linux/mm/page_vma_mapped.c

317 lines
8.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/mm.h>
#include <linux/rmap.h>
#include <linux/hugetlb.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include "internal.h"
static inline bool not_found(struct page_vma_mapped_walk *pvmw)
{
page_vma_mapped_walk_done(pvmw);
return false;
}
static bool map_pte(struct page_vma_mapped_walk *pvmw)
{
pvmw->pte = pte_offset_map(pvmw->pmd, pvmw->address);
if (!(pvmw->flags & PVMW_SYNC)) {
if (pvmw->flags & PVMW_MIGRATION) {
if (!is_swap_pte(*pvmw->pte))
return false;
} else {
/*
* We get here when we are trying to unmap a private
* device page from the process address space. Such
* page is not CPU accessible and thus is mapped as
* a special swap entry, nonetheless it still does
* count as a valid regular mapping for the page (and
* is accounted as such in page maps count).
*
* So handle this special case as if it was a normal
* page mapping ie lock CPU page table and returns
* true.
*
* For more details on device private memory see HMM
* (include/linux/hmm.h or mm/hmm.c).
*/
if (is_swap_pte(*pvmw->pte)) {
swp_entry_t entry;
/* Handle un-addressable ZONE_DEVICE memory */
entry = pte_to_swp_entry(*pvmw->pte);
mm: device exclusive memory access Some devices require exclusive write access to shared virtual memory (SVM) ranges to perform atomic operations on that memory. This requires CPU page tables to be updated to deny access whilst atomic operations are occurring. In order to do this introduce a new swap entry type (SWP_DEVICE_EXCLUSIVE). When a SVM range needs to be marked for exclusive access by a device all page table mappings for the particular range are replaced with device exclusive swap entries. This causes any CPU access to the page to result in a fault. Faults are resovled by replacing the faulting entry with the original mapping. This results in MMU notifiers being called which a driver uses to update access permissions such as revoking atomic access. After notifiers have been called the device will no longer have exclusive access to the region. Walking of the page tables to find the target pages is handled by get_user_pages() rather than a direct page table walk. A direct page table walk similar to what migrate_vma_collect()/unmap() does could also have been utilised. However this resulted in more code similar in functionality to what get_user_pages() provides as page faulting is required to make the PTEs present and to break COW. [dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()] Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:54:25 +00:00
if (!is_device_private_entry(entry) &&
!is_device_exclusive_entry(entry))
return false;
} else if (!pte_present(*pvmw->pte))
return false;
}
}
pvmw->ptl = pte_lockptr(pvmw->vma->vm_mm, pvmw->pmd);
spin_lock(pvmw->ptl);
return true;
}
/**
* check_pte - check if @pvmw->page is mapped at the @pvmw->pte
* @pvmw: page_vma_mapped_walk struct, includes a pair pte and page for checking
*
* page_vma_mapped_walk() found a place where @pvmw->page is *potentially*
* mapped. check_pte() has to validate this.
*
* pvmw->pte may point to empty PTE, swap PTE or PTE pointing to
* arbitrary page.
*
* If PVMW_MIGRATION flag is set, returns true if @pvmw->pte contains migration
* entry that points to @pvmw->page or any subpage in case of THP.
*
* If PVMW_MIGRATION flag is not set, returns true if pvmw->pte points to
* pvmw->page or any subpage in case of THP.
*
* Otherwise, return false.
