linux/drivers/mtd/devices/st_spi_fsm.c

2172 lines
58 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
*
* Author: Angus Clark <angus.clark@st.com>
*
* Copyright (C) 2010-2014 STMicroelectronics Limited
*
* JEDEC probe based on drivers/mtd/devices/m25p80.c
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/platform_device.h>
#include <linux/mfd/syscon.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/clk.h>
#include "serial_flash_cmds.h"
/*
* FSM SPI Controller Registers
*/
#define SPI_CLOCKDIV 0x0010
#define SPI_MODESELECT 0x0018
#define SPI_CONFIGDATA 0x0020
#define SPI_STA_MODE_CHANGE 0x0028
#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
#define SPI_FAST_SEQ_ADD1 0x0104
#define SPI_FAST_SEQ_ADD2 0x0108
#define SPI_FAST_SEQ_ADD_CFG 0x010c
#define SPI_FAST_SEQ_OPC1 0x0110
#define SPI_FAST_SEQ_OPC2 0x0114
#define SPI_FAST_SEQ_OPC3 0x0118
#define SPI_FAST_SEQ_OPC4 0x011c
#define SPI_FAST_SEQ_OPC5 0x0120
#define SPI_MODE_BITS 0x0124
#define SPI_DUMMY_BITS 0x0128
#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
#define SPI_FAST_SEQ_1 0x0130
#define SPI_FAST_SEQ_2 0x0134
#define SPI_FAST_SEQ_3 0x0138
#define SPI_FAST_SEQ_4 0x013c
#define SPI_FAST_SEQ_CFG 0x0140
#define SPI_FAST_SEQ_STA 0x0144
#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
#define SPI_PROGRAM_ERASE_TIME 0x0158
#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
#define SPI_STATUS_WR_TIME_REG 0x0164
#define SPI_FAST_SEQ_DATA_REG 0x0300
/*
* Register: SPI_MODESELECT
*/
#define SPI_MODESELECT_CONTIG 0x01
#define SPI_MODESELECT_FASTREAD 0x02
#define SPI_MODESELECT_DUALIO 0x04
#define SPI_MODESELECT_FSM 0x08
#define SPI_MODESELECT_QUADBOOT 0x10
/*
* Register: SPI_CONFIGDATA
*/
#define SPI_CFG_DEVICE_ST 0x1
#define SPI_CFG_DEVICE_ATMEL 0x4
#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
/*
* Register: SPI_FAST_SEQ_TRANSFER_SIZE
*/
#define TRANSFER_SIZE(x) ((x) * 8)
/*
* Register: SPI_FAST_SEQ_ADD_CFG
*/
#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
#define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
#define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
#define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
/*
* Register: SPI_FAST_SEQ_n
*/
#define SEQ_OPC_OPCODE(x) ((x) << 0)
#define SEQ_OPC_CYCLES(x) ((x) << 8)
#define SEQ_OPC_PADS_1 (0x0 << 14)
#define SEQ_OPC_PADS_2 (0x1 << 14)
#define SEQ_OPC_PADS_4 (0x3 << 14)
#define SEQ_OPC_CSDEASSERT (1 << 16)
/*
* Register: SPI_FAST_SEQ_CFG
*/
#define SEQ_CFG_STARTSEQ (1 << 0)
#define SEQ_CFG_SWRESET (1 << 5)
#define SEQ_CFG_CSDEASSERT (1 << 6)
#define SEQ_CFG_READNOTWRITE (1 << 7)
#define SEQ_CFG_ERASE (1 << 8)
#define SEQ_CFG_PADS_1 (0x0 << 16)
#define SEQ_CFG_PADS_2 (0x1 << 16)
#define SEQ_CFG_PADS_4 (0x3 << 16)
/*
* Register: SPI_MODE_BITS
*/
#define MODE_DATA(x) (x & 0xff)
#define MODE_CYCLES(x) ((x & 0x3f) << 16)
#define MODE_PADS_1 (0x0 << 22)
#define MODE_PADS_2 (0x1 << 22)
#define MODE_PADS_4 (0x3 << 22)
#define DUMMY_CSDEASSERT (1 << 24)
/*
* Register: SPI_DUMMY_BITS
*/
#define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
#define DUMMY_PADS_1 (0x0 << 22)
#define DUMMY_PADS_2 (0x1 << 22)
#define DUMMY_PADS_4 (0x3 << 22)
#define DUMMY_CSDEASSERT (1 << 24)
/*
* Register: SPI_FAST_SEQ_FLASH_STA_DATA
*/
#define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
#define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
#define STA_PADS_1 (0x0 << 16)
#define STA_PADS_2 (0x1 << 16)
#define STA_PADS_4 (0x3 << 16)
#define STA_CSDEASSERT (0x1 << 20)
#define STA_RDNOTWR (0x1 << 21)
/*
* FSM SPI Instruction Opcodes
*/
#define STFSM_OPC_CMD 0x1
#define STFSM_OPC_ADD 0x2
#define STFSM_OPC_STA 0x3
#define STFSM_OPC_MODE 0x4
#define STFSM_OPC_DUMMY 0x5
#define STFSM_OPC_DATA 0x6
#define STFSM_OPC_WAIT 0x7
#define STFSM_OPC_JUMP 0x8
#define STFSM_OPC_GOTO 0x9
#define STFSM_OPC_STOP 0xF
/*
* FSM SPI Instructions (== opcode + operand).
*/
#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
/* S25FLxxxS commands */
#define S25FL_CMD_WRITE4_1_1_4 0x34
#define S25FL_CMD_SE4 0xdc
#define S25FL_CMD_CLSR 0x30
#define S25FL_CMD_DYBWR 0xe1
#define S25FL_CMD_DYBRD 0xe0
#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
* 'SPINOR_OP_WRITE_1_4_4'
* as found on N25Qxxx devices! */
/* Status register */
#define FLASH_STATUS_BUSY 0x01
#define FLASH_STATUS_WEL 0x02
#define FLASH_STATUS_BP0 0x04
#define FLASH_STATUS_BP1 0x08
#define FLASH_STATUS_BP2 0x10
#define FLASH_STATUS_SRWP0 0x80
#define FLASH_STATUS_TIMEOUT 0xff
/* S25FL Error Flags */
#define S25FL_STATUS_E_ERR 0x20
#define S25FL_STATUS_P_ERR 0x40
#define N25Q_CMD_WRVCR 0x81
#define N25Q_CMD_RDVCR 0x85
#define N25Q_CMD_RDVECR 0x65
#define N25Q_CMD_RDNVCR 0xb5
#define N25Q_CMD_WRNVCR 0xb1
#define FLASH_PAGESIZE 256 /* In Bytes */
#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
/*
* Flags to tweak operation of default read/write/erase routines
*/
#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
struct stfsm_seq {
uint32_t data_size;
uint32_t addr1;
uint32_t addr2;
uint32_t addr_cfg;
uint32_t seq_opc[5];
uint32_t mode;
uint32_t dummy;
uint32_t status;
uint8_t seq[16];
uint32_t seq_cfg;
} __packed __aligned(4);
struct stfsm {
struct device *dev;
void __iomem *base;
struct mtd_info mtd;
struct mutex lock;
struct flash_info *info;
struct clk *clk;
uint32_t configuration;
uint32_t fifo_dir_delay;
bool booted_from_spi;
bool reset_signal;
bool reset_por;
struct stfsm_seq stfsm_seq_read;
struct stfsm_seq stfsm_seq_write;
struct stfsm_seq stfsm_seq_en_32bit_addr;
};
/* Parameters to configure a READ or WRITE FSM sequence */
struct seq_rw_config {
uint32_t flags; /* flags to support config */
uint8_t cmd; /* FLASH command */
int write; /* Write Sequence */
uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
uint8_t data_pads; /* No. of data pads */
uint8_t mode_data; /* MODE data */
uint8_t mode_cycles; /* No. of MODE cycles */
uint8_t dummy_cycles; /* No. of DUMMY cycles */
};
/* SPI Flash Device Table */
struct flash_info {
char *name;
/*
* JEDEC id zero means "no ID" (most older chips); otherwise it has
* a high byte of zero plus three data bytes: the manufacturer id,
* then a two byte device id.
