|
*
|
2010-01-19 09:56:46 +00:00
|
|
|
* Synchronous forces are implemented with a signal variable. All callers
|
|
|
|
* to force a given lsn to disk will wait on a the sv attached to the
|
|
|
|
* specific in-core log. When given in-core log finally completes its
|
|
|
|
* write to disk, that thread will wake up all threads waiting on the
|
|
|
|
* sv.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2010-01-19 09:56:46 +00:00
|
|
|
int
|
|
|
|
_xfs_log_force_lsn(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
xfs_lsn_t lsn,
|
|
|
|
uint flags,
|
|
|
|
int *log_flushed)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-01-19 09:56:46 +00:00
|
|
|
struct log *log = mp->m_log;
|
|
|
|
struct xlog_in_core *iclog;
|
|
|
|
int already_slept = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
ASSERT(lsn != 0);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
XFS_STATS_INC(xs_log_force);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2011-12-06 21:58:07 +00:00
|
|
|
lsn = xlog_cil_force_lsn(log, lsn);
|
|
|
|
if (lsn == NULLCOMMITLSN)
|
|
|
|
return 0;
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
try_again:
|
|
|
|
spin_lock(&log->l_icloglock);
|
|
|
|
iclog = log->l_iclog;
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2010-01-19 09:56:46 +00:00
|
|
|
return XFS_ERROR(EIO);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
do {
|
|
|
|
if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
|
|
|
|
iclog = iclog->ic_next;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (iclog->ic_state == XLOG_STATE_DIRTY) {
|
|
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE) {
|
|
|
|
/*
|
|
|
|
* We sleep here if we haven't already slept (e.g.
|
|
|
|
* this is the first time we've looked at the correct
|
|
|
|
* iclog buf) and the buffer before us is going to
|
|
|
|
* be sync'ed. The reason for this is that if we
|
|
|
|
* are doing sync transactions here, by waiting for
|
|
|
|
* the previous I/O to complete, we can allow a few
|
|
|
|
* more transactions into this iclog before we close
|
|
|
|
* it down.
|
|
|
|
*
|
|
|
|
* Otherwise, we mark the buffer WANT_SYNC, and bump
|
|
|
|
* up the refcnt so we can release the log (which
|
|
|
|
* drops the ref count). The state switch keeps new
|
|
|
|
* transaction commits from using this buffer. When
|
|
|
|
* the current commits finish writing into the buffer,
|
|
|
|
* the refcount will drop to zero and the buffer will
|
|
|
|
* go out then.
|
|
|
|
*/
|
|
|
|
if (!already_slept &&
|
|
|
|
(iclog->ic_prev->ic_state &
|
|
|
|
(XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
|
|
|
|
ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
|
|
|
|
|
|
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
|
|
|
|
2010-12-21 01:09:01 +00:00
|
|
|
xlog_wait(&iclog->ic_prev->ic_write_wait,
|
|
|
|
&log->l_icloglock);
|
2010-01-19 09:56:46 +00:00
|
|
|
if (log_flushed)
|
|
|
|
*log_flushed = 1;
|
|
|
|
already_slept = 1;
|
|
|
|
goto try_again;
|
|
|
|
}
|
2008-03-06 02:44:14 +00:00
|
|
|
atomic_inc(&iclog->ic_refcnt);
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
if (xlog_state_release_iclog(log, iclog))
|
|
|
|
return XFS_ERROR(EIO);
|
2010-01-19 09:56:46 +00:00
|
|
|
if (log_flushed)
|
|
|
|
*log_flushed = 1;
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
if ((flags & XFS_LOG_SYNC) && /* sleep */
|
|
|
|
!(iclog->ic_state &
|
|
|
|
(XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
|
|
|
|
/*
|
|
|
|
* Don't wait on completion if we know that we've
|
|
|
|
* gotten a log write error.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
return XFS_ERROR(EIO);
|
|
|
|
}
|
|
|
|
XFS_STATS_INC(xs_log_force_sleep);
|
2010-12-21 01:09:01 +00:00
|
|
|
xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
|
2010-01-19 09:56:46 +00:00
|
|
|
/*
|
|
|
|
* No need to grab the log lock here since we're
|
|
|
|
* only deciding whether or not to return EIO
|
|
|
|
* and the memory read should be atomic.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_state & XLOG_STATE_IOERROR)