*
*/
static bool check_pte(struct page_vma_mapped_walk *pvmw)
{
unsigned long pfn;
if (pvmw->flags & PVMW_MIGRATION) {
swp_entry_t entry;
if (!is_swap_pte(*pvmw->pte))
return false;
entry = pte_to_swp_entry(*pvmw->pte);
mm: device exclusive memory access Some devices require exclusive write access to shared virtual memory (SVM) ranges to perform atomic operations on that memory. This requires CPU page tables to be updated to deny access whilst atomic operations are occurring. In order to do this introduce a new swap entry type (SWP_DEVICE_EXCLUSIVE). When a SVM range needs to be marked for exclusive access by a device all page table mappings for the particular range are replaced with device exclusive swap entries. This causes any CPU access to the page to result in a fault. Faults are resovled by replacing the faulting entry with the original mapping. This results in MMU notifiers being called which a driver uses to update access permissions such as revoking atomic access. After notifiers have been called the device will no longer have exclusive access to the region. Walking of the page tables to find the target pages is handled by get_user_pages() rather than a direct page table walk. A direct page table walk similar to what migrate_vma_collect()/unmap() does could also have been utilised. However this resulted in more code similar in functionality to what get_user_pages() provides as page faulting is required to make the PTEs present and to break COW. [dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()] Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:54:25 +00:00
if (!is_migration_entry(entry) &&
!is_device_exclusive_entry(entry))
return false;
mm: remove special swap entry functions Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:54:06 +00:00
pfn = swp_offset(entry);
} else if (is_swap_pte(*pvmw->pte)) {
swp_entry_t entry;
/* Handle un-addressable ZONE_DEVICE memory */
entry = pte_to_swp_entry(*pvmw->pte);
mm: device exclusive memory access Some devices require exclusive write access to shared virtual memory (SVM) ranges to perform atomic operations on that memory. This requires CPU page tables to be updated to deny access whilst atomic operations are occurring. In order to do this introduce a new swap entry type (SWP_DEVICE_EXCLUSIVE). When a SVM range needs to be marked for exclusive access by a device all page table mappings for the particular range are replaced with device exclusive swap entries. This causes any CPU access to the page to result in a fault. Faults are resovled by replacing the faulting entry with the original mapping. This results in MMU notifiers being called which a driver uses to update access permissions such as revoking atomic access. After notifiers have been called the device will no longer have exclusive access to the region. Walking of the page tables to find the target pages is handled by get_user_pages() rather than a direct page table walk. A direct page table walk similar to what migrate_vma_collect()/unmap() does could also have been utilised. However this resulted in more code similar in functionality to what get_user_pages() provides as page faulting is required to make the PTEs present and to break COW. [dan.carpenter@oracle.com: fix signedness bug in make_device_exclusive_range()] Link: https://lkml.kernel.org/r/YNIz5NVnZ5GiZ3u1@mwanda Link: https://lkml.kernel.org/r/20210616105937.23201-8-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:54:25 +00:00
if (!is_device_private_entry(entry) &&
!is_device_exclusive_entry(entry))
return false;
mm: remove special swap entry functions Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 01:54:06 +00:00
pfn = swp_offset(entry);
} else {
if (!pte_present(*pvmw->pte))
return false;
pfn = pte_pfn(*pvmw->pte);
}
return (pfn - pvmw->pfn) < pvmw->nr_pages;
}
/* Returns true if the two ranges overlap. Careful to not overflow. */
static bool check_pmd(unsigned long pfn, struct page_vma_mapped_walk *pvmw)
{
if ((pfn + HPAGE_PMD_NR - 1) < pvmw->pfn)
return false;
if (pfn > pvmw->pfn + pvmw->nr_pages - 1)
return false;
return true;
}
mm/thp: fix page_vma_mapped_walk() if THP mapped by ptes Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). Crash dumps showed two tail pages of a shmem huge page remained mapped by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end of a long unmapped range; and no page table had yet been allocated for the head of the huge page to be mapped into. Although designed to handle these odd misaligned huge-page-mapped-by-pte cases, page_vma_mapped_walk() falls short by returning false prematurely when !pmd_present or !pud_present or !p4d_present or !pgd_present: there are cases when a huge page may span the boundary, with ptes present in the next. Restructure page_vma_mapped_walk() as a loop to continue in these cases, while keeping its layout much as before. Add a step_forward() helper to advance pvmw->address across those boundaries: originally I tried to use mm's standard p?d_addr_end() macros, but hit the same crash 512 times less often: because of the way redundant levels are folded together, but folded differently in different configurations, it was just too difficult to use them correctly; and step_forward() is simpler anyway. Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25 01:39:26 +00:00
static void step_forward(struct page_vma_mapped_walk *pvmw, unsigned long size)
{
pvmw->address = (pvmw->address + size) & ~(size - 1);
if (!pvmw->address)
pvmw->address = ULONG_MAX;
}
/**
* page_vma_mapped_walk - check if @pvmw->pfn is mapped in @pvmw->vma at
* @pvmw->address
* @pvmw: pointer to struct page_vma_mapped_walk. page, vma, address and flags
* must be set. pmd, pte and ptl must be NULL.
