linux/fs/ufs/dir.c

647 lines
16 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ufs/ufs_dir.c
*
* Copyright (C) 1996
* Adrian Rodriguez (adrian@franklins-tower.rutgers.edu)
* Laboratory for Computer Science Research Computing Facility
* Rutgers, The State University of New Jersey
*
* swab support by Francois-Rene Rideau <fare@tunes.org> 19970406
*
* 4.4BSD (FreeBSD) support added on February 1st 1998 by
* Niels Kristian Bech Jensen <nkbj@image.dk> partially based
* on code by Martin von Loewis <martin@mira.isdn.cs.tu-berlin.de>.
*
* Migration to usage of "page cache" on May 2006 by
* Evgeniy Dushistov <dushistov@mail.ru> based on ext2 code base.
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/swap.h>
#include <linux/iversion.h>
#include "ufs_fs.h"
#include "ufs.h"
#include "swab.h"
#include "util.h"
/*
* NOTE! unlike strncmp, ufs_match returns 1 for success, 0 for failure.
*
* len <= UFS_MAXNAMLEN and de != NULL are guaranteed by caller.
*/
static inline int ufs_match(struct super_block *sb, int len,
const unsigned char *name, struct ufs_dir_entry *de)
{
if (len != ufs_get_de_namlen(sb, de))
return 0;
if (!de->d_ino)
return 0;
return !memcmp(name, de->d_name, len);
}
static int ufs_commit_chunk(struct page *page, loff_t pos, unsigned len)
{
struct address_space *mapping = page->mapping;
struct inode *dir = mapping->host;
int err = 0;
inode_inc_iversion(dir);
block_write_end(NULL, mapping, pos, len, len, page, NULL);
if (pos+len > dir->i_size) {
i_size_write(dir, pos+len);
mark_inode_dirty(dir);
}
if (IS_DIRSYNC(dir))
err = write_one_page(page);
else
unlock_page(page);
return err;
}
static inline void ufs_put_page(struct page *page)
{
kunmap(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
}
ino_t ufs_inode_by_name(struct inode *dir, const struct qstr *qstr)
{
ino_t res = 0;
struct ufs_dir_entry *de;
struct page *page;
de = ufs_find_entry(dir, qstr, &page);
if (de) {
res = fs32_to_cpu(dir->i_sb, de->d_ino);
ufs_put_page(page);
}
return res;
}
/* Releases the page */
void ufs_set_link(struct inode *dir, struct ufs_dir_entry *de,
struct page *page, struct inode *inode,
bool update_times)
{
loff_t pos = page_offset(page) +
(char *) de - (char *) page_address(page);
unsigned len = fs16_to_cpu(dir->i_sb, de->d_reclen);
int err;
lock_page(page);
err = ufs_prepare_chunk(page, pos, len);
BUG_ON(err);
de->d_ino = cpu_to_fs32(dir->i_sb, inode->i_ino);
ufs_set_de_type(dir->i_sb, de, inode->i_mode);
err = ufs_commit_chunk(page, pos, len);
ufs_put_page(page);
if (update_times)
dir->i_mtime = dir->i_ctime = current_time(dir);
mark_inode_dirty(dir);
}
static bool ufs_check_page(struct page *page)
{
struct inode *dir = page->mapping->host;
struct super_block *sb = dir->i_sb;
char *kaddr = page_address(page);
unsigned offs, rec_len;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
unsigned limit = PAGE_SIZE;
const unsigned chunk_mask = UFS_SB(sb)->s_uspi->s_dirblksize - 1;
struct ufs_dir_entry *p;
char *error;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
if ((dir->i_size >> PAGE_SHIFT) == page->index) {
limit = dir->i_size & ~PAGE_MASK;
if (limit & chunk_mask)
goto Ebadsize;
if (!limit)
goto out;
}
for (offs = 0; offs <= limit - UFS_DIR_REC_LEN(1); offs += rec_len) {
p = (struct ufs_dir_entry *)(kaddr + offs);
rec_len = fs16_to_cpu(sb, p->d_reclen);
if (rec_len < UFS_DIR_REC_LEN(1))
goto Eshort;
if (rec_len & 3)
goto Ealign;
if (rec_len < UFS_DIR_REC_LEN(ufs_get_de_namlen(sb, p)))
goto Enamelen;
if (((offs + rec_len - 1) ^ offs) & ~chunk_mask)
goto Espan;
if (fs32_to_cpu(sb, p->d_ino) > (UFS_SB(sb)->s_uspi->s_ipg *
UFS_SB(sb)->s_uspi->s_ncg))