|
|
|
|
return XFS_ERROR(EIO);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
if (log_flushed)
|
|
|
|
*log_flushed = 1;
|
|
|
|
} else { /* just return */
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
return 0;
|
|
|
|
} while (iclog != log->l_iclog);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
|
|
|
|
* about errors or whether the log was flushed or not. This is the normal
|
|
|
|
* interface to use when trying to unpin items or move the log forward.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
xfs_log_force_lsn(
|
|
|
|
xfs_mount_t *mp,
|
|
|
|
xfs_lsn_t lsn,
|
|
|
|
uint flags)
|
|
|
|
{
|
|
|
|
int error;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2012-04-24 06:33:31 +00:00
|
|
|
trace_xfs_log_force(mp, lsn);
|
2010-01-19 09:56:46 +00:00
|
|
|
error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
|
2011-03-06 23:01:35 +00:00
|
|
|
if (error)
|
|
|
|
xfs_warn(mp, "%s: error %d returned.", __func__, error);
|
2010-01-19 09:56:46 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Called when we want to mark the current iclog as being ready to sync to
|
|
|
|
* disk.
|
|
|
|
*/
|
2007-11-23 05:28:09 +00:00
|
|
|
STATIC void
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
|
|
|
|
{
|
2009-08-10 14:32:44 +00:00
|
|
|
assert_spin_locked(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (iclog->ic_state == XLOG_STATE_ACTIVE) {
|
|
|
|
xlog_state_switch_iclogs(log, iclog, 0);
|
|
|
|
} else {
|
|
|
|
ASSERT(iclog->ic_state &
|
|
|
|
(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
|
|
|
|
}
|
2008-12-03 11:20:28 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
/*****************************************************************************
|
|
|
|
*
|
|
|
|
* TICKET functions
|
|
|
|
*
|
|
|
|
*****************************************************************************
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
2009-03-29 07:55:42 +00:00
|
|
|
* Free a used ticket when its refcount falls to zero.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2008-11-17 06:37:10 +00:00
|
|
|
void
|
|
|
|
xfs_log_ticket_put(
|
|
|
|
xlog_ticket_t *ticket)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2008-11-17 06:37:10 +00:00
|
|
|
ASSERT(atomic_read(&ticket->t_ref) > 0);
|
2010-12-21 01:09:01 +00:00
|
|
|
if (atomic_dec_and_test(&ticket->t_ref))
|
2008-11-17 06:37:10 +00:00
|
|
|
kmem_zone_free(xfs_log_ticket_zone, ticket);
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2008-11-17 06:37:10 +00:00
|
|
|
xlog_ticket_t *
|
|
|
|
xfs_log_ticket_get(
|
|
|
|
xlog_ticket_t *ticket)
|
|
|
|
{
|
|
|
|
ASSERT(atomic_read(&ticket->t_ref) > 0);
|
|
|
|
atomic_inc(&ticket->t_ref);
|
|
|
|
return ticket;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2008-04-10 02:18:46 +00:00
|
|
|
* Allocate and initialise a new log ticket.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
xfs: Introduce delayed logging core code
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
2010-05-21 04:37:18 +00:00
|
|
|
xlog_ticket_t *
|
2010-03-23 00:21:11 +00:00
|
|
|
xlog_ticket_alloc(
|
|
|
|
struct log *log,
|
|
|
|
int unit_bytes,
|
|
|
|
int cnt,
|
|
|
|
char client,
|
2012-02-20 02:31:31 +00:00
|
|
|
bool permanent,
|
2010-05-07 01:04:17 +00:00
|
|
|
int alloc_flags)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
2010-03-23 00:21:11 +00:00
|
|
|
struct xlog_ticket *tic;
|
2005-04-16 22:20:36 +00:00
|
|
|
uint num_headers;
|
2010-03-23 00:21:11 +00:00
|
|
|
int iclog_space;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-05-07 01:04:17 +00:00
|
|
|
tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
|
2008-04-10 02:18:46 +00:00
|
|
|
if (!tic)
|
|
|
|
return NULL;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Permanent reservations have up to 'cnt'-1 active log operations
|
|
|
|
* in the log. A unit in this case is the amount of space for one
|
|
|
|
* of these log operations. Normal reservations have a cnt of 1
|
|
|
|
* and their unit amount is the total amount of space required.