*
* Returns true if the page is mapped in the vma. @pvmw->pmd and @pvmw->pte point
* to relevant page table entries. @pvmw->ptl is locked. @pvmw->address is
* adjusted if needed (for PTE-mapped THPs).
*
* If @pvmw->pmd is set but @pvmw->pte is not, you have found PMD-mapped page
* (usually THP). For PTE-mapped THP, you should run page_vma_mapped_walk() in
* a loop to find all PTEs that map the THP.
*
* For HugeTLB pages, @pvmw->pte is set to the relevant page table entry
* regardless of which page table level the page is mapped at. @pvmw->pmd is
* NULL.
*
* Returns false if there are no more page table entries for the page in
* the vma. @pvmw->ptl is unlocked and @pvmw->pte is unmapped.
*
* If you need to stop the walk before page_vma_mapped_walk() returned false,
* use page_vma_mapped_walk_done(). It will do the housekeeping.
*/
bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw)
{
struct vm_area_struct *vma = pvmw->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long end;
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
mm: page_vma_mapped: ensure pmd is loaded with READ_ONCE outside of lock Loading the pmd without holding the pmd_lock exposes us to races with concurrent updaters of the page tables but, worse still, it also allows the compiler to cache the pmd value in a register and reuse it later on, even if we've performed a READ_ONCE in between and seen a more recent value. In the case of page_vma_mapped_walk, this leads to the following crash when the pmd loaded for the initial pmd_trans_huge check is all zeroes and a subsequent valid table entry is loaded by check_pmd. We then proceed into map_pte, but the compiler re-uses the zero entry inside pte_offset_map, resulting in a junk pointer being installed in pvmw->pte: PC is at check_pte+0x20/0x170 LR is at page_vma_mapped_walk+0x2e0/0x540 [...] Process doio (pid: 2463, stack limit = 0xffff00000f2e8000) Call trace: check_pte+0x20/0x170 page_vma_mapped_walk+0x2e0/0x540 page_mkclean_one+0xac/0x278 rmap_walk_file+0xf0/0x238 rmap_walk+0x64/0xa0 page_mkclean+0x90/0xa8 clear_page_dirty_for_io+0x84/0x2a8 mpage_submit_page+0x34/0x98 mpage_process_page_bufs+0x164/0x170 mpage_prepare_extent_to_map+0x134/0x2b8 ext4_writepages+0x484/0xe30 do_writepages+0x44/0xe8 __filemap_fdatawrite_range+0xbc/0x110 file_write_and_wait_range+0x48/0xd8 ext4_sync_file+0x80/0x4b8 vfs_fsync_range+0x64/0xc0 SyS_msync+0x194/0x1e8 This patch fixes the problem by ensuring that READ_ONCE is used before the initial checks on the pmd, and this value is subsequently used when checking whether or not the pmd is present. pmd_check is removed and the pmd_present check is inlined directly. Link: http://lkml.kernel.org/r/1507222630-5839-1-git-send-email-will.deacon@arm.com Fixes: f27176cfc363 ("mm: convert page_mkclean_one() to use page_vma_mapped_walk()") Signed-off-by: Will Deacon <will.deacon@arm.com> Tested-by: Yury Norov <ynorov@caviumnetworks.com> Tested-by: Richard Ruigrok <rruigrok@codeaurora.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-13 22:58:25 +00:00
pmd_t pmde;
/* The only possible pmd mapping has been handled on last iteration */
if (pvmw->pmd && !pvmw->pte)
return not_found(pvmw);
if (unlikely(is_vm_hugetlb_page(vma))) {
unsigned long size = pvmw->nr_pages * PAGE_SIZE;
/* The only possible mapping was handled on last iteration */
if (pvmw->pte)
return not_found(pvmw);
/* when pud is not present, pte will be NULL */
pvmw->pte = huge_pte_offset(mm, pvmw->address, size);
if (!pvmw->pte)
return false;
pvmw->ptl = huge_pte_lockptr(size_to_hstate(size), mm,
pvmw->pte);
spin_lock(pvmw->ptl);
if (!check_pte(pvmw))
return not_found(pvmw);
return true;
}
end = vma_address_end(pvmw);
if (pvmw->pte)
goto next_pte;
restart:
mm/thp: fix page_vma_mapped_walk() if THP mapped by ptes Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). Crash dumps showed two tail pages of a shmem huge page remained mapped by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end of a long unmapped range; and no page table had yet been allocated for the head of the huge page to be mapped into. Although designed to handle these odd misaligned huge-page-mapped-by-pte cases, page_vma_mapped_walk() falls short by returning false prematurely when !pmd_present or !pud_present or !p4d_present or !pgd_present: there are cases when a huge page may span the boundary, with ptes present in the next. Restructure page_vma_mapped_walk() as a loop to continue in these cases, while keeping its layout much as before. Add a step_forward() helper to advance pvmw->address across those boundaries: originally I tried to use mm's standard p?d_addr_end() macros, but hit the same crash 512 times less often: because of the way redundant levels are folded together, but folded differently in different configurations, it was just too difficult to use them correctly; and step_forward() is simpler anyway. Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25 01:39:26 +00:00
do {
pgd = pgd_offset(mm, pvmw->address);
mm/thp: fix page_vma_mapped_walk() if THP mapped by ptes Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). Crash dumps showed two tail pages of a shmem huge page remained mapped by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end of a long unmapped range; and no page table had yet been allocated for the head of the huge page to be mapped into. Although designed to handle these odd misaligned huge-page-mapped-by-pte cases, page_vma_mapped_walk() falls short by returning false prematurely when !pmd_present or !pud_present or !p4d_present or !pgd_present: there are cases when a huge page may span the boundary, with ptes present in the next. Restructure page_vma_mapped_walk() as a loop to continue in these cases, while keeping its layout much as before. Add a step_forward() helper to advance pvmw->address across those boundaries: originally I tried to use mm's standard p?d_addr_end() macros, but hit the same crash 512 times less often: because of the way redundant levels are folded together, but folded differently in different configurations, it was just too difficult to use them correctly; and step_forward() is simpler anyway. Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25 01:39:26 +00:00
if (!pgd_present(*pgd)) {
step_forward(pvmw, PGDIR_SIZE);
continue;
}
p4d = p4d_offset(pgd, pvmw->address);
mm/thp: fix page_vma_mapped_walk() if THP mapped by ptes Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). Crash dumps showed two tail pages of a shmem huge page remained mapped by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end of a long unmapped range; and no page table had yet been allocated for the head of the huge page to be mapped into. Although designed to handle these odd misaligned huge-page-mapped-by-pte cases, page_vma_mapped_walk() falls short by returning false prematurely when !pmd_present or !pud_present or !p4d_present or !pgd_present: there are cases when a huge page may span the boundary, with ptes present in the next. Restructure page_vma_mapped_walk() as a loop to continue in these cases, while keeping its layout much as before. Add a step_forward() helper to advance pvmw->address across those boundaries: originally I tried to use mm's standard p?d_addr_end() macros, but hit the same crash 512 times less often: because of the way redundant levels are folded together, but folded differently in different configurations, it was just too difficult to use them correctly; and step_forward() is simpler anyway. Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25 01:39:26 +00:00
if (!p4d_present(*p4d)) {
step_forward(pvmw, P4D_SIZE);
continue;
}
pud = pud_offset(p4d, pvmw->address);
mm/thp: fix page_vma_mapped_walk() if THP mapped by ptes Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). Crash dumps showed two tail pages of a shmem huge page remained mapped by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end of a long unmapped range; and no page table had yet been allocated for the head of the huge page to be mapped into. Although designed to handle these odd misaligned huge-page-mapped-by-pte cases, page_vma_mapped_walk() falls short by returning false prematurely when !pmd_present or !pud_present or !p4d_present or !pgd_present: there are cases when a huge page may span the boundary, with ptes present in the next. Restructure page_vma_mapped_walk() as a loop to continue in these cases, while keeping its layout much as before. Add a step_forward() helper to advance pvmw->address across those boundaries: originally I tried to use mm's standard p?d_addr_end() macros, but hit the same crash 512 times less often: because of the way redundant levels are folded together, but folded differently in different configurations, it was just too difficult to use them correctly; and step_forward() is simpler anyway. Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25 01:39:26 +00:00