*/
u32 jedec_id;
u16 ext_id;
/*
* The size listed here is what works with SPINOR_OP_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u32 flags;
/*
* Note, where FAST_READ is supported, freq_max specifies the
* FAST_READ frequency, not the READ frequency.
*/
u32 max_freq;
int (*config)(struct stfsm *);
};
static int stfsm_n25q_config(struct stfsm *fsm);
static int stfsm_mx25_config(struct stfsm *fsm);
static int stfsm_s25fl_config(struct stfsm *fsm);
static int stfsm_w25q_config(struct stfsm *fsm);
static struct flash_info flash_types[] = {
/*
* ST Microelectronics/Numonyx --
* (newer production versions may have feature updates
* (eg faster operating frequency)
*/
#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
{ "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
{ "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
{ "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
{ "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
{ "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
{ "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_WRITE_1_1_2)
{ "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
{ "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
/* Macronix MX25xxx
* - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
* where operating frequency must be reduced.
*/
#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_SE_4K | \
FLASH_FLAG_SE_32K)
{ "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64,
(MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
stfsm_mx25_config},
{ "mx25l25635e", 0xc22019, 0, 64*1024, 512,
(MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
stfsm_mx25_config },
{ "mx25l25655e", 0xc22619, 0, 64*1024, 512,
(MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
stfsm_mx25_config},
#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_WRITE_1_1_2 | \
FLASH_FLAG_WRITE_1_2_2 | \
FLASH_FLAG_WRITE_1_1_4 | \
FLASH_FLAG_WRITE_1_4_4)
{ "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108,
stfsm_n25q_config },
{ "n25q256", 0x20ba19, 0, 64 * 1024, 512,
N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
/*
* Spansion S25FLxxxP
* - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
*/
#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_WRITE_1_1_4 | \
FLASH_FLAG_READ_FAST)
{ "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80,
stfsm_s25fl_config},
{ "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
stfsm_s25fl_config },
{ "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
stfsm_s25fl_config },
/*
* Spansion S25FLxxxS
* - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
* - RESET# signal supported by die but not bristled out on all
* package types. The package type is a function of board design,
* so this information is captured in the board's flags.
* - Supports 'DYB' sector protection. Depending on variant, sectors
* may default to locked state on power-on.
*/
#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
FLASH_FLAG_RESET | \
FLASH_FLAG_DYB_LOCKING)
{ "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
stfsm_s25fl_config },
{ "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
stfsm_s25fl_config },
{ "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
{ "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_WRITE_1_1_2)
{ "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
{ "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
{ "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
{ "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
{ "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
/* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
FLASH_FLAG_READ_FAST | \
FLASH_FLAG_READ_1_1_2 | \
FLASH_FLAG_READ_1_2_2 | \
FLASH_FLAG_READ_1_1_4 | \
FLASH_FLAG_READ_1_4_4 | \
FLASH_FLAG_WRITE_1_1_4)
{ "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80,
stfsm_w25q_config },
{ "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80,
stfsm_w25q_config },
{ "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80,
stfsm_w25q_config },
{ "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80,
stfsm_w25q_config },
/* Sentinel */
{ NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
};
/*
* FSM message sequence configurations:
*
* All configs are presented in order of preference
*/
/* Default READ configurations, in order of preference */
static struct seq_rw_config default_read_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/* Default WRITE configurations */
static struct seq_rw_config default_write_configs[] = {
{FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
{FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
{FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
{FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/*
* [N25Qxxx] Configuration
*/
#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
#define N25Q_VCR_WRAP_CONT 0x3
/* N25Q 3-byte Address READ configurations
* - 'FAST' variants configured for 8 dummy cycles.
*
* Note, the number of dummy cycles used for 'FAST' READ operations is
* configurable and would normally be tuned according to the READ command and
* operating frequency. However, this applies universally to all 'FAST' READ
* commands, including those used by the SPIBoot controller, and remains in
* force until the device is power-cycled. Since the SPIBoot controller is
* hard-wired to use 8 dummy cycles, we must configure the device to also use 8
* cycles.
*/
static struct seq_rw_config n25q_read3_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/* N25Q 4-byte Address READ configurations
* - use special 4-byte address READ commands (reduces overheads, and
* reduces risk of hitting watchdog reset issues).
* - 'FAST' variants configured for 8 dummy cycles (see note above.)
*/
static struct seq_rw_config n25q_read4_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/*
* [MX25xxx] Configuration
*/
#define MX25_STATUS_QE (0x1 << 6)
static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
{
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
SEQ_OPC_CSDEASSERT);
seq->seq[0] = STFSM_INST_CMD1;
seq->seq[1] = STFSM_INST_WAIT;
seq->seq[2] = STFSM_INST_STOP;
seq->seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ);
return 0;
}
/*
* [S25FLxxx] Configuration
*/
#define STFSM_S25FL_CONFIG_QE (0x1 << 1)
/*
* S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
* Register, Extended Address Modes, and a 32-bit address command set. The
* 32-bit address command set is used here, since it avoids any problems with
* entering a state that is incompatible with the SPIBoot Controller.