|
|
|
|
*
|
|
|
|
* The following lines of code account for non-transaction data
|
2005-09-02 06:41:43 +00:00
|
|
|
* which occupy space in the on-disk log.
|
|
|
|
*
|
|
|
|
* Normal form of a transaction is:
|
|
|
|
* <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
|
|
|
|
* and then there are LR hdrs, split-recs and roundoff at end of syncs.
|
|
|
|
*
|
|
|
|
* We need to account for all the leadup data and trailer data
|
|
|
|
* around the transaction data.
|
|
|
|
* And then we need to account for the worst case in terms of using
|
|
|
|
* more space.
|
|
|
|
* The worst case will happen if:
|
|
|
|
* - the placement of the transaction happens to be such that the
|
|
|
|
* roundoff is at its maximum
|
|
|
|
* - the transaction data is synced before the commit record is synced
|
|
|
|
* i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
|
|
|
|
* Therefore the commit record is in its own Log Record.
|
|
|
|
* This can happen as the commit record is called with its
|
|
|
|
* own region to xlog_write().
|
|
|
|
* This then means that in the worst case, roundoff can happen for
|
|
|
|
* the commit-rec as well.
|
|
|
|
* The commit-rec is smaller than padding in this scenario and so it is
|
|
|
|
* not added separately.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
|
2005-09-02 06:41:43 +00:00
|
|
|
/* for trans header */
|
|
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
|
|
unit_bytes += sizeof(xfs_trans_header_t);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* for start-rec */
|
2005-09-02 06:41:43 +00:00
|
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
|
|
|
2010-03-23 00:21:11 +00:00
|
|
|
/*
|
|
|
|
* for LR headers - the space for data in an iclog is the size minus
|
|
|
|
* the space used for the headers. If we use the iclog size, then we
|
|
|
|
* undercalculate the number of headers required.
|
|
|
|
*
|
|
|
|
* Furthermore - the addition of op headers for split-recs might
|
|
|
|
* increase the space required enough to require more log and op
|
|
|
|
* headers, so take that into account too.
|
|
|
|
*
|
|
|
|
* IMPORTANT: This reservation makes the assumption that if this
|
|
|
|
* transaction is the first in an iclog and hence has the LR headers
|
|
|
|
* accounted to it, then the remaining space in the iclog is
|
|
|
|
* exclusively for this transaction. i.e. if the transaction is larger
|
|
|
|
* than the iclog, it will be the only thing in that iclog.
|
|
|
|
* Fundamentally, this means we must pass the entire log vector to
|
|
|
|
* xlog_write to guarantee this.