if (!pud_present(*pud)) {
step_forward(pvmw, PUD_SIZE);
continue;
}
pvmw->pmd = pmd_offset(pud, pvmw->address);
mm/thp: try_to_unmap() use TTU_SYNC for safe splitting Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE (!unmap_success): with dump_page() showing mapcount:1, but then its raw struct page output showing _mapcount ffffffff i.e. mapcount 0. And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed, it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)), and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG(): all indicative of some mapcount difficulty in development here perhaps. But the !CONFIG_DEBUG_VM path handles the failures correctly and silently. I believe the problem is that once a racing unmap has cleared pte or pmd, try_to_unmap_one() may skip taking the page table lock, and emerge from try_to_unmap() before the racing task has reached decrementing mapcount. Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding TTU_SYNC to the options, and passing that from unmap_page(). When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same for both: the slight overhead added should rarely matter, except perhaps if splitting sparsely-populated multiply-mapped shmem. Once confident that bugs are fixed, TTU_SYNC here can be removed, and the race tolerated. Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com Fixes: fec89c109f3a ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 01:23:53 +00:00
/*
* Make sure the pmd value isn't cached in a register by the
* compiler and used as a stale value after we've observed a
* subsequent update.
mm/thp: try_to_unmap() use TTU_SYNC for safe splitting Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE (!unmap_success): with dump_page() showing mapcount:1, but then its raw struct page output showing _mapcount ffffffff i.e. mapcount 0. And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed, it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)), and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG(): all indicative of some mapcount difficulty in development here perhaps. But the !CONFIG_DEBUG_VM path handles the failures correctly and silently. I believe the problem is that once a racing unmap has cleared pte or pmd, try_to_unmap_one() may skip taking the page table lock, and emerge from try_to_unmap() before the racing task has reached decrementing mapcount. Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding TTU_SYNC to the options, and passing that from unmap_page(). When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same for both: the slight overhead added should rarely matter, except perhaps if splitting sparsely-populated multiply-mapped shmem. Once confident that bugs are fixed, TTU_SYNC here can be removed, and the race tolerated. Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com Fixes: fec89c109f3a ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 01:23:53 +00:00
*/
pmde = READ_ONCE(*pvmw->pmd);
if (pmd_trans_huge(pmde) || is_pmd_migration_entry(pmde)) {
pvmw->ptl = pmd_lock(mm, pvmw->pmd);
pmde = *pvmw->pmd;
if (likely(pmd_trans_huge(pmde))) {
if (pvmw->flags & PVMW_MIGRATION)
return not_found(pvmw);
if (!check_pmd(pmd_pfn(pmde), pvmw))
return not_found(pvmw);
return true;
}
if (!pmd_present(pmde)) {
swp_entry_t entry;
if (!thp_migration_supported() ||
!(pvmw->flags & PVMW_MIGRATION))
return not_found(pvmw);
entry = pmd_to_swp_entry(pmde);
if (!is_migration_entry(entry) ||
!check_pmd(swp_offset(entry), pvmw))
return not_found(pvmw);
return true;
}
/* THP pmd was split under us: handle on pte level */
spin_unlock(pvmw->ptl);
pvmw->ptl = NULL;
} else if (!pmd_present(pmde)) {
/*
* If PVMW_SYNC, take and drop THP pmd lock so that we
* cannot return prematurely, while zap_huge_pmd() has
* cleared *pmd but not decremented compound_mapcount().
