linux/drivers/media/video/em28xx/em28xx-input.c

560 lines
14 KiB
C
Raw Normal View History

/*
handle em28xx IR remotes via linux kernel input layer.
Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it>
Markus Rechberger <mrechberger@gmail.com>
Mauro Carvalho Chehab <mchehab@infradead.org>
Sascha Sommer <saschasommer@freenet.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/usb.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include "em28xx.h"
#define EM28XX_SNAPSHOT_KEY KEY_CAMERA
#define EM28XX_SBUTTON_QUERY_INTERVAL 500
#define EM28XX_R0C_USBSUSP_SNAPSHOT 0x20
static unsigned int ir_debug;
module_param(ir_debug, int, 0644);
MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]");
#define MODULE_NAME "em28xx"
#define i2cdprintk(fmt, arg...) \
if (ir_debug) { \
printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
}
#define dprintk(fmt, arg...) \
if (ir_debug) { \
printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \
}
/**********************************************************
Polling structure used by em28xx IR's
**********************************************************/
struct em28xx_ir_poll_result {
unsigned int toggle_bit:1;
unsigned int read_count:7;
u8 rc_address;
u8 rc_data[4]; /* 1 byte on em2860/2880, 4 on em2874 */
};
struct em28xx_IR {
struct em28xx *dev;
struct rc_dev *rc;
char name[32];
char phys[32];
/* poll external decoder */
int polling;
struct delayed_work work;
unsigned int full_code:1;
unsigned int last_readcount;
int (*get_key)(struct em28xx_IR *, struct em28xx_ir_poll_result *);
};
/**********************************************************
I2C IR based get keycodes - should be used with ir-kbd-i2c
**********************************************************/
int em28xx_get_key_terratec(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
{
unsigned char b;
/* poll IR chip */
if (1 != i2c_master_recv(ir->c, &b, 1)) {
i2cdprintk("read error\n");
return -EIO;
}
/* it seems that 0xFE indicates that a button is still hold
down, while 0xff indicates that no button is hold
down. 0xfe sequences are sometimes interrupted by 0xFF */
i2cdprintk("key %02x\n", b);
if (b == 0xff)
return 0;
if (b == 0xfe)
/* keep old data */
return 1;
*ir_key = b;
*ir_raw = b;
return 1;
}
int em28xx_get_key_em_haup(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
{
unsigned char buf[2];
u16 code;
int size;
/* poll IR chip */
size = i2c_master_recv(ir->c, buf, sizeof(buf));
if (size != 2)
return -EIO;
/* Does eliminate repeated parity code */
if (buf[1] == 0xff)
return 0;
ir->old = buf[1];
/*
* Rearranges bits to the right order.
* The bit order were determined experimentally by using
* The original Hauppauge Grey IR and another RC5 that uses addr=0x08
* The RC5 code has 14 bits, but we've experimentally determined
* the meaning for only 11 bits.
* So, the code translation is not complete. Yet, it is enough to
* work with the provided RC5 IR.