|
|
|
|
*/
|
|
|
|
iclog_space = log->l_iclog_size - log->l_iclog_hsize;
|
|
|
|
num_headers = howmany(unit_bytes, iclog_space);
|
|
|
|
|
|
|
|
/* for split-recs - ophdrs added when data split over LRs */
|
|
|
|
unit_bytes += sizeof(xlog_op_header_t) * num_headers;
|
|
|
|
|
|
|
|
/* add extra header reservations if we overrun */
|
|
|
|
while (!num_headers ||
|
|
|
|
howmany(unit_bytes, iclog_space) > num_headers) {
|
|
|
|
unit_bytes += sizeof(xlog_op_header_t);
|
|
|
|
num_headers++;
|
|
|
|
}
|
2005-09-02 06:41:43 +00:00
|
|
|
unit_bytes += log->l_iclog_hsize * num_headers;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-09-02 06:41:43 +00:00
|
|
|
/* for commit-rec LR header - note: padding will subsume the ophdr */
|
|
|
|
unit_bytes += log->l_iclog_hsize;
|
|
|
|
|
|
|
|
/* for roundoff padding for transaction data and one for commit record */
|
2008-03-06 02:44:28 +00:00
|
|
|
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
|
2005-09-02 06:41:43 +00:00
|
|
|
log->l_mp->m_sb.sb_logsunit > 1) {
|
2005-04-16 22:20:36 +00:00
|
|
|
/* log su roundoff */
|
2005-09-02 06:41:43 +00:00
|
|
|
unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
|
|
|
/* BB roundoff */
|
2005-09-02 06:41:43 +00:00
|
|
|
unit_bytes += 2*BBSIZE;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2008-11-17 06:37:10 +00:00
|
|
|
atomic_set(&tic->t_ref, 1);
|
2012-02-20 02:31:24 +00:00
|
|
|
tic->t_task = current;
|
2010-12-21 01:02:25 +00:00
|
|
|
INIT_LIST_HEAD(&tic->t_queue);
|
2005-04-16 22:20:36 +00:00
|
|
|
tic->t_unit_res = unit_bytes;
|
|
|
|
tic->t_curr_res = unit_bytes;
|
|
|
|
tic->t_cnt = cnt;
|
|
|
|
tic->t_ocnt = cnt;
|
2010-04-14 05:47:55 +00:00
|
|
|
tic->t_tid = random32();
|
2005-04-16 22:20:36 +00:00
|
|
|
tic->t_clientid = client;
|
|
|
|
tic->t_flags = XLOG_TIC_INITED;
|
2005-09-02 06:42:05 +00:00
|
|
|
tic->t_trans_type = 0;
|
2012-02-20 02:31:31 +00:00
|
|
|
if (permanent)
|
2005-04-16 22:20:36 +00:00
|
|
|
tic->t_flags |= XLOG_TIC_PERM_RESERV;
|
|
|
|
|
2007-08-30 07:21:46 +00:00
|
|
|
xlog_tic_reset_res(tic);
|
2005-09-02 06:42:05 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return tic;
|
2008-11-17 06:37:10 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
/******************************************************************************
|
|
|
|
*
|
|
|
|
* Log debug routines
|
|
|
|
*
|
|
|
|
******************************************************************************
|
|
|
|
*/
|
2005-11-02 04:12:04 +00:00
|
|
|
#if defined(DEBUG)
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Make sure that the destination ptr is within the valid data region of
|
|
|
|
* one of the iclogs. This uses backup pointers stored in a different
|
|
|
|
* part of the log in case we trash the log structure.
|
|
|
|
*/
|
|
|
|
void
|
2010-03-23 00:47:38 +00:00
|
|
|
xlog_verify_dest_ptr(
|
|
|
|
struct log *log,
|
|
|
|
char *ptr)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int good_ptr = 0;
|
|
|
|
|
2010-03-23 00:47:38 +00:00
|
|
|
for (i = 0; i < log->l_iclog_bufs; i++) {
|
|
|
|
if (ptr >= log->l_iclog_bak[i] &&
|
|
|
|
ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
|
2005-04-16 22:20:36 +00:00
|
|
|
good_ptr++;
|
|
|
|
}
|
2010-03-23 00:47:38 +00:00
|
|
|
|
|
|
|
if (!good_ptr)
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
|
2010-03-23 00:47:38 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2011-04-08 02:45:07 +00:00
|
|
|
/*
|
|
|
|
* Check to make sure the grant write head didn't just over lap the tail. If
|
|
|
|
* the cycles are the same, we can't be overlapping. Otherwise, make sure that
|
|
|
|
* the cycles differ by exactly one and check the byte count.