goto Einumber;
}
if (offs != limit)
goto Eend;
out:
SetPageChecked(page);
return true;
/* Too bad, we had an error */
Ebadsize:
ufs_error(sb, "ufs_check_page",
"size of directory #%lu is not a multiple of chunk size",
dir->i_ino
);
goto fail;
Eshort:
error = "rec_len is smaller than minimal";
goto bad_entry;
Ealign:
error = "unaligned directory entry";
goto bad_entry;
Enamelen:
error = "rec_len is too small for name_len";
goto bad_entry;
Espan:
error = "directory entry across blocks";
goto bad_entry;
Einumber:
error = "inode out of bounds";
bad_entry:
ufs_error (sb, "ufs_check_page", "bad entry in directory #%lu: %s - "
"offset=%lu, rec_len=%d, name_len=%d",
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
dir->i_ino, error, (page->index<<PAGE_SHIFT)+offs,
rec_len, ufs_get_de_namlen(sb, p));
goto fail;
Eend:
p = (struct ufs_dir_entry *)(kaddr + offs);
ufs_error(sb, __func__,
"entry in directory #%lu spans the page boundary"
"offset=%lu",
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
dir->i_ino, (page->index<<PAGE_SHIFT)+offs);
fail:
SetPageError(page);
return false;
}
static struct page *ufs_get_page(struct inode *dir, unsigned long n)
{
struct address_space *mapping = dir->i_mapping;
struct page *page = read_mapping_page(mapping, n, NULL);
if (!IS_ERR(page)) {
kmap(page);
if (unlikely(!PageChecked(page))) {
if (!ufs_check_page(page))
goto fail;
}
}
return page;
fail:
ufs_put_page(page);
return ERR_PTR(-EIO);
}
/*
* Return the offset into page `page_nr' of the last valid
* byte in that page, plus one.
*/
static unsigned
ufs_last_byte(struct inode *inode, unsigned long page_nr)
{
unsigned last_byte = inode->i_size;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
last_byte -= page_nr << PAGE_SHIFT;
if (last_byte > PAGE_SIZE)
last_byte = PAGE_SIZE;
return last_byte;
}
static inline struct ufs_dir_entry *
ufs_next_entry(struct super_block *sb, struct ufs_dir_entry *p)
{
return (struct ufs_dir_entry *)((char *)p +
fs16_to_cpu(sb, p->d_reclen));
}
struct ufs_dir_entry *ufs_dotdot(struct inode *dir, struct page **p)
{
struct page *page = ufs_get_page(dir, 0);
struct ufs_dir_entry *de = NULL;
if (!IS_ERR(page)) {
de = ufs_next_entry(dir->i_sb,
(struct ufs_dir_entry *)page_address(page));
*p = page;
}
return de;
}
/*
* ufs_find_entry()
*
* finds an entry in the specified directory with the wanted name. It
* returns the page in which the entry was found, and the entry itself
* (as a parameter - res_dir). Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
struct ufs_dir_entry *ufs_find_entry(struct inode *dir, const struct qstr *qstr,
struct page **res_page)
{
struct super_block *sb = dir->i_sb;
const unsigned char *name = qstr->name;
int namelen = qstr->len;
unsigned reclen = UFS_DIR_REC_LEN(namelen);
unsigned long start, n;
unsigned long npages = dir_pages(dir);
struct page *page = NULL;
struct ufs_inode_info *ui = UFS_I(dir);
struct ufs_dir_entry *de;
UFSD("ENTER, dir_ino %lu, name %s, namlen %u\n", dir->i_ino, name, namelen);
if (npages == 0 || namelen > UFS_MAXNAMLEN)
goto out;
/* OFFSET_CACHE */
*res_page = NULL;
start = ui->i_dir_start_lookup;
if (start >= npages)
start = 0;
n = start;
do {
char *kaddr;
page = ufs_get_page(dir, n);
if (!IS_ERR(page)) {
kaddr = page_address(page);
de = (struct ufs_dir_entry *) kaddr;
kaddr += ufs_last_byte(dir, n) - reclen;
while ((char *) de <= kaddr) {
if (ufs_match(sb, namelen, name, de))
goto found;
de = ufs_next_entry(sb, de);
}
ufs_put_page(page);
}
if (++n >= npages)
n = 0;
} while (n != start);
out:
return NULL;
found:
*res_page = page;
ui->i_dir_start_lookup = n;
return de;
}
/*
* Parent is locked.