*/
code =
((buf[0] & 0x01) ? 0x0020 : 0) | /* 0010 0000 */
((buf[0] & 0x02) ? 0x0010 : 0) | /* 0001 0000 */
((buf[0] & 0x04) ? 0x0008 : 0) | /* 0000 1000 */
((buf[0] & 0x08) ? 0x0004 : 0) | /* 0000 0100 */
((buf[0] & 0x10) ? 0x0002 : 0) | /* 0000 0010 */
((buf[0] & 0x20) ? 0x0001 : 0) | /* 0000 0001 */
((buf[1] & 0x08) ? 0x1000 : 0) | /* 0001 0000 */
((buf[1] & 0x10) ? 0x0800 : 0) | /* 0000 1000 */
((buf[1] & 0x20) ? 0x0400 : 0) | /* 0000 0100 */
((buf[1] & 0x40) ? 0x0200 : 0) | /* 0000 0010 */
((buf[1] & 0x80) ? 0x0100 : 0); /* 0000 0001 */
i2cdprintk("ir hauppauge (em2840): code=0x%02x (rcv=0x%02x%02x)\n",
code, buf[1], buf[0]);
/* return key */
*ir_key = code;
*ir_raw = code;
return 1;
}
int em28xx_get_key_pinnacle_usb_grey(struct IR_i2c *ir, u32 *ir_key,
u32 *ir_raw)
{
unsigned char buf[3];
/* poll IR chip */
if (3 != i2c_master_recv(ir->c, buf, 3)) {
i2cdprintk("read error\n");
return -EIO;
}
i2cdprintk("key %02x\n", buf[2]&0x3f);
if (buf[0] != 0x00)
return 0;
*ir_key = buf[2]&0x3f;
*ir_raw = buf[2]&0x3f;
return 1;
}
int em28xx_get_key_winfast_usbii_deluxe(struct IR_i2c *ir, u32 *ir_key, u32 *ir_raw)
{
unsigned char subaddr, keydetect, key;
struct i2c_msg msg[] = { { .addr = ir->c->addr, .flags = 0, .buf = &subaddr, .len = 1},
{ .addr = ir->c->addr, .flags = I2C_M_RD, .buf = &keydetect, .len = 1} };
subaddr = 0x10;
if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
i2cdprintk("read error\n");
return -EIO;
}
if (keydetect == 0x00)
return 0;
subaddr = 0x00;
msg[1].buf = &key;
if (2 != i2c_transfer(ir->c->adapter, msg, 2)) {
i2cdprintk("read error\n");
return -EIO;
}
if (key == 0x00)
return 0;
*ir_key = key;
*ir_raw = key;
return 1;
}
/**********************************************************
Poll based get keycode functions
**********************************************************/
/* This is for the em2860/em2880 */
static int default_polling_getkey(struct em28xx_IR *ir,
struct em28xx_ir_poll_result *poll_result)
{
struct em28xx *dev = ir->dev;
int rc;
u8 msg[3] = { 0, 0, 0 };
/* Read key toggle, brand, and key code
on registers 0x45, 0x46 and 0x47
*/
rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR,
msg, sizeof(msg));
if (rc < 0)
return rc;
/* Infrared toggle (Reg 0x45[7]) */
poll_result->toggle_bit = (msg[0] >> 7);
/* Infrared read count (Reg 0x45[6:0] */
poll_result->read_count = (msg[0] & 0x7f);
/* Remote Control Address (Reg 0x46) */
poll_result->rc_address = msg[1];
/* Remote Control Data (Reg 0x47) */
poll_result->rc_data[0] = msg[2];
return 0;
}
static int em2874_polling_getkey(struct em28xx_IR *ir,
struct em28xx_ir_poll_result *poll_result)
{
struct em28xx *dev = ir->dev;
int rc;
u8 msg[5] = { 0, 0, 0, 0, 0 };
/* Read key toggle, brand, and key code
on registers 0x51-55
*/
rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR,
msg, sizeof(msg));
if (rc < 0)
return rc;
/* Infrared toggle (Reg 0x51[7]) */
poll_result->toggle_bit = (msg[0] >> 7);
/* Infrared read count (Reg 0x51[6:0] */
poll_result->read_count = (msg[0] & 0x7f);
/* Remote Control Address (Reg 0x52) */
poll_result->rc_address = msg[1];
/* Remote Control Data (Reg 0x53-55) */
poll_result->rc_data[0] = msg[2];
poll_result->rc_data[1] = msg[3];
poll_result->rc_data[2] = msg[4];
return 0;
}
/**********************************************************
Polling code for em28xx
**********************************************************/
static void em28xx_ir_handle_key(struct em28xx_IR *ir)