|
|
|
|
*
|
|
|
|
* This check is run unlocked, so can give false positives. Rather than assert
|
|
|
|
* on failures, use a warn-once flag and a panic tag to allow the admin to
|
|
|
|
* determine if they want to panic the machine when such an error occurs. For
|
|
|
|
* debug kernels this will have the same effect as using an assert but, unlinke
|
|
|
|
* an assert, it can be turned off at runtime.
|
|
|
|
*/
|
2010-12-21 01:02:52 +00:00
|
|
|
STATIC void
|
|
|
|
xlog_verify_grant_tail(
|
|
|
|
struct log *log)
|
|
|
|
{
|
2010-12-21 01:28:39 +00:00
|
|
|
int tail_cycle, tail_blocks;
|
2010-12-21 01:08:20 +00:00
|
|
|
int cycle, space;
|
2010-12-21 01:02:52 +00:00
|
|
|
|
2012-02-20 02:31:25 +00:00
|
|
|
xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
|
2010-12-21 01:28:39 +00:00
|
|
|
xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
|
|
|
|
if (tail_cycle != cycle) {
|
2011-04-08 02:45:07 +00:00
|
|
|
if (cycle - 1 != tail_cycle &&
|
|
|
|
!(log->l_flags & XLOG_TAIL_WARN)) {
|
|
|
|
xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
|
|
|
|
"%s: cycle - 1 != tail_cycle", __func__);
|
|
|
|
log->l_flags |= XLOG_TAIL_WARN;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (space > BBTOB(tail_blocks) &&
|
|
|
|
!(log->l_flags & XLOG_TAIL_WARN)) {
|
|
|
|
xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
|
|
|
|
"%s: space > BBTOB(tail_blocks)", __func__);
|
|
|
|
log->l_flags |= XLOG_TAIL_WARN;
|
|
|
|
}
|
2010-12-21 01:02:52 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/* check if it will fit */
|
|
|
|
STATIC void
|
|
|
|
xlog_verify_tail_lsn(xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog,
|
|
|
|
xfs_lsn_t tail_lsn)
|
|
|
|
{
|
|
|
|
int blocks;
|
|
|
|
|
|
|
|
if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
|
|
|
|
blocks =
|
|
|
|
log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
|
|
|
|
if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
|
|
|
ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
|
|
|
|
|
|
|
|
if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
|
|
|
|
if (blocks < BTOBB(iclog->ic_offset) + 1)
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
} /* xlog_verify_tail_lsn */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Perform a number of checks on the iclog before writing to disk.
|
|
|
|
*
|
|
|
|
* 1. Make sure the iclogs are still circular
|
|
|
|
* 2. Make sure we have a good magic number
|
|
|
|
* 3. Make sure we don't have magic numbers in the data
|
|
|
|
* 4. Check fields of each log operation header for:
|
|
|
|
* A. Valid client identifier
|
|
|
|
* B. tid ptr value falls in valid ptr space (user space code)
|
|
|
|
* C. Length in log record header is correct according to the
|
|
|
|
* individual operation headers within record.
|
|
|
|
* 5. When a bwrite will occur within 5 blocks of the front of the physical
|
|
|
|
* log, check the preceding blocks of the physical log to make sure all
|
|
|
|
* the cycle numbers agree with the current cycle number.