*/
static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
{FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 2, 4},
{FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
{FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 4, 0},
{FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
{FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
{FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
{FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
{FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0},
{0x00, 0, 0, 0, 0, 0x00, 0, 0},
};
/*
* [W25Qxxx] Configuration
*/
#define W25Q_STATUS_QE (0x1 << 1)
static struct stfsm_seq stfsm_seq_read_jedec = {
.data_size = TRANSFER_SIZE(8),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_read_status_fifo = {
.data_size = TRANSFER_SIZE(4),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_erase_sector = {
/* 'addr_cfg' configured during initialisation */
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_SE)),
},
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_ADD1,
STFSM_INST_ADD2,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_erase_chip = {
.seq_opc = {
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
(SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
},
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_WAIT,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static struct stfsm_seq stfsm_seq_write_status = {
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_STA_WR1,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
mtd: st_spi_fsm: Extend fsm_clear_fifo to handle unwanted bytes Under certain conditions, the SPI-FSM Controller can be left in a state where the data FIFO is not entirely empty. This can lead to problems where subsequent data transfers appear to have been shifted by a number of unidentified bytes. One simple example would be an errant FSM sequence which loaded more data to the FIFO than was read by the host. Another more interesting case results from an obscure artefact in the FSM Controller. When switching from data transfers in x4 or x2 mode to data transfers in x1 mode, extraneous bytes will appear in the FIFO, unless the previous data transfer was a multiple of 32 cycles (i.e. 8 bytes for x2, and 16 bytes for x4). This applies equally whether FSM is being operated directly by a S/W driver, or by the SPI boot-controller in FSM-Boot mode. Furthermore, data in the FIFO not only survive a transition between FSM-Boot and FSM, but also a S/W reset of IP block [1]. By taking certain precautions, it is possible to prevent the driver from causing this type of problem (e.g. ensuring that the host and programmed sequence agree on the transfer size, and restricting transfer sizes to multiples of 32-cycles [2]). However, at the point the driver is loaded, no assumptions can be made regarding the state of the FIFO. Even if previous S/W drivers have behaved correctly, it is impossible to control the number of transactions serviced by the controller operating in FSM-Boot. To address this problem, we ensure the FIFO is cleared during initialisation, before performing any FSM operations. Previously, the fsm_clear_fifo() code was capable of detecting and clearing any unwanted 32-bit words from the FIFO. This patch extends the capability to handle an arbitrary number of bytes present in the FIFO [3]. Now that the issue is better understood, we also remove the calls to fsm_clear_fifo() following the fsm_read() and fsm_write() operations. The process of actually clearing the FIFO deserves a mention. While the FIFO may contain any number of bytes, the SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words present. Furthermore, data can only be drained from the FIFO by reading complete 32-bit words. With this in mind, a two stage process is used to the clear the FIFO: 1. Read any complete 32-bit words from the FIFO, as reported by the SPI_FAST_SEQ_STA register. 2. Mop up any remaining bytes. At this point, it is not known if there are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM sequence is used to load one byte at a time, until a complete 32-bit word is formed; at most, 4 bytes will need to be loaded. [1] Although this issue has existed since early versions of the SPI-FSM controller, its full extent only emerged recently as a consequence of the targetpacks starting to use FSM-Boot(x4) as the default configuration. [2] The requirement to restrict transfers to multiples of 32 cycles was found empirically back when DUAL and QUAD mode support was added. The current analysis now gives a satisfactory explanation for this requirement. [3] Theoretically, it is possible for the FIFO to contain an arbitrary number of bits. However, since there are no known use-cases that leave incomplete bytes in the FIFO, only words and bytes are considered here. Signed-off-by: Angus Clark <angus.clark@st.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-12-15 11:59:08 +00:00
/* Dummy sequence to read one byte of data from flash into the FIFO */
static const struct stfsm_seq stfsm_seq_load_fifo_byte = {
.data_size = TRANSFER_SIZE(1),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
{
seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT);
seq->seq[0] = STFSM_INST_CMD2;
seq->seq[1] = STFSM_INST_CMD1;
seq->seq[2] = STFSM_INST_WAIT;
seq->seq[3] = STFSM_INST_STOP;
seq->seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ);
return 0;
}
static inline int stfsm_is_idle(struct stfsm *fsm)
{
return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10;
}
static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
{
return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
}
static inline void stfsm_load_seq(struct stfsm *fsm,
const struct stfsm_seq *seq)
{
void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
const uint32_t *src = (const uint32_t *)seq;
int words = sizeof(*seq) / sizeof(*src);
BUG_ON(!stfsm_is_idle(fsm));
while (words--) {
writel(*src, dst);
src++;
dst += 4;
}
}
static void stfsm_wait_seq(struct stfsm *fsm)
{
unsigned long deadline;
int timeout = 0;
deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
if (stfsm_is_idle(fsm))
return;
cond_resched();
}
dev_err(fsm->dev, "timeout on sequence completion\n");
}
static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
{
uint32_t remaining = size >> 2;
uint32_t avail;
uint32_t words;
dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
while (remaining) {
for (;;) {
avail = stfsm_fifo_available(fsm);
if (avail)
break;
udelay(1);
}
words = min(avail, remaining);
remaining -= words;
readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
buf += words;
}
}
mtd: st_spi_fsm: Extend fsm_clear_fifo to handle unwanted bytes Under certain conditions, the SPI-FSM Controller can be left in a state where the data FIFO is not entirely empty. This can lead to problems where subsequent data transfers appear to have been shifted by a number of unidentified bytes. One simple example would be an errant FSM sequence which loaded more data to the FIFO than was read by the host. Another more interesting case results from an obscure artefact in the FSM Controller. When switching from data transfers in x4 or x2 mode to data transfers in x1 mode, extraneous bytes will appear in the FIFO, unless the previous data transfer was a multiple of 32 cycles (i.e. 8 bytes for x2, and 16 bytes for x4). This applies equally whether FSM is being operated directly by a S/W driver, or by the SPI boot-controller in FSM-Boot mode. Furthermore, data in the FIFO not only survive a transition between FSM-Boot and FSM, but also a S/W reset of IP block [1]. By taking certain precautions, it is possible to prevent the driver from causing this type of problem (e.g. ensuring that the host and programmed sequence agree on the transfer size, and restricting transfer sizes to multiples of 32-cycles [2]). However, at the point the driver is loaded, no assumptions can be made regarding the state of the FIFO. Even if previous S/W drivers have behaved correctly, it is impossible to control the number of transactions serviced by the controller operating in FSM-Boot. To address this problem, we ensure the FIFO is cleared during initialisation, before performing any FSM operations. Previously, the fsm_clear_fifo() code was capable of detecting and clearing any unwanted 32-bit words from the FIFO. This patch extends the capability to handle an arbitrary number of bytes present in the FIFO [3]. Now that the issue is better understood, we also remove the calls to fsm_clear_fifo() following the fsm_read() and fsm_write() operations. The process of actually clearing the FIFO deserves a mention. While the FIFO may contain any number of bytes, the SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words present. Furthermore, data can only be drained from the FIFO by reading complete 32-bit words. With this in mind, a two stage process is used to the clear the FIFO: 1. Read any complete 32-bit words from the FIFO, as reported by the SPI_FAST_SEQ_STA register. 2. Mop up any remaining bytes. At this point, it is not known if there are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM sequence is used to load one byte at a time, until a complete 32-bit word is formed; at most, 4 bytes will need to be loaded. [1] Although this issue has existed since early versions of the SPI-FSM controller, its full extent only emerged recently as a consequence of the targetpacks starting to use FSM-Boot(x4) as the default configuration. [2] The requirement to restrict transfers to multiples of 32 cycles was found empirically back when DUAL and QUAD mode support was added. The current analysis now gives a satisfactory explanation for this requirement. [3] Theoretically, it is possible for the FIFO to contain an arbitrary number of bits. However, since there are no known use-cases that leave incomplete bytes in the FIFO, only words and bytes are considered here. Signed-off-by: Angus Clark <angus.clark@st.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-12-15 11:59:08 +00:00
/*
* Clear the data FIFO
*
* Typically, this is only required during driver initialisation, where no
* assumptions can be made regarding the state of the FIFO.
