2019-11-08 12:22:14 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
|
|
* ARM NEON accelerated ChaCha and XChaCha stream ciphers,
|
|
|
|
* including ChaCha20 (RFC7539)
|
|
|
|
*
|
|
|
|
* Copyright (C) 2016-2019 Linaro, Ltd. <ard.biesheuvel@linaro.org>
|
|
|
|
* Copyright (C) 2015 Martin Willi
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <crypto/algapi.h>
|
|
|
|
#include <crypto/internal/chacha.h>
|
|
|
|
#include <crypto/internal/simd.h>
|
|
|
|
#include <crypto/internal/skcipher.h>
|
2019-11-08 12:22:15 +00:00
|
|
|
#include <linux/jump_label.h>
|
2019-11-08 12:22:14 +00:00
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
|
|
|
|
#include <asm/cputype.h>
|
|
|
|
#include <asm/hwcap.h>
|
|
|
|
#include <asm/neon.h>
|
|
|
|
#include <asm/simd.h>
|
|
|
|
|
|
|
|
asmlinkage void chacha_block_xor_neon(const u32 *state, u8 *dst, const u8 *src,
|
|
|
|
int nrounds);
|
|
|
|
asmlinkage void chacha_4block_xor_neon(const u32 *state, u8 *dst, const u8 *src,
|
crypto: arm/chacha-neon - optimize for non-block size multiples
The current NEON based ChaCha implementation for ARM is optimized for
multiples of 4x the ChaCha block size (64 bytes). This makes sense for
block encryption, but given that ChaCha is also often used in the
context of networking, it makes sense to consider arbitrary length
inputs as well.
For example, WireGuard typically uses 1420 byte packets, and performing
ChaCha encryption involves 5 invocations of chacha_4block_xor_neon()
and 3 invocations of chacha_block_xor_neon(), where the last one also
involves a memcpy() using a buffer on the stack to process the final
chunk of 1420 % 64 == 12 bytes.
Let's optimize for this case as well, by letting chacha_4block_xor_neon()
deal with any input size between 64 and 256 bytes, using NEON permutation
instructions and overlapping loads and stores. This way, the 140 byte
tail of a 1420 byte input buffer can simply be processed in one go.
This results in the following performance improvements for 1420 byte
blocks, without significant impact on power-of-2 input sizes. (Note
that Raspberry Pi is widely used in combination with a 32-bit kernel,
even though the core is 64-bit capable)
Cortex-A8 (BeagleBone) : 7%
Cortex-A15 (Calxeda Midway) : 21%
Cortex-A53 (Raspberry Pi 3) : 3%
Cortex-A72 (Raspberry Pi 4) : 19%
Cc: Eric Biggers <ebiggers@google.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-11-03 16:28:09 +00:00
|
|
|
int nrounds, unsigned int nbytes);
|
2019-11-08 12:22:14 +00:00
|
|
|
asmlinkage void hchacha_block_arm(const u32 *state, u32 *out, int nrounds);
|
|
|
|
asmlinkage void hchacha_block_neon(const u32 *state, u32 *out, int nrounds);
|
|
|
|
|
|
|
|
asmlinkage void chacha_doarm(u8 *dst, const u8 *src, unsigned int bytes,
|
|
|
|
const u32 *state, int nrounds);
|
|
|
|
|
2019-11-08 12:22:15 +00:00
|
|
|
static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_neon);
|
|
|
|
|
2019-11-08 12:22:14 +00:00
|
|
|
static inline bool neon_usable(void)
|
|
|
|
{
|
2019-11-08 12:22:15 +00:00
|
|
|
return static_branch_likely(&use_neon) && crypto_simd_usable();
|
2019-11-08 12:22:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void chacha_doneon(u32 *state, u8 *dst, const u8 *src,
|
|
|
|
unsigned int bytes, int nrounds)
|
|
|
|
{
|
|
|
|
u8 buf[CHACHA_BLOCK_SIZE];
|
|
|
|
|
crypto: arm/chacha-neon - optimize for non-block size multiples
The current NEON based ChaCha implementation for ARM is optimized for
multiples of 4x the ChaCha block size (64 bytes). This makes sense for
block encryption, but given that ChaCha is also often used in the
context of networking, it makes sense to consider arbitrary length
inputs as well.