|
|
|
|
*/
|
|
|
|
STATIC void
|
|
|
|
xlog_verify_iclog(xlog_t *log,
|
|
|
|
xlog_in_core_t *iclog,
|
|
|
|
int count,
|
|
|
|
boolean_t syncing)
|
|
|
|
{
|
|
|
|
xlog_op_header_t *ophead;
|
|
|
|
xlog_in_core_t *icptr;
|
|
|
|
xlog_in_core_2_t *xhdr;
|
|
|
|
xfs_caddr_t ptr;
|
|
|
|
xfs_caddr_t base_ptr;
|
|
|
|
__psint_t field_offset;
|
|
|
|
__uint8_t clientid;
|
|
|
|
int len, i, j, k, op_len;
|
|
|
|
int idx;
|
|
|
|
|
|
|
|
/* check validity of iclog pointers */
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
icptr = log->l_iclog;
|
|
|
|
for (i=0; i < log->l_iclog_bufs; i++) {
|
2007-08-16 05:37:36 +00:00
|
|
|
if (icptr == NULL)
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
icptr = icptr->ic_next;
|
|
|
|
}
|
|
|
|
if (icptr != log->l_iclog)
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* check log magic numbers */
|
2011-07-08 12:36:05 +00:00
|
|
|
if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2007-10-12 00:59:34 +00:00
|
|
|
ptr = (xfs_caddr_t) &iclog->ic_header;
|
|
|
|
for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
|
2005-04-16 22:20:36 +00:00
|
|
|
ptr += BBSIZE) {
|
2011-07-08 12:36:05 +00:00
|
|
|
if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_emerg(log->l_mp, "%s: unexpected magic num",
|
|
|
|
__func__);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* check fields */
|
2007-10-12 00:59:34 +00:00
|
|
|
len = be32_to_cpu(iclog->ic_header.h_num_logops);
|
2005-04-16 22:20:36 +00:00
|
|
|
ptr = iclog->ic_datap;
|
|
|
|
base_ptr = ptr;
|
|
|
|
ophead = (xlog_op_header_t *)ptr;
|
2008-11-28 03:23:38 +00:00
|
|
|
xhdr = iclog->ic_data;
|
2005-04-16 22:20:36 +00:00
|
|
|
for (i = 0; i < len; i++) {
|
|
|
|
ophead = (xlog_op_header_t *)ptr;
|
|
|
|
|
|
|
|
/* clientid is only 1 byte */
|
|
|
|
field_offset = (__psint_t)
|
|
|
|
((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
|
|
|
|
if (syncing == B_FALSE || (field_offset & 0x1ff)) {
|
|
|
|
clientid = ophead->oh_clientid;
|
|
|
|
} else {
|
|
|
|
idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
|
|
|
|
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
|
|
|
|
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
|
|
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
2007-10-12 00:58:05 +00:00
|
|
|
clientid = xlog_get_client_id(
|
|
|
|
xhdr[j].hic_xheader.xh_cycle_data[k]);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2007-10-12 00:58:05 +00:00
|
|
|
clientid = xlog_get_client_id(
|
|
|
|
iclog->ic_header.h_cycle_data[idx]);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
|
2011-03-06 23:01:35 +00:00
|
|
|
xfs_warn(log->l_mp,
|
|
|
|
"%s: invalid clientid %d op 0x%p offset 0x%lx",
|
|
|
|
__func__, clientid, ophead,
|
|
|
|
(unsigned long)field_offset);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/* check length */
|
|
|
|
field_offset = (__psint_t)
|
|
|
|
((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
|
|
|
|
if (syncing == B_FALSE || (field_offset & 0x1ff)) {
|
2007-10-12 00:58:59 +00:00
|
|
|
op_len = be32_to_cpu(ophead->oh_len);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
|
|
|
idx = BTOBBT((__psint_t)&ophead->oh_len -
|
|
|
|
(__psint_t)iclog->ic_datap);
|
|
|
|
if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
|
|
|
|
j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
|
|
|
k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
|
2007-10-12 00:59:34 +00:00
|
|
|
op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
|
2005-04-16 22:20:36 +00:00
|
|
|
} else {
|
2007-10-12 00:59:34 +00:00
|
|
|
op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
ptr += sizeof(xlog_op_header_t) + op_len;
|
|
|
|
}
|
|
|
|
} /* xlog_verify_iclog */
|
2005-11-02 04:12:04 +00:00
|
|
|
#endif
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2007-10-11 07:37:10 +00:00
|
|
|
* Mark all iclogs IOERROR. l_icloglock is held by the caller.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
STATIC int
|
|
|
|
xlog_state_ioerror(
|
|
|
|
xlog_t *log)
|
|
|
|
{
|
|
|
|
xlog_in_core_t *iclog, *ic;
|
|
|
|
|
|
|
|
iclog = log->l_iclog;
|
|
|
|
if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
|
|
|
|
/*
|
|
|
|
* Mark all the incore logs IOERROR.