*
* The process of clearing the FIFO is complicated by fact that while it is
* possible for the FIFO to contain an arbitrary number of bytes [1], the
* SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words
* present. Furthermore, data can only be drained from the FIFO by reading
* complete 32-bit words.
*
* With this in mind, a two stage process is used to the clear the FIFO:
*
* 1. Read any complete 32-bit words from the FIFO, as reported by the
* SPI_FAST_SEQ_STA register.
*
* 2. Mop up any remaining bytes. At this point, it is not known if there
* are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM
* sequence is used to load one byte at a time, until a complete 32-bit
* word is formed; at most, 4 bytes will need to be loaded.
*
* [1] It is theoretically possible for the FIFO to contain an arbitrary number
* of bits. However, since there are no known use-cases that leave
* incomplete bytes in the FIFO, only words and bytes are considered here.
*/
static void stfsm_clear_fifo(struct stfsm *fsm)
{
const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte;
uint32_t words, i;
/* 1. Clear any 32-bit words */
words = stfsm_fifo_available(fsm);
if (words) {
for (i = 0; i < words; i++)
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words);
}
/*
* 2. Clear any remaining bytes
* - Load the FIFO, one byte at a time, until a complete 32-bit word
* is available.
*/
for (i = 0, words = 0; i < 4 && !words; i++) {
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
words = stfsm_fifo_available(fsm);
}
/* - A single word must be available now */
if (words != 1) {
dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n");
return;
}
/* - Read the 32-bit word */
readl(fsm->base + SPI_FAST_SEQ_DATA_REG);
dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i);
}
static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
uint32_t size)
{
uint32_t words = size >> 2;
dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words);
return size;
}
static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
{
struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cmd) |
SEQ_OPC_CSDEASSERT);
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
return 0;
}
static uint8_t stfsm_wait_busy(struct stfsm *fsm)
{
struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
unsigned long deadline;
uint32_t status;
int timeout = 0;
/* Use RDRS1 */
seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
/* Load read_status sequence */
stfsm_load_seq(fsm, seq);
/*
* Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
*/
deadline = jiffies + FLASH_MAX_BUSY_WAIT;
while (!timeout) {
if (time_after_eq(jiffies, deadline))
timeout = 1;
stfsm_wait_seq(fsm);
stfsm_read_fifo(fsm, &status, 4);
if ((status & FLASH_STATUS_BUSY) == 0)
return 0;
if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
((status & S25FL_STATUS_P_ERR) ||
(status & S25FL_STATUS_E_ERR)))
return (uint8_t)(status & 0xff);
if (!timeout)
/* Restart */
writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG);
cond_resched();
}
dev_err(fsm->dev, "timeout on wait_busy\n");
return FLASH_STATUS_TIMEOUT;
}
static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
uint8_t *data, int bytes)
{
struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
uint32_t tmp;
uint8_t *t = (uint8_t *)&tmp;
int i;
dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
cmd, bytes);
BUG_ON(bytes != 1 && bytes != 2);
seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cmd));
stfsm_load_seq(fsm, seq);
stfsm_read_fifo(fsm, &tmp, 4);
for (i = 0; i < bytes; i++)
data[i] = t[i];
stfsm_wait_seq(fsm);
return 0;
}
static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
uint16_t data, int bytes, int wait_busy)
{
struct stfsm_seq *seq = &stfsm_seq_write_status;
dev_dbg(fsm->dev,
"write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
" %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
BUG_ON(bytes != 1 && bytes != 2);
seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cmd));
seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
if (wait_busy)
stfsm_wait_busy(fsm);
return 0;
}
/*
* SoC reset on 'boot-from-spi' systems
*
* Certain modes of operation cause the Flash device to enter a particular state
* for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
* Addr' commands). On boot-from-spi systems, it is important to consider what
* happens if a warm reset occurs during this period. The SPIBoot controller
* assumes that Flash device is in its default reset state, 24-bit address mode,
* and ready to accept commands. This can be achieved using some form of
* on-board logic/controller to force a device POR in response to a SoC-level
* reset or by making use of the device reset signal if available (limited
* number of devices only).
*
* Failure to take such precautions can cause problems following a warm reset.
* For some operations (e.g. ERASE), there is little that can be done. For
* other modes of operation (e.g. 32-bit addressing), options are often
* available that can help minimise the window in which a reset could cause a
* problem.
*
*/
static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
{
/* Reset signal is available on the board and supported by the device */
if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
return true;
/* Board-level logic forces a power-on-reset */
if (fsm->reset_por)
return true;
/* Reset is not properly handled and may result in failure to reboot */
return false;
}
/* Configure 'addr_cfg' according to addressing mode */
static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
struct stfsm_seq *seq)
{
int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2 |
ADR_CFG_CSDEASSERT_ADD2);
}
/* Search for preferred configuration based on available flags */
static struct seq_rw_config *
stfsm_search_seq_rw_configs(struct stfsm *fsm,
struct seq_rw_config cfgs[])
{
struct seq_rw_config *config;
int flags = fsm->info->flags;
for (config = cfgs; config->cmd != 0; config++)
if ((config->flags & flags) == config->flags)
return config;
return NULL;
}
/* Prepare a READ/WRITE sequence according to configuration parameters */
static void stfsm_prepare_rw_seq(struct stfsm *fsm,
struct stfsm_seq *seq,
struct seq_rw_config *cfg)
{
int addr1_cycles, addr2_cycles;
int i = 0;
memset(seq, 0, sizeof(*seq));
/* Add READ/WRITE OPC */
seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(cfg->cmd));
/* Add WREN OPC for a WRITE sequence */
if (cfg->write)
seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT);
/* Address configuration (24 or 32-bit addresses) */
addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
addr1_cycles /= cfg->addr_pads;
addr2_cycles = 16 / cfg->addr_pads;
seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
(cfg->addr_pads - 1) << 6 | /* ADD1 pads */
(addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
/* Data/Sequence configuration */
seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
SEQ_CFG_STARTSEQ |
SEQ_CFG_CSDEASSERT);
if (!cfg->write)
seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
/* Mode configuration (no. of pads taken from addr cfg) */
seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
(cfg->mode_cycles & 0x3f) << 16 | /* cycles */
(cfg->addr_pads - 1) << 22); /* pads */
/* Dummy configuration (no. of pads taken from addr cfg) */
seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
(cfg->addr_pads - 1) << 22); /* pads */
/* Instruction sequence */