{
int result;
struct em28xx_ir_poll_result poll_result;
/* read the registers containing the IR status */
result = ir->get_key(ir, &poll_result);
if (unlikely(result < 0)) {
dprintk("ir->get_key() failed %d\n", result);
return;
}
if (unlikely(poll_result.read_count != ir->last_readcount)) {
dprintk("%s: toggle: %d, count: %d, key 0x%02x%02x\n", __func__,
poll_result.toggle_bit, poll_result.read_count,
poll_result.rc_address, poll_result.rc_data[0]);
if (ir->full_code)
rc_keydown(ir->rc,
poll_result.rc_address << 8 |
poll_result.rc_data[0],
poll_result.toggle_bit);
else
rc_keydown(ir->rc,
poll_result.rc_data[0],
poll_result.toggle_bit);
if (ir->dev->chip_id == CHIP_ID_EM2874)
/* The em2874 clears the readcount field every time the
register is read. The em2860/2880 datasheet says that it
is supposed to clear the readcount, but it doesn't. So with
the em2874, we are looking for a non-zero read count as
opposed to a readcount that is incrementing */
ir->last_readcount = 0;
else
ir->last_readcount = poll_result.read_count;
}
}
static void em28xx_ir_work(struct work_struct *work)
{
struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work);
em28xx_ir_handle_key(ir);
schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling));
}
static int em28xx_ir_start(struct rc_dev *rc)
{
struct em28xx_IR *ir = rc->priv;
INIT_DELAYED_WORK(&ir->work, em28xx_ir_work);
schedule_delayed_work(&ir->work, 0);
return 0;
}
static void em28xx_ir_stop(struct rc_dev *rc)
{
struct em28xx_IR *ir = rc->priv;
cancel_delayed_work_sync(&ir->work);
}
int em28xx_ir_change_protocol(struct rc_dev *rc_dev, u64 rc_type)
{
int rc = 0;
struct em28xx_IR *ir = rc_dev->priv;
struct em28xx *dev = ir->dev;
u8 ir_config = EM2874_IR_RC5;
/* Adjust xclk based o IR table for RC5/NEC tables */
if (rc_type == RC_TYPE_RC5) {
dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE;
ir->full_code = 1;
} else if (rc_type == RC_TYPE_NEC) {
dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE;
ir_config = EM2874_IR_NEC;
ir->full_code = 1;
} else if (rc_type != RC_TYPE_UNKNOWN)
rc = -EINVAL;
em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk,
EM28XX_XCLK_IR_RC5_MODE);
/* Setup the proper handler based on the chip */
switch (dev->chip_id) {
case CHIP_ID_EM2860:
case CHIP_ID_EM2883:
ir->get_key = default_polling_getkey;
break;
case CHIP_ID_EM2874:
ir->get_key = em2874_polling_getkey;
em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1);
break;
default:
printk("Unrecognized em28xx chip id: IR not supported\n");
rc = -EINVAL;
}
return rc;
}
int em28xx_ir_init(struct em28xx *dev)
{
struct em28xx_IR *ir;
struct rc_dev *rc;
int err = -ENOMEM;
if (dev->board.ir_codes == NULL) {
/* No remote control support */
return 0;
}
ir = kzalloc(sizeof(*ir), GFP_KERNEL);
rc = rc_allocate_device();
if (!ir || !rc)
goto err_out_free;
/* record handles to ourself */
ir->dev = dev;
dev->ir = ir;
ir->rc = rc;
/*
* em2874 supports more protocols. For now, let's just announce
* the two protocols that were already tested
*/
rc->allowed_protos = RC_TYPE_RC5 | RC_TYPE_NEC;
rc->priv = ir;
rc->change_protocol = em28xx_ir_change_protocol;
rc->open = em28xx_ir_start;
rc->close = em28xx_ir_stop;
/* By default, keep protocol field untouched */
err = em28xx_ir_change_protocol(rc, RC_TYPE_UNKNOWN);
if (err)
goto err_out_free;
/* This is how often we ask the chip for IR information */
ir->polling = 100; /* ms */
/* init input device */