|
|
|
|
* From now on, no log flushes will result.
|
|
|
|
*/
|
|
|
|
ic = iclog;
|
|
|
|
do {
|
|
|
|
ic->ic_state = XLOG_STATE_IOERROR;
|
|
|
|
ic = ic->ic_next;
|
|
|
|
} while (ic != iclog);
|
2006-01-15 01:37:08 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Return non-zero, if state transition has already happened.
|
|
|
|
*/
|
2006-01-15 01:37:08 +00:00
|
|
|
return 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called from xfs_force_shutdown, when we're forcibly
|
|
|
|
* shutting down the filesystem, typically because of an IO error.
|
|
|
|
* Our main objectives here are to make sure that:
|
|
|
|
* a. the filesystem gets marked 'SHUTDOWN' for all interested
|
|
|
|
* parties to find out, 'atomically'.
|
|
|
|
* b. those who're sleeping on log reservations, pinned objects and
|
|
|
|
* other resources get woken up, and be told the bad news.
|
|
|
|
* c. nothing new gets queued up after (a) and (b) are done.
|
|
|
|
* d. if !logerror, flush the iclogs to disk, then seal them off
|
|
|
|
* for business.
|
2010-05-17 05:51:59 +00:00
|
|
|
*
|
|
|
|
* Note: for delayed logging the !logerror case needs to flush the regions
|
|
|
|
* held in memory out to the iclogs before flushing them to disk. This needs
|
|
|
|
* to be done before the log is marked as shutdown, otherwise the flush to the
|
|
|
|
* iclogs will fail.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
|
|
|
int
|
|
|
|
xfs_log_force_umount(
|
|
|
|
struct xfs_mount *mp,
|
|
|
|
int logerror)
|
|
|
|
{
|
|
|
|
xlog_t *log;
|
|
|
|
int retval;
|
|
|
|
|
|
|
|
log = mp->m_log;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If this happens during log recovery, don't worry about
|
|
|
|
* locking; the log isn't open for business yet.
|
|
|
|
*/
|
|
|
|
if (!log ||
|
|
|
|
log->l_flags & XLOG_ACTIVE_RECOVERY) {
|
|
|
|
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
|
2008-11-28 03:23:31 +00:00
|
|
|
if (mp->m_sb_bp)
|
|
|
|
XFS_BUF_DONE(mp->m_sb_bp);
|
2006-01-15 01:37:08 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Somebody could've already done the hard work for us.
|
|
|
|
* No need to get locks for this.
|
|
|
|
*/
|
|
|
|
if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
|
|
|
|
ASSERT(XLOG_FORCED_SHUTDOWN(log));
|
2006-01-15 01:37:08 +00:00
|
|
|
return 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
retval = 0;
|
2010-05-17 05:51:59 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Flush the in memory commit item list before marking the log as
|
|
|
|
* being shut down. We need to do it in this order to ensure all the
|
|
|
|
* completed transactions are flushed to disk with the xfs_log_force()
|
|
|
|
* call below.