i = 0;
if (cfg->write)
seq->seq[i++] = STFSM_INST_CMD2;
seq->seq[i++] = STFSM_INST_CMD1;
seq->seq[i++] = STFSM_INST_ADD1;
seq->seq[i++] = STFSM_INST_ADD2;
if (cfg->mode_cycles)
seq->seq[i++] = STFSM_INST_MODE;
if (cfg->dummy_cycles)
seq->seq[i++] = STFSM_INST_DUMMY;
seq->seq[i++] =
cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
seq->seq[i++] = STFSM_INST_STOP;
}
static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
struct stfsm_seq *seq,
struct seq_rw_config *cfgs)
{
struct seq_rw_config *config;
config = stfsm_search_seq_rw_configs(fsm, cfgs);
if (!config) {
dev_err(fsm->dev, "failed to find suitable config\n");
return -EINVAL;
}
stfsm_prepare_rw_seq(fsm, seq, config);
return 0;
}
/* Prepare a READ/WRITE/ERASE 'default' sequences */
static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
{
uint32_t flags = fsm->info->flags;
int ret;
/* Configure 'READ' sequence */
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
default_read_configs);
if (ret) {
dev_err(fsm->dev,
"failed to prep READ sequence with flags [0x%08x]\n",
flags);
return ret;
}
/* Configure 'WRITE' sequence */
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
default_write_configs);
if (ret) {
dev_err(fsm->dev,
"failed to prep WRITE sequence with flags [0x%08x]\n",
flags);
return ret;
}
/* Configure 'ERASE_SECTOR' sequence */
stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
return 0;
}
static int stfsm_mx25_config(struct stfsm *fsm)
{
uint32_t flags = fsm->info->flags;
uint32_t data_pads;
uint8_t sta;
int ret;
bool soc_reset;
/*
* Use default READ/WRITE sequences
*/
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
return ret;
/*
* Configure 32-bit Address Support
*/
if (flags & FLASH_FLAG_32BIT_ADDR) {
/* Configure 'enter_32bitaddr' FSM sequence */
stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
soc_reset = stfsm_can_handle_soc_reset(fsm);
mtd: st_spi_fsm: Update Macronix 32-bit addressing support Support for the Macronix 32-bit addressing scheme was originally developed using the MX25L25635E device. As is often the case, it was found that the presence of a "WAIT" instruction was required for the "EN4B/EX4B" FSM Sequence to complete. (It is known that the SPI FSM Controller makes certain undocumented assumptions regarding what constitutes a valid sequence.) However, further testing suggested that a small delay was required after issuing the "EX4B" command; without this delay, data corruptions were observed, consistent with the device not being ready to retrieve data. Although the issue was not fully understood, the workaround of adding a small delay was implemented, while awaiting clarification from Macronix. The same behaviour has now been found with a second Macronix device, the MX25L25655E. However, with this device, it seems that the delay is also required after the 'EN4B' commands. This discovery has prompted us to revisit the issue. Although still not conclusive, further tests have suggested that the issue is down to the SPI FSM Controller, rather than the Macronix devices. Furthermore, an alternative workaround has emerged which is to set the WAIT time to 0x00000001, rather then 0x00000000. (Note, the WAIT instruction is used purely for the purpose of achieving "sequence validity", rather than actually implementing a delay!) The issue is now being investigated by the Design and Validation teams. In the meantime, we implement the alternative workaround, which reduces the effective delay from 1us to 1ns. Signed-off-by: Angus Clark <angus.clark@st.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-03-26 16:39:16 +00:00
if (soc_reset || !fsm->booted_from_spi)
/* If we can handle SoC resets, we enable 32-bit address
* mode pervasively */
stfsm_enter_32bit_addr(fsm, 1);
mtd: st_spi_fsm: Update Macronix 32-bit addressing support Support for the Macronix 32-bit addressing scheme was originally developed using the MX25L25635E device. As is often the case, it was found that the presence of a "WAIT" instruction was required for the "EN4B/EX4B" FSM Sequence to complete. (It is known that the SPI FSM Controller makes certain undocumented assumptions regarding what constitutes a valid sequence.) However, further testing suggested that a small delay was required after issuing the "EX4B" command; without this delay, data corruptions were observed, consistent with the device not being ready to retrieve data. Although the issue was not fully understood, the workaround of adding a small delay was implemented, while awaiting clarification from Macronix. The same behaviour has now been found with a second Macronix device, the MX25L25655E. However, with this device, it seems that the delay is also required after the 'EN4B' commands. This discovery has prompted us to revisit the issue. Although still not conclusive, further tests have suggested that the issue is down to the SPI FSM Controller, rather than the Macronix devices. Furthermore, an alternative workaround has emerged which is to set the WAIT time to 0x00000001, rather then 0x00000000. (Note, the WAIT instruction is used purely for the purpose of achieving "sequence validity", rather than actually implementing a delay!) The issue is now being investigated by the Design and Validation teams. In the meantime, we implement the alternative workaround, which reduces the effective delay from 1us to 1ns. Signed-off-by: Angus Clark <angus.clark@st.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-03-26 16:39:16 +00:00
else
/* Else, enable/disable 32-bit addressing before/after
* each operation */
fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
CFG_WRITE_TOGGLE_32BIT_ADDR |
CFG_ERASESEC_TOGGLE_32BIT_ADDR);
}
/* Check status of 'QE' bit, update if required. */
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
if (!(sta & MX25_STATUS_QE)) {
/* Set 'QE' */
sta |= MX25_STATUS_QE;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
}
} else {
if (sta & MX25_STATUS_QE) {
/* Clear 'QE' */
sta &= ~MX25_STATUS_QE;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1);
}
}
return 0;
}
static int stfsm_n25q_config(struct stfsm *fsm)
{
uint32_t flags = fsm->info->flags;
uint8_t vcr;
int ret = 0;
bool soc_reset;
/* Configure 'READ' sequence */
if (flags & FLASH_FLAG_32BIT_ADDR)
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
n25q_read4_configs);
else
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
n25q_read3_configs);
if (ret) {
dev_err(fsm->dev,
"failed to prepare READ sequence with flags [0x%08x]\n",
flags);
return ret;
}
/* Configure 'WRITE' sequence (default configs) */
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
default_write_configs);
if (ret) {
dev_err(fsm->dev,
"preparing WRITE sequence using flags [0x%08x] failed\n",
flags);
return ret;
}
/* * Configure 'ERASE_SECTOR' sequence */
stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector);
/* Configure 32-bit address support */
if (flags & FLASH_FLAG_32BIT_ADDR) {
stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr);
soc_reset = stfsm_can_handle_soc_reset(fsm);
if (soc_reset || !fsm->booted_from_spi) {
/*
* If we can handle SoC resets, we enable 32-bit
* address mode pervasively
*/
stfsm_enter_32bit_addr(fsm, 1);
} else {
/*
* If not, enable/disable for WRITE and ERASE
* operations (READ uses special commands)
*/
fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
CFG_ERASESEC_TOGGLE_32BIT_ADDR);
}
}
/*
* Configure device to use 8 dummy cycles