snprintf(ir->name, sizeof(ir->name), "em28xx IR (%s)",
dev->name);
usb_make_path(dev->udev, ir->phys, sizeof(ir->phys));
strlcat(ir->phys, "/input0", sizeof(ir->phys));
rc->input_name = ir->name;
rc->input_phys = ir->phys;
rc->input_id.bustype = BUS_USB;
rc->input_id.version = 1;
rc->input_id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
rc->input_id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
rc->dev.parent = &dev->udev->dev;
rc->map_name = dev->board.ir_codes;
rc->driver_name = MODULE_NAME;
/* all done */
err = rc_register_device(rc);
if (err)
goto err_out_stop;
return 0;
err_out_stop:
dev->ir = NULL;
err_out_free:
rc_free_device(rc);
kfree(ir);
return err;
}
int em28xx_ir_fini(struct em28xx *dev)
{
struct em28xx_IR *ir = dev->ir;
/* skip detach on non attached boards */
if (!ir)
return 0;
em28xx_ir_stop(ir->rc);
rc_unregister_device(ir->rc);
kfree(ir);
/* done */
dev->ir = NULL;
return 0;
}
/**********************************************************
Handle Webcam snapshot button
**********************************************************/
static void em28xx_query_sbutton(struct work_struct *work)
{
/* Poll the register and see if the button is depressed */
struct em28xx *dev =
container_of(work, struct em28xx, sbutton_query_work.work);
int ret;
ret = em28xx_read_reg(dev, EM28XX_R0C_USBSUSP);
if (ret & EM28XX_R0C_USBSUSP_SNAPSHOT) {
u8 cleared;
/* Button is depressed, clear the register */
cleared = ((u8) ret) & ~EM28XX_R0C_USBSUSP_SNAPSHOT;
em28xx_write_regs(dev, EM28XX_R0C_USBSUSP, &cleared, 1);
/* Not emulate the keypress */
input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
1);
/* Now unpress the key */
input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY,
0);
}
/* Schedule next poll */
schedule_delayed_work(&dev->sbutton_query_work,
msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
}
void em28xx_register_snapshot_button(struct em28xx *dev)
{
struct input_dev *input_dev;
int err;
em28xx_info("Registering snapshot button...\n");
input_dev = input_allocate_device();
if (!input_dev) {
em28xx_errdev("input_allocate_device failed\n");
return;
}
usb_make_path(dev->udev, dev->snapshot_button_path,
sizeof(dev->snapshot_button_path));
strlcat(dev->snapshot_button_path, "/sbutton",
sizeof(dev->snapshot_button_path));
INIT_DELAYED_WORK(&dev->sbutton_query_work, em28xx_query_sbutton);
input_dev->name = "em28xx snapshot button";
input_dev->phys = dev->snapshot_button_path;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP);
set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit);
input_dev->keycodesize = 0;
input_dev->keycodemax = 0;
input_dev->id.bustype = BUS_USB;
input_dev->id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor);
input_dev->id.product = le16_to_cpu(dev->udev->descriptor.idProduct);
input_dev->id.version = 1;
input_dev->dev.parent = &dev->udev->dev;
err = input_register_device(input_dev);
if (err) {
em28xx_errdev("input_register_device failed\n");
input_free_device(input_dev);
return;
}
dev->sbutton_input_dev = input_dev;
schedule_delayed_work(&dev->sbutton_query_work,
msecs_to_jiffies(EM28XX_SBUTTON_QUERY_INTERVAL));
return;
}
void em28xx_deregister_snapshot_button(struct em28xx *dev)
{
if (dev->sbutton_input_dev != NULL) {
em28xx_info("Deregistering snapshot button\n");
cancel_delayed_work_sync(&dev->sbutton_query_work);
input_unregister_device(dev->sbutton_input_dev);
dev->sbutton_input_dev = NULL;
}
return;
}