|
|
|
|
*/
|
2011-12-06 21:58:07 +00:00
|
|
|
if (!logerror)
|
2010-08-24 01:40:03 +00:00
|
|
|
xlog_cil_force(log);
|
2010-05-17 05:51:59 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2010-12-21 01:29:01 +00:00
|
|
|
* mark the filesystem and the as in a shutdown state and wake
|
|
|
|
* everybody up to tell them the bad news.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
|
2008-11-28 03:23:31 +00:00
|
|
|
if (mp->m_sb_bp)
|
|
|
|
XFS_BUF_DONE(mp->m_sb_bp);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* This flag is sort of redundant because of the mount flag, but
|
|
|
|
* it's good to maintain the separation between the log and the rest
|
|
|
|
* of XFS.
|
|
|
|
*/
|
|
|
|
log->l_flags |= XLOG_IO_ERROR;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we hit a log error, we want to mark all the iclogs IOERROR
|
|
|
|
* while we're still holding the loglock.
|
|
|
|
*/
|
|
|
|
if (logerror)
|
|
|
|
retval = xlog_state_ioerror(log);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
2010-12-21 01:02:25 +00:00
|
|
|
* We don't want anybody waiting for log reservations after this. That
|
|
|
|
* means we have to wake up everybody queued up on reserveq as well as
|
|
|
|
* writeq. In addition, we make sure in xlog_{re}grant_log_space that
|
|
|
|
* we don't enqueue anything once the SHUTDOWN flag is set, and this
|
2010-12-21 01:29:01 +00:00
|
|
|
* action is protected by the grant locks.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2012-02-20 02:31:27 +00:00
|
|
|
xlog_grant_head_wake_all(&log->l_reserve_head);
|
|
|
|
xlog_grant_head_wake_all(&log->l_write_head);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2010-01-19 09:56:46 +00:00
|
|
|
if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
|
2005-04-16 22:20:36 +00:00
|
|
|
ASSERT(!logerror);
|
|
|
|
/*
|
|
|
|
* Force the incore logs to disk before shutting the
|
|
|
|
* log down completely.
|
|
|
|
*/
|
2010-01-19 09:56:46 +00:00
|
|
|
_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
|
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
retval = xlog_state_ioerror(log);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Wake up everybody waiting on xfs_log_force.
|
|
|
|
* Callback all log item committed functions as if the
|
|
|
|
* log writes were completed.
|
|
|
|
*/
|
|
|
|
xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
|
|
|
|
|
|
|
|
#ifdef XFSERRORDEBUG
|
|
|
|
{
|
|
|
|
xlog_in_core_t *iclog;
|
|
|
|
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_lock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = log->l_iclog;
|
|
|
|
do {
|
|
|
|
ASSERT(iclog->ic_callback == 0);
|
|
|
|
iclog = iclog->ic_next;
|
|
|
|
} while (iclog != log->l_iclog);
|
2007-10-11 07:37:10 +00:00
|
|
|
spin_unlock(&log->l_icloglock);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
/* return non-zero if log IOERROR transition had already happened */
|
2006-01-15 01:37:08 +00:00
|
|
|
return retval;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
2005-06-21 05:36:52 +00:00
|
|
|
STATIC int
|
2005-04-16 22:20:36 +00:00
|
|
|
xlog_iclogs_empty(xlog_t *log)
|
|
|
|
{
|
|
|
|
xlog_in_core_t *iclog;
|
|
|
|
|
|
|
|
iclog = log->l_iclog;
|
|
|
|
do {
|
|
|
|
/* endianness does not matter here, zero is zero in
|
|
|
|
* any language.
|
|
|
|
*/
|
|
|
|
if (iclog->ic_header.h_num_logops)
|
2006-01-15 01:37:08 +00:00
|
|
|
return 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
iclog = iclog->ic_next;
|
|
|
|
} while (iclog != log->l_iclog);
|
2006-01-15 01:37:08 +00:00
|
|
|
return 1;
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|