*/
if ((pvmw->flags & PVMW_SYNC) &&
transparent_hugepage_active(vma) &&
(pvmw->nr_pages >= HPAGE_PMD_NR)) {
spinlock_t *ptl = pmd_lock(mm, pvmw->pmd);
mm/thp: try_to_unmap() use TTU_SYNC for safe splitting Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE (!unmap_success): with dump_page() showing mapcount:1, but then its raw struct page output showing _mapcount ffffffff i.e. mapcount 0. And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed, it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)), and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG(): all indicative of some mapcount difficulty in development here perhaps. But the !CONFIG_DEBUG_VM path handles the failures correctly and silently. I believe the problem is that once a racing unmap has cleared pte or pmd, try_to_unmap_one() may skip taking the page table lock, and emerge from try_to_unmap() before the racing task has reached decrementing mapcount. Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding TTU_SYNC to the options, and passing that from unmap_page(). When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same for both: the slight overhead added should rarely matter, except perhaps if splitting sparsely-populated multiply-mapped shmem. Once confident that bugs are fixed, TTU_SYNC here can be removed, and the race tolerated. Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com Fixes: fec89c109f3a ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 01:23:53 +00:00
spin_unlock(ptl);
}
mm/thp: fix page_vma_mapped_walk() if THP mapped by ptes Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). Crash dumps showed two tail pages of a shmem huge page remained mapped by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end of a long unmapped range; and no page table had yet been allocated for the head of the huge page to be mapped into. Although designed to handle these odd misaligned huge-page-mapped-by-pte cases, page_vma_mapped_walk() falls short by returning false prematurely when !pmd_present or !pud_present or !p4d_present or !pgd_present: there are cases when a huge page may span the boundary, with ptes present in the next. Restructure page_vma_mapped_walk() as a loop to continue in these cases, while keeping its layout much as before. Add a step_forward() helper to advance pvmw->address across those boundaries: originally I tried to use mm's standard p?d_addr_end() macros, but hit the same crash 512 times less often: because of the way redundant levels are folded together, but folded differently in different configurations, it was just too difficult to use them correctly; and step_forward() is simpler anyway. Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25 01:39:26 +00:00
step_forward(pvmw, PMD_SIZE);
continue;
mm/thp: try_to_unmap() use TTU_SYNC for safe splitting Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE (!unmap_success): with dump_page() showing mapcount:1, but then its raw struct page output showing _mapcount ffffffff i.e. mapcount 0. And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed, it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)), and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG(): all indicative of some mapcount difficulty in development here perhaps. But the !CONFIG_DEBUG_VM path handles the failures correctly and silently. I believe the problem is that once a racing unmap has cleared pte or pmd, try_to_unmap_one() may skip taking the page table lock, and emerge from try_to_unmap() before the racing task has reached decrementing mapcount. Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding TTU_SYNC to the options, and passing that from unmap_page(). When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same for both: the slight overhead added should rarely matter, except perhaps if splitting sparsely-populated multiply-mapped shmem. Once confident that bugs are fixed, TTU_SYNC here can be removed, and the race tolerated. Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com Fixes: fec89c109f3a ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers") Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 01:23:53 +00:00
}
if (!map_pte(pvmw))
goto next_pte;
this_pte:
if (check_pte(pvmw))
return true;