*/
int ufs_add_link(struct dentry *dentry, struct inode *inode)
{
struct inode *dir = d_inode(dentry->d_parent);
const unsigned char *name = dentry->d_name.name;
int namelen = dentry->d_name.len;
struct super_block *sb = dir->i_sb;
unsigned reclen = UFS_DIR_REC_LEN(namelen);
const unsigned int chunk_size = UFS_SB(sb)->s_uspi->s_dirblksize;
unsigned short rec_len, name_len;
struct page *page = NULL;
struct ufs_dir_entry *de;
unsigned long npages = dir_pages(dir);
unsigned long n;
char *kaddr;
loff_t pos;
int err;
UFSD("ENTER, name %s, namelen %u\n", name, namelen);
/*
* We take care of directory expansion in the same loop.
* This code plays outside i_size, so it locks the page
* to protect that region.
*/
for (n = 0; n <= npages; n++) {
char *dir_end;
page = ufs_get_page(dir, n);
err = PTR_ERR(page);
if (IS_ERR(page))
goto out;
lock_page(page);
kaddr = page_address(page);
dir_end = kaddr + ufs_last_byte(dir, n);
de = (struct ufs_dir_entry *)kaddr;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
kaddr += PAGE_SIZE - reclen;
while ((char *)de <= kaddr) {
if ((char *)de == dir_end) {
/* We hit i_size */
name_len = 0;
rec_len = chunk_size;
de->d_reclen = cpu_to_fs16(sb, chunk_size);
de->d_ino = 0;
goto got_it;
}
if (de->d_reclen == 0) {
ufs_error(dir->i_sb, __func__,
"zero-length directory entry");
err = -EIO;
goto out_unlock;
}
err = -EEXIST;
if (ufs_match(sb, namelen, name, de))
goto out_unlock;
name_len = UFS_DIR_REC_LEN(ufs_get_de_namlen(sb, de));
rec_len = fs16_to_cpu(sb, de->d_reclen);
if (!de->d_ino && rec_len >= reclen)
goto got_it;
if (rec_len >= name_len + reclen)
goto got_it;
de = (struct ufs_dir_entry *) ((char *) de + rec_len);
}
unlock_page(page);
ufs_put_page(page);
}
BUG();
return -EINVAL;
got_it:
pos = page_offset(page) +
(char*)de - (char*)page_address(page);
err = ufs_prepare_chunk(page, pos, rec_len);
if (err)
goto out_unlock;
if (de->d_ino) {
struct ufs_dir_entry *de1 =
(struct ufs_dir_entry *) ((char *) de + name_len);
de1->d_reclen = cpu_to_fs16(sb, rec_len - name_len);
de->d_reclen = cpu_to_fs16(sb, name_len);
de = de1;
}
ufs_set_de_namlen(sb, de, namelen);
memcpy(de->d_name, name, namelen + 1);
de->d_ino = cpu_to_fs32(sb, inode->i_ino);
ufs_set_de_type(sb, de, inode->i_mode);
err = ufs_commit_chunk(page, pos, rec_len);
dir->i_mtime = dir->i_ctime = current_time(dir);
mark_inode_dirty(dir);
/* OFFSET_CACHE */