*/
vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
N25Q_VCR_WRAP_CONT);
stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0);
return 0;
}
static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
{
seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_SE4));
seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2 |
ADR_CFG_CSDEASSERT_ADD2);
}
static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
{
uint32_t tmp;
struct stfsm_seq seq = {
.data_size = TRANSFER_SIZE(4),
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
.addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2),
.addr1 = (offs >> 16) & 0xffff,
.addr2 = offs & 0xffff,
.seq = {
STFSM_INST_CMD1,
STFSM_INST_ADD1,
STFSM_INST_ADD2,
STFSM_INST_DATA_READ,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
stfsm_load_seq(fsm, &seq);
stfsm_read_fifo(fsm, &tmp, 4);
*dby = (uint8_t)(tmp >> 24);
stfsm_wait_seq(fsm);
}
static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
{
struct stfsm_seq seq = {
.seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
.addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
ADR_CFG_PADS_1_ADD1 |
ADR_CFG_CYCLES_ADD2(16) |
ADR_CFG_PADS_1_ADD2),
.status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
.addr1 = (offs >> 16) & 0xffff,
.addr2 = offs & 0xffff,
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_ADD1,
STFSM_INST_ADD2,
STFSM_INST_STA_WR1,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
stfsm_load_seq(fsm, &seq);
stfsm_wait_seq(fsm);
stfsm_wait_busy(fsm);
}
static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
{
struct stfsm_seq seq = {
.seq_opc[0] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
SEQ_OPC_CSDEASSERT),
.seq_opc[1] = (SEQ_OPC_PADS_1 |
SEQ_OPC_CYCLES(8) |
SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
SEQ_OPC_CSDEASSERT),
.seq = {
STFSM_INST_CMD1,
STFSM_INST_CMD2,
STFSM_INST_WAIT,
STFSM_INST_STOP,
},
.seq_cfg = (SEQ_CFG_PADS_1 |
SEQ_CFG_ERASE |
SEQ_CFG_READNOTWRITE |
SEQ_CFG_CSDEASSERT |
SEQ_CFG_STARTSEQ),
};
stfsm_load_seq(fsm, &seq);
stfsm_wait_seq(fsm);
return 0;
}
static int stfsm_s25fl_config(struct stfsm *fsm)
{
struct flash_info *info = fsm->info;
uint32_t flags = info->flags;
uint32_t data_pads;
uint32_t offs;
uint16_t sta_wr;
uint8_t sr1, cr1, dyb;
int update_sr = 0;
int ret;
if (flags & FLASH_FLAG_32BIT_ADDR) {
/*
* Prepare Read/Write/Erase sequences according to S25FLxxx
* 32-bit address command set
*/
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read,
stfsm_s25fl_read4_configs);
if (ret)
return ret;
ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write,
stfsm_s25fl_write4_configs);
if (ret)
return ret;
stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector);
} else {
/* Use default configurations for 24-bit addressing */
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
return ret;
}
/*
* For devices that support 'DYB' sector locking, check lock status and
* unlock sectors if necessary (some variants power-on with sectors
* locked by default)
*/
if (flags & FLASH_FLAG_DYB_LOCKING) {
offs = 0;
for (offs = 0; offs < info->sector_size * info->n_sectors;) {
stfsm_s25fl_read_dyb(fsm, offs, &dyb);
if (dyb == 0x00)
stfsm_s25fl_write_dyb(fsm, offs, 0xff);
/* Handle bottom/top 4KiB parameter sectors */
if ((offs < info->sector_size * 2) ||
(offs >= (info->sector_size - info->n_sectors * 4)))
offs += 0x1000;
else
offs += 0x10000;
}
}
/* Check status of 'QE' bit, update if required. */
stfsm_read_status(fsm, SPINOR_OP_RDCR, &cr1, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
/* Set 'QE' */
cr1 |= STFSM_S25FL_CONFIG_QE;
update_sr = 1;
}
} else {
if (cr1 & STFSM_S25FL_CONFIG_QE) {
/* Clear 'QE' */
cr1 &= ~STFSM_S25FL_CONFIG_QE;
update_sr = 1;
}
}
if (update_sr) {
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
sta_wr = ((uint16_t)cr1 << 8) | sr1;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1);
}
/*
* S25FLxxx devices support Program and Error error flags.
* Configure driver to check flags and clear if necessary.
*/
fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
return 0;
}
static int stfsm_w25q_config(struct stfsm *fsm)
{
uint32_t data_pads;
uint8_t sr1, sr2;
uint16_t sr_wr;
int update_sr = 0;
int ret;
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
return ret;
/* Check status of 'QE' bit, update if required. */
stfsm_read_status(fsm, SPINOR_OP_RDCR, &sr2, 1);
data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
if (data_pads == 4) {
if (!(sr2 & W25Q_STATUS_QE)) {
/* Set 'QE' */
sr2 |= W25Q_STATUS_QE;
update_sr = 1;
}
} else {
if (sr2 & W25Q_STATUS_QE) {
/* Clear 'QE' */
sr2 &= ~W25Q_STATUS_QE;
update_sr = 1;
}
}
if (update_sr) {
/* Write status register */
stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1);
sr_wr = ((uint16_t)sr2 << 8) | sr1;
stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1);
}
return 0;
}
static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
uint32_t offset)
{
struct stfsm_seq *seq = &fsm->stfsm_seq_read;
uint32_t data_pads;
uint32_t read_mask;
uint32_t size_ub;
uint32_t size_lb;
uint32_t size_mop;
uint32_t tmp[4];
uint32_t page_buf[FLASH_PAGESIZE_32];
uint8_t *p;
dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
/* Enter 32-bit address mode, if required */
if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 1);
/* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
read_mask = (data_pads << 2) - 1;
/* Handle non-aligned buf */
p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
/* Handle non-aligned size */
size_ub = (size + read_mask) & ~read_mask;
size_lb = size & ~read_mask;
size_mop = size & read_mask;
seq->data_size = TRANSFER_SIZE(size_ub);
seq->addr1 = (offset >> 16) & 0xffff;
seq->addr2 = offset & 0xffff;
stfsm_load_seq(fsm, seq);
if (size_lb)
stfsm_read_fifo(fsm, (uint32_t *)p, size_lb);
if (size_mop) {
stfsm_read_fifo(fsm, tmp, read_mask + 1);
memcpy(p + size_lb, &tmp, size_mop);
}
/* Handle non-aligned buf */
if ((uintptr_t)buf & 0x3)
memcpy(buf, page_buf, size);
/* Wait for sequence to finish */
stfsm_wait_seq(fsm);
stfsm_clear_fifo(fsm);
/* Exit 32-bit address mode, if required */
if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 0);
return 0;
}
static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
uint32_t size, uint32_t offset)
{
struct stfsm_seq *seq = &fsm->stfsm_seq_write;
uint32_t data_pads;
uint32_t write_mask;
uint32_t size_ub;
uint32_t size_lb;
uint32_t size_mop;
uint32_t tmp[4];
uint32_t i;
uint32_t page_buf[FLASH_PAGESIZE_32];
uint8_t *t = (uint8_t *)&tmp;
const uint8_t *p;
int ret;
dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
/* Enter 32-bit address mode, if required */
if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 1);
/* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
write_mask = (data_pads << 2) - 1;
/* Handle non-aligned buf */
if ((uintptr_t)buf & 0x3) {
memcpy(page_buf, buf, size);
p = (uint8_t *)page_buf;
} else {
p = buf;
}
/* Handle non-aligned size */
size_ub = (size + write_mask) & ~write_mask;
size_lb = size & ~write_mask;
size_mop = size & write_mask;
seq->data_size = TRANSFER_SIZE(size_ub);
seq->addr1 = (offset >> 16) & 0xffff;
seq->addr2 = offset & 0xffff;
/* Need to set FIFO to write mode, before writing data to FIFO (see
* GNBvb79594)
*/
writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG);
/*
* Before writing data to the FIFO, apply a small delay to allow a
* potential change of FIFO direction to complete.