mm: fix page_vma_mapped_walk() for ksm pages Doug Smythies reports oops with KSM in this backtrace, I've been seeing the same: page_vma_mapped_walk+0xe6/0x5b0 page_referenced_one+0x91/0x1a0 rmap_walk_ksm+0x100/0x190 rmap_walk+0x4f/0x60 page_referenced+0x149/0x170 shrink_active_list+0x1c2/0x430 shrink_node_memcg+0x67a/0x7a0 shrink_node+0xe1/0x320 kswapd+0x34b/0x720 Just as observed in commit 4b0ece6fa016 ("mm: migrate: fix remove_migration_pte() for ksm pages"), you cannot use page->index calculations on ksm pages. page_vma_mapped_walk() is relying on __vma_address(), where a ksm page can lead it off the end of the page table, and into whatever nonsense is in the next page, ending as an oops inside check_pte()'s pte_page(). KSM tells page_vma_mapped_walk() exactly where to look for the page, it does not need any page->index calculation: and that's so also for all the normal and file and anon pages - just not for THPs and their subpages. Get out early in most cases: instead of a PageKsm test, move down the earlier not-THP-page test, as suggested by Kirill. I'm also slightly worried that this loop can stray into other vmas, so added a vm_end test to prevent surprises; though I have not imagined anything worse than a very contrived case, in which a page mlocked in the next vma might be reclaimed because it is not mlocked in this vma. Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1704031104400.1118@eggly.anvils Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Doug Smythies <dsmythies@telus.net> Tested-by: Doug Smythies <dsmythies@telus.net> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-04-07 23:04:39 +00:00
next_pte:
do {
pvmw->address += PAGE_SIZE;
mm/thp: fix vma_address() if virtual address below file offset Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). When that BUG() was changed to a WARN(), it would later crash on the VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma) in mm/internal.h:vma_address(), used by rmap_walk_file() for try_to_unmap(). vma_address() is usually correct, but there's a wraparound case when the vm_start address is unusually low, but vm_pgoff not so low: vma_address() chooses max(start, vma->vm_start), but that decides on the wrong address, because start has become almost ULONG_MAX. Rewrite vma_address() to be more careful about vm_pgoff; move the VM_BUG_ON_VMA() out of it, returning -EFAULT for errors, so that it can be safely used from page_mapped_in_vma() and page_address_in_vma() too. Add vma_address_end() to apply similar care to end address calculation, in page_vma_mapped_walk() and page_mkclean_one() and try_to_unmap_one(); though it raises a question of whether callers would do better to supply pvmw->end to page_vma_mapped_walk() - I chose not, for a smaller patch. An irritation is that their apparent generality breaks down on KSM pages, which cannot be located by the page->index that page_to_pgoff() uses: as commit 4b0ece6fa016 ("mm: migrate: fix remove_migration_pte() for ksm pages") once discovered. I dithered over the best thing to do about that, and have ended up with a VM_BUG_ON_PAGE(PageKsm) in both vma_address() and vma_address_end(); though the only place in danger of using it on them was try_to_unmap_one(). Sidenote: vma_address() and vma_address_end() now use compound_nr() on a head page, instead of thp_size(): to make the right calculation on a hugetlbfs page, whether or not THPs are configured. try_to_unmap() is used on hugetlbfs pages, but perhaps the wrong calculation never mattered. Link: https://lkml.kernel.org/r/caf1c1a3-7cfb-7f8f-1beb-ba816e932825@google.com Fixes: a8fa41ad2f6f ("mm, rmap: check all VMAs that PTE-mapped THP can be part of") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 01:23:56 +00:00
if (pvmw->address >= end)
return not_found(pvmw);
/* Did we cross page table boundary? */
if ((pvmw->address & (PMD_SIZE - PAGE_SIZE)) == 0) {
if (pvmw->ptl) {
spin_unlock(pvmw->ptl);
pvmw->ptl = NULL;
}
pte_unmap(pvmw->pte);
pvmw->pte = NULL;
goto restart;
}
pvmw->pte++;
if ((pvmw->flags & PVMW_SYNC) && !pvmw->ptl) {
pvmw->ptl = pte_lockptr(mm, pvmw->pmd);
spin_lock(pvmw->ptl);
}
} while (pte_none(*pvmw->pte));
if (!pvmw->ptl) {
pvmw->ptl = pte_lockptr(mm, pvmw->pmd);
spin_lock(pvmw->ptl);
}
goto this_pte;