out_put:
ufs_put_page(page);
out:
return err;
out_unlock:
unlock_page(page);
goto out_put;
}
static inline unsigned
ufs_validate_entry(struct super_block *sb, char *base,
unsigned offset, unsigned mask)
{
struct ufs_dir_entry *de = (struct ufs_dir_entry*)(base + offset);
struct ufs_dir_entry *p = (struct ufs_dir_entry*)(base + (offset&mask));
while ((char*)p < (char*)de)
p = ufs_next_entry(sb, p);
return (char *)p - base;
}
/*
* This is blatantly stolen from ext2fs
*/
static int
ufs_readdir(struct file *file, struct dir_context *ctx)
{
loff_t pos = ctx->pos;
struct inode *inode = file_inode(file);
struct super_block *sb = inode->i_sb;
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
unsigned int offset = pos & ~PAGE_MASK;
unsigned long n = pos >> PAGE_SHIFT;
unsigned long npages = dir_pages(inode);
unsigned chunk_mask = ~(UFS_SB(sb)->s_uspi->s_dirblksize - 1);
bool need_revalidate = !inode_eq_iversion(inode, file->f_version);
unsigned flags = UFS_SB(sb)->s_flags;
UFSD("BEGIN\n");
if (pos > inode->i_size - UFS_DIR_REC_LEN(1))
return 0;
for ( ; n < npages; n++, offset = 0) {
char *kaddr, *limit;
struct ufs_dir_entry *de;
struct page *page = ufs_get_page(inode, n);
if (IS_ERR(page)) {
ufs_error(sb, __func__,
"bad page in #%lu",
inode->i_ino);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
ctx->pos += PAGE_SIZE - offset;
return -EIO;
}
kaddr = page_address(page);
if (unlikely(need_revalidate)) {
if (offset) {
offset = ufs_validate_entry(sb, kaddr, offset, chunk_mask);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
ctx->pos = (n<<PAGE_SHIFT) + offset;
}
file->f_version = inode_query_iversion(inode);
need_revalidate = false;
}
de = (struct ufs_dir_entry *)(kaddr+offset);
limit = kaddr + ufs_last_byte(inode, n) - UFS_DIR_REC_LEN(1);
for ( ;(char*)de <= limit; de = ufs_next_entry(sb, de)) {
if (de->d_ino) {
unsigned char d_type = DT_UNKNOWN;
UFSD("filldir(%s,%u)\n", de->d_name,
fs32_to_cpu(sb, de->d_ino));
UFSD("namlen %u\n", ufs_get_de_namlen(sb, de));
if ((flags & UFS_DE_MASK) == UFS_DE_44BSD)
d_type = de->d_u.d_44.d_type;
if (!dir_emit(ctx, de->d_name,
ufs_get_de_namlen(sb, de),
fs32_to_cpu(sb, de->d_ino),
d_type)) {
ufs_put_page(page);
return 0;
}
}
ctx->pos += fs16_to_cpu(sb, de->d_reclen);
}
ufs_put_page(page);
}
return 0;
}
/*
* ufs_delete_entry deletes a directory entry by merging it with the
* previous entry.