*/
if (fsm->fifo_dir_delay == 0)
readl(fsm->base + SPI_FAST_SEQ_CFG);
else
udelay(fsm->fifo_dir_delay);
/* Write data to FIFO, before starting sequence (see GNBvd79593) */
if (size_lb) {
stfsm_write_fifo(fsm, (uint32_t *)p, size_lb);
p += size_lb;
}
/* Handle non-aligned size */
if (size_mop) {
memset(t, 0xff, write_mask + 1); /* fill with 0xff's */
for (i = 0; i < size_mop; i++)
t[i] = *p++;
stfsm_write_fifo(fsm, tmp, write_mask + 1);
}
/* Start sequence */
stfsm_load_seq(fsm, seq);
/* Wait for sequence to finish */
stfsm_wait_seq(fsm);
/* Wait for completion */
ret = stfsm_wait_busy(fsm);
if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
stfsm_s25fl_clear_status_reg(fsm);
/* Exit 32-bit address mode, if required */
mtd: st_spi_fsm: Update Macronix 32-bit addressing support Support for the Macronix 32-bit addressing scheme was originally developed using the MX25L25635E device. As is often the case, it was found that the presence of a "WAIT" instruction was required for the "EN4B/EX4B" FSM Sequence to complete. (It is known that the SPI FSM Controller makes certain undocumented assumptions regarding what constitutes a valid sequence.) However, further testing suggested that a small delay was required after issuing the "EX4B" command; without this delay, data corruptions were observed, consistent with the device not being ready to retrieve data. Although the issue was not fully understood, the workaround of adding a small delay was implemented, while awaiting clarification from Macronix. The same behaviour has now been found with a second Macronix device, the MX25L25655E. However, with this device, it seems that the delay is also required after the 'EN4B' commands. This discovery has prompted us to revisit the issue. Although still not conclusive, further tests have suggested that the issue is down to the SPI FSM Controller, rather than the Macronix devices. Furthermore, an alternative workaround has emerged which is to set the WAIT time to 0x00000001, rather then 0x00000000. (Note, the WAIT instruction is used purely for the purpose of achieving "sequence validity", rather than actually implementing a delay!) The issue is now being investigated by the Design and Validation teams. In the meantime, we implement the alternative workaround, which reduces the effective delay from 1us to 1ns. Signed-off-by: Angus Clark <angus.clark@st.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-03-26 16:39:16 +00:00
if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 0);
return 0;
}
/*
* Read an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
uint32_t bytes;
dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
__func__, (u32)from, len);
mutex_lock(&fsm->lock);
while (len > 0) {
bytes = min_t(size_t, len, FLASH_PAGESIZE);
stfsm_read(fsm, buf, bytes, from);
buf += bytes;
from += bytes;
len -= bytes;
*retlen += bytes;
}
mutex_unlock(&fsm->lock);
return 0;
}
static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
{
struct stfsm_seq *seq = &stfsm_seq_erase_sector;
int ret;
dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
/* Enter 32-bit address mode, if required */
if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 1);
seq->addr1 = (offset >> 16) & 0xffff;
seq->addr2 = offset & 0xffff;
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
/* Wait for completion */
ret = stfsm_wait_busy(fsm);
if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
stfsm_s25fl_clear_status_reg(fsm);
/* Exit 32-bit address mode, if required */
if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
stfsm_enter_32bit_addr(fsm, 0);
return ret;
}
static int stfsm_erase_chip(struct stfsm *fsm)
{
const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
dev_dbg(fsm->dev, "erasing chip\n");
stfsm_load_seq(fsm, seq);
stfsm_wait_seq(fsm);
return stfsm_wait_busy(fsm);
}
/*
* Write an address range to the flash chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
u32 page_offs;
u32 bytes;
uint8_t *b = (uint8_t *)buf;
int ret = 0;
dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
/* Offset within page */
page_offs = to % FLASH_PAGESIZE;
mutex_lock(&fsm->lock);
while (len) {
/* Write up to page boundary */
bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
ret = stfsm_write(fsm, b, bytes, to);
if (ret)
goto out1;
b += bytes;
len -= bytes;
to += bytes;
/* We are now page-aligned */
page_offs = 0;
*retlen += bytes;
}
out1:
mutex_unlock(&fsm->lock);
return ret;
}
/*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent);
u32 addr, len;
int ret;
dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
(long long)instr->addr, (long long)instr->len);
addr = instr->addr;
len = instr->len;
mutex_lock(&fsm->lock);
/* Whole-chip erase? */
if (len == mtd->size) {
ret = stfsm_erase_chip(fsm);
if (ret)
goto out1;
} else {
while (len) {
ret = stfsm_erase_sector(fsm, addr);
if (ret)
goto out1;
addr += mtd->erasesize;
len -= mtd->erasesize;
}
}
mutex_unlock(&fsm->lock);
return 0;
out1:
mutex_unlock(&fsm->lock);
return ret;
}
static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
{
const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
uint32_t tmp[2];
stfsm_load_seq(fsm, seq);
stfsm_read_fifo(fsm, tmp, 8);
memcpy(jedec, tmp, 5);
stfsm_wait_seq(fsm);
}
static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
{
struct flash_info *info;
u16 ext_jedec;
u32 jedec;
u8 id[5];
stfsm_read_jedec(fsm, id);
jedec = id[0] << 16 | id[1] << 8 | id[2];
/*
* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*/
ext_jedec = id[3] << 8 | id[4];
dev_dbg(fsm->dev, "JEDEC = 0x%08x [%5ph]\n", jedec, id);
for (info = flash_types; info->name; info++) {
if (info->jedec_id == jedec) {
if (info->ext_id && info->ext_id != ext_jedec)
continue;
return info;
}
}
dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
return NULL;
}
static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
{
int ret, timeout = 10;
/* Wait for controller to accept mode change */
while (--timeout) {
ret = readl(fsm->base + SPI_STA_MODE_CHANGE);
if (ret & 0x1)
break;
udelay(1);
}
if (!timeout)
return -EBUSY;
writel(mode, fsm->base + SPI_MODESELECT);
return 0;
}
static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
{
uint32_t emi_freq;
uint32_t clk_div;
emi_freq = clk_get_rate(fsm->clk);
/*
* Calculate clk_div - values between 2 and 128
* Multiple of 2, rounded up
*/
clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
if (clk_div < 2)
clk_div = 2;
else if (clk_div > 128)
clk_div = 128;
/*
* Determine a suitable delay for the IP to complete a change of
* direction of the FIFO. The required delay is related to the clock
* divider used. The following heuristics are based on empirical tests,
* using a 100MHz EMI clock.