mm/thp: fix page_vma_mapped_walk() if THP mapped by ptes Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). Crash dumps showed two tail pages of a shmem huge page remained mapped by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end of a long unmapped range; and no page table had yet been allocated for the head of the huge page to be mapped into. Although designed to handle these odd misaligned huge-page-mapped-by-pte cases, page_vma_mapped_walk() falls short by returning false prematurely when !pmd_present or !pud_present or !p4d_present or !pgd_present: there are cases when a huge page may span the boundary, with ptes present in the next. Restructure page_vma_mapped_walk() as a loop to continue in these cases, while keeping its layout much as before. Add a step_forward() helper to advance pvmw->address across those boundaries: originally I tried to use mm's standard p?d_addr_end() macros, but hit the same crash 512 times less often: because of the way redundant levels are folded together, but folded differently in different configurations, it was just too difficult to use them correctly; and step_forward() is simpler anyway. Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com Fixes: ace71a19cec5 ("mm: introduce page_vma_mapped_walk()") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Will Deacon <will@kernel.org> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-25 01:39:26 +00:00
} while (pvmw->address < end);
return false;
}
/**
* page_mapped_in_vma - check whether a page is really mapped in a VMA
* @page: the page to test
* @vma: the VMA to test
*
* Returns 1 if the page is mapped into the page tables of the VMA, 0
* if the page is not mapped into the page tables of this VMA. Only
* valid for normal file or anonymous VMAs.
*/
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
{
struct page_vma_mapped_walk pvmw = {
.pfn = page_to_pfn(page),
.nr_pages = 1,
.vma = vma,
.flags = PVMW_SYNC,
};
mm/thp: fix vma_address() if virtual address below file offset Running certain tests with a DEBUG_VM kernel would crash within hours, on the total_mapcount BUG() in split_huge_page_to_list(), while trying to free up some memory by punching a hole in a shmem huge page: split's try_to_unmap() was unable to find all the mappings of the page (which, on a !DEBUG_VM kernel, would then keep the huge page pinned in memory). When that BUG() was changed to a WARN(), it would later crash on the VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma) in mm/internal.h:vma_address(), used by rmap_walk_file() for try_to_unmap(). vma_address() is usually correct, but there's a wraparound case when the vm_start address is unusually low, but vm_pgoff not so low: vma_address() chooses max(start, vma->vm_start), but that decides on the wrong address, because start has become almost ULONG_MAX. Rewrite vma_address() to be more careful about vm_pgoff; move the VM_BUG_ON_VMA() out of it, returning -EFAULT for errors, so that it can be safely used from page_mapped_in_vma() and page_address_in_vma() too. Add vma_address_end() to apply similar care to end address calculation, in page_vma_mapped_walk() and page_mkclean_one() and try_to_unmap_one(); though it raises a question of whether callers would do better to supply pvmw->end to page_vma_mapped_walk() - I chose not, for a smaller patch. An irritation is that their apparent generality breaks down on KSM pages, which cannot be located by the page->index that page_to_pgoff() uses: as commit 4b0ece6fa016 ("mm: migrate: fix remove_migration_pte() for ksm pages") once discovered. I dithered over the best thing to do about that, and have ended up with a VM_BUG_ON_PAGE(PageKsm) in both vma_address() and vma_address_end(); though the only place in danger of using it on them was try_to_unmap_one(). Sidenote: vma_address() and vma_address_end() now use compound_nr() on a head page, instead of thp_size(): to make the right calculation on a hugetlbfs page, whether or not THPs are configured. try_to_unmap() is used on hugetlbfs pages, but perhaps the wrong calculation never mattered. Link: https://lkml.kernel.org/r/caf1c1a3-7cfb-7f8f-1beb-ba816e932825@google.com Fixes: a8fa41ad2f6f ("mm, rmap: check all VMAs that PTE-mapped THP can be part of") Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Jue Wang <juew@google.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Wang Yugui <wangyugui@e16-tech.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16 01:23:56 +00:00
pvmw.address = vma_address(page, vma);
if (pvmw.address == -EFAULT)
return 0;
if (!page_vma_mapped_walk(&pvmw))
return 0;
page_vma_mapped_walk_done(&pvmw);
return 1;
}