*/
int ufs_delete_entry(struct inode *inode, struct ufs_dir_entry *dir,
struct page * page)
{
struct super_block *sb = inode->i_sb;
char *kaddr = page_address(page);
unsigned from = ((char*)dir - kaddr) & ~(UFS_SB(sb)->s_uspi->s_dirblksize - 1);
unsigned to = ((char*)dir - kaddr) + fs16_to_cpu(sb, dir->d_reclen);
loff_t pos;
struct ufs_dir_entry *pde = NULL;
struct ufs_dir_entry *de = (struct ufs_dir_entry *) (kaddr + from);
int err;
UFSD("ENTER\n");
UFSD("ino %u, reclen %u, namlen %u, name %s\n",
fs32_to_cpu(sb, de->d_ino),
fs16_to_cpu(sb, de->d_reclen),
ufs_get_de_namlen(sb, de), de->d_name);
while ((char*)de < (char*)dir) {
if (de->d_reclen == 0) {
ufs_error(inode->i_sb, __func__,
"zero-length directory entry");
err = -EIO;
goto out;
}
pde = de;
de = ufs_next_entry(sb, de);
}
if (pde)
from = (char*)pde - (char*)page_address(page);
pos = page_offset(page) + from;
lock_page(page);
err = ufs_prepare_chunk(page, pos, to - from);
BUG_ON(err);
if (pde)
pde->d_reclen = cpu_to_fs16(sb, to - from);
dir->d_ino = 0;
err = ufs_commit_chunk(page, pos, to - from);
inode->i_ctime = inode->i_mtime = current_time(inode);
mark_inode_dirty(inode);
out:
ufs_put_page(page);
UFSD("EXIT\n");
return err;
}
int ufs_make_empty(struct inode * inode, struct inode *dir)
{
struct super_block * sb = dir->i_sb;
struct address_space *mapping = inode->i_mapping;
struct page *page = grab_cache_page(mapping, 0);
const unsigned int chunk_size = UFS_SB(sb)->s_uspi->s_dirblksize;
struct ufs_dir_entry * de;
char *base;
int err;
if (!page)
return -ENOMEM;
err = ufs_prepare_chunk(page, 0, chunk_size);
if (err) {
unlock_page(page);
goto fail;
}
kmap(page);
base = (char*)page_address(page);
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
memset(base, 0, PAGE_SIZE);
de = (struct ufs_dir_entry *) base;
de->d_ino = cpu_to_fs32(sb, inode->i_ino);
ufs_set_de_type(sb, de, inode->i_mode);
ufs_set_de_namlen(sb, de, 1);
de->d_reclen = cpu_to_fs16(sb, UFS_DIR_REC_LEN(1));
strcpy (de->d_name, ".");
de = (struct ufs_dir_entry *)
((char *)de + fs16_to_cpu(sb, de->d_reclen));
de->d_ino = cpu_to_fs32(sb, dir->i_ino);
ufs_set_de_type(sb, de, dir->i_mode);
de->d_reclen = cpu_to_fs16(sb, chunk_size - UFS_DIR_REC_LEN(1));
ufs_set_de_namlen(sb, de, 2);
strcpy (de->d_name, "..");
kunmap(page);
err = ufs_commit_chunk(page, 0, chunk_size);
fail:
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
put_page(page);
return err;
}
/*
* routine to check that the specified directory is empty (for rmdir)
*/
int ufs_empty_dir(struct inode * inode)
{
struct super_block *sb = inode->i_sb;
struct page *page = NULL;
unsigned long i, npages = dir_pages(inode);
for (i = 0; i < npages; i++) {
char *kaddr;
struct ufs_dir_entry *de;
page = ufs_get_page(inode, i);
if (IS_ERR(page))
continue;
kaddr = page_address(page);
de = (struct ufs_dir_entry *)kaddr;
kaddr += ufs_last_byte(inode, i) - UFS_DIR_REC_LEN(1);
while ((char *)de <= kaddr) {
if (de->d_reclen == 0) {
ufs_error(inode->i_sb, __func__,
"zero-length directory entry: "
"kaddr=%p, de=%p\n", kaddr, de);
goto not_empty;
}
if (de->d_ino) {
u16 namelen=ufs_get_de_namlen(sb, de);
/* check for . and .. */
if (de->d_name[0] != '.')
goto not_empty;
if (namelen > 2)
goto not_empty;
if (namelen < 2) {
if (inode->i_ino !=
fs32_to_cpu(sb, de->d_ino))
goto not_empty;
} else if (de->d_name[1] != '.')
goto not_empty;
}
de = ufs_next_entry(sb, de);
}
ufs_put_page(page);
}
return 1;
not_empty:
ufs_put_page(page);
return 0;
}
const struct file_operations ufs_dir_operations = {
.read = generic_read_dir,
.iterate_shared = ufs_readdir,
.fsync = generic_file_fsync,
.llseek = generic_file_llseek,
};