*/
if (clk_div <= 4)
fsm->fifo_dir_delay = 0;
else if (clk_div <= 10)
fsm->fifo_dir_delay = 1;
else
fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
emi_freq, spi_freq, clk_div);
writel(clk_div, fsm->base + SPI_CLOCKDIV);
}
static int stfsm_init(struct stfsm *fsm)
{
int ret;
/* Perform a soft reset of the FSM controller */
writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG);
udelay(1);
writel(0, fsm->base + SPI_FAST_SEQ_CFG);
/* Set clock to 'safe' frequency initially */
stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
/* Switch to FSM */
ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
if (ret)
return ret;
/* Set timing parameters */
writel(SPI_CFG_DEVICE_ST |
SPI_CFG_DEFAULT_MIN_CS_HIGH |
SPI_CFG_DEFAULT_CS_SETUPHOLD |
SPI_CFG_DEFAULT_DATA_HOLD,
fsm->base + SPI_CONFIGDATA);
writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG);
mtd: st_spi_fsm: Update Macronix 32-bit addressing support Support for the Macronix 32-bit addressing scheme was originally developed using the MX25L25635E device. As is often the case, it was found that the presence of a "WAIT" instruction was required for the "EN4B/EX4B" FSM Sequence to complete. (It is known that the SPI FSM Controller makes certain undocumented assumptions regarding what constitutes a valid sequence.) However, further testing suggested that a small delay was required after issuing the "EX4B" command; without this delay, data corruptions were observed, consistent with the device not being ready to retrieve data. Although the issue was not fully understood, the workaround of adding a small delay was implemented, while awaiting clarification from Macronix. The same behaviour has now been found with a second Macronix device, the MX25L25655E. However, with this device, it seems that the delay is also required after the 'EN4B' commands. This discovery has prompted us to revisit the issue. Although still not conclusive, further tests have suggested that the issue is down to the SPI FSM Controller, rather than the Macronix devices. Furthermore, an alternative workaround has emerged which is to set the WAIT time to 0x00000001, rather then 0x00000000. (Note, the WAIT instruction is used purely for the purpose of achieving "sequence validity", rather than actually implementing a delay!) The issue is now being investigated by the Design and Validation teams. In the meantime, we implement the alternative workaround, which reduces the effective delay from 1us to 1ns. Signed-off-by: Angus Clark <angus.clark@st.com> Signed-off-by: Lee Jones <lee.jones@linaro.org> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-03-26 16:39:16 +00:00
/*
* Set the FSM 'WAIT' delay to the minimum workable value. Note, for
* our purposes, the WAIT instruction is used purely to achieve
* "sequence validity" rather than actually implement a delay.
*/
writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME);
/* Clear FIFO, just in case */
stfsm_clear_fifo(fsm);
return 0;
}
static void stfsm_fetch_platform_configs(struct platform_device *pdev)
{
struct stfsm *fsm = platform_get_drvdata(pdev);
struct device_node *np = pdev->dev.of_node;
struct regmap *regmap;
uint32_t boot_device_reg;
uint32_t boot_device_spi;
uint32_t boot_device; /* Value we read from *boot_device_reg */
int ret;
/* Booting from SPI NOR Flash is the default */
fsm->booted_from_spi = true;
regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
if (IS_ERR(regmap))
goto boot_device_fail;
fsm->reset_signal = of_property_read_bool(np, "st,reset-signal");
fsm->reset_por = of_property_read_bool(np, "st,reset-por");
/* Where in the syscon the boot device information lives */
ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg);
if (ret)
goto boot_device_fail;
/* Boot device value when booted from SPI NOR */
ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi);
if (ret)
goto boot_device_fail;
ret = regmap_read(regmap, boot_device_reg, &boot_device);
if (ret)
goto boot_device_fail;
if (boot_device != boot_device_spi)
fsm->booted_from_spi = false;
return;
boot_device_fail:
dev_warn(&pdev->dev,
"failed to fetch boot device, assuming boot from SPI\n");
}
static int stfsm_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct flash_info *info;
struct resource *res;
struct stfsm *fsm;
int ret;
if (!np) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL);
if (!fsm)
return -ENOMEM;
fsm->dev = &pdev->dev;
platform_set_drvdata(pdev, fsm);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Resource not found\n");
return -ENODEV;
}
fsm->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsm->base)) {
dev_err(&pdev->dev,
"Failed to reserve memory region %pR\n", res);
return PTR_ERR(fsm->base);
}
fsm->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(fsm->clk)) {
dev_err(fsm->dev, "Couldn't find EMI clock.\n");
return PTR_ERR(fsm->clk);
}
ret = clk_prepare_enable(fsm->clk);
if (ret) {
dev_err(fsm->dev, "Failed to enable EMI clock.\n");
return ret;
}
mutex_init(&fsm->lock);
ret = stfsm_init(fsm);
if (ret) {
dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
goto err_clk_unprepare;
}
stfsm_fetch_platform_configs(pdev);
/* Detect SPI FLASH device */
info = stfsm_jedec_probe(fsm);
if (!info) {
ret = -ENODEV;
goto err_clk_unprepare;
}
fsm->info = info;
/* Use device size to determine address width */
if (info->sector_size * info->n_sectors > 0x1000000)
info->flags |= FLASH_FLAG_32BIT_ADDR;
/*
* Configure READ/WRITE/ERASE sequences according to platform and
* device flags.
*/
if (info->config) {
ret = info->config(fsm);
if (ret)
goto err_clk_unprepare;
} else {
ret = stfsm_prepare_rwe_seqs_default(fsm);
if (ret)
goto err_clk_unprepare;
}
fsm->mtd.name = info->name;
fsm->mtd.dev.parent = &pdev->dev;
mtd_set_of_node(&fsm->mtd, np);
fsm->mtd.type = MTD_NORFLASH;
fsm->mtd.writesize = 4;
fsm->mtd.writebufsize = fsm->mtd.writesize;
fsm->mtd.flags = MTD_CAP_NORFLASH;
fsm->mtd.size = info->sector_size * info->n_sectors;
fsm->mtd.erasesize = info->sector_size;
fsm->mtd._read = stfsm_mtd_read;
fsm->mtd._write = stfsm_mtd_write;
fsm->mtd._erase = stfsm_mtd_erase;
dev_info(&pdev->dev,
"Found serial flash device: %s\n"
" size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
info->name,
(long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
return mtd_device_register(&fsm->mtd, NULL, 0);
err_clk_unprepare:
clk_disable_unprepare(fsm->clk);
return ret;
}
static int stfsm_remove(struct platform_device *pdev)
{
struct stfsm *fsm = platform_get_drvdata(pdev);
return mtd_device_unregister(&fsm->mtd);
}
#ifdef CONFIG_PM_SLEEP
static int stfsmfsm_suspend(struct device *dev)
{
struct stfsm *fsm = dev_get_drvdata(dev);
clk_disable_unprepare(fsm->clk);
return 0;
}
static int stfsmfsm_resume(struct device *dev)
{
struct stfsm *fsm = dev_get_drvdata(dev);
return clk_prepare_enable(fsm->clk);
}
#endif
static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume);
static const struct of_device_id stfsm_match[] = {
{ .compatible = "st,spi-fsm", },
{},
};
MODULE_DEVICE_TABLE(of, stfsm_match);
static struct platform_driver stfsm_driver = {
.probe = stfsm_probe,
.remove = stfsm_remove,
.driver = {
.name = "st-spi-fsm",
.of_match_table = stfsm_match,
.pm = &stfsm_pm_ops,
},
};
module_platform_driver(stfsm_driver);
MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
MODULE_DESCRIPTION("ST SPI FSM driver");
MODULE_LICENSE("GPL");