For example, WireGuard typically uses 1420 byte packets, and performing
ChaCha encryption involves 5 invocations of chacha_4block_xor_neon()
and 3 invocations of chacha_block_xor_neon(), where the last one also
involves a memcpy() using a buffer on the stack to process the final
chunk of 1420 % 64 == 12 bytes.
Let's optimize for this case as well, by letting chacha_4block_xor_neon()
deal with any input size between 64 and 256 bytes, using NEON permutation
instructions and overlapping loads and stores. This way, the 140 byte
tail of a 1420 byte input buffer can simply be processed in one go.
This results in the following performance improvements for 1420 byte
blocks, without significant impact on power-of-2 input sizes. (Note
that Raspberry Pi is widely used in combination with a 32-bit kernel,
even though the core is 64-bit capable)
Cortex-A8 (BeagleBone) : 7%
Cortex-A15 (Calxeda Midway) : 21%
Cortex-A53 (Raspberry Pi 3) : 3%
Cortex-A72 (Raspberry Pi 4) : 19%
Cc: Eric Biggers <ebiggers@google.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-11-03 16:28:09 +00:00
|
|
|
while (bytes > CHACHA_BLOCK_SIZE) {
|
|
|
|
unsigned int l = min(bytes, CHACHA_BLOCK_SIZE * 4U);
|
|
|
|
|
|
|
|
chacha_4block_xor_neon(state, dst, src, nrounds, l);
|
|
|
|
bytes -= l;
|
|
|
|
src += l;
|
|
|
|
dst += l;
|
|
|
|
state[12] += DIV_ROUND_UP(l, CHACHA_BLOCK_SIZE);
|
2019-11-08 12:22:14 +00:00
|
|
|
}
|
|
|
|
if (bytes) {
|
crypto: arm/chacha-neon - optimize for non-block size multiples
The current NEON based ChaCha implementation for ARM is optimized for
multiples of 4x the ChaCha block size (64 bytes). This makes sense for
block encryption, but given that ChaCha is also often used in the
context of networking, it makes sense to consider arbitrary length
inputs as well.
For example, WireGuard typically uses 1420 byte packets, and performing
ChaCha encryption involves 5 invocations of chacha_4block_xor_neon()
and 3 invocations of chacha_block_xor_neon(), where the last one also
involves a memcpy() using a buffer on the stack to process the final
chunk of 1420 % 64 == 12 bytes.
Let's optimize for this case as well, by letting chacha_4block_xor_neon()
deal with any input size between 64 and 256 bytes, using NEON permutation
instructions and overlapping loads and stores. This way, the 140 byte
tail of a 1420 byte input buffer can simply be processed in one go.
This results in the following performance improvements for 1420 byte
blocks, without significant impact on power-of-2 input sizes. (Note
that Raspberry Pi is widely used in combination with a 32-bit kernel,
even though the core is 64-bit capable)
Cortex-A8 (BeagleBone) : 7%
Cortex-A15 (Calxeda Midway) : 21%
Cortex-A53 (Raspberry Pi 3) : 3%
Cortex-A72 (Raspberry Pi 4) : 19%
Cc: Eric Biggers <ebiggers@google.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-11-03 16:28:09 +00:00
|
|
|
const u8 *s = src;
|
|
|
|
u8 *d = dst;
|
|
|
|
|
|
|
|
if (bytes != CHACHA_BLOCK_SIZE)
|
|
|
|
s = d = memcpy(buf, src, bytes);
|
|
|
|
chacha_block_xor_neon(state, d, s, nrounds);
|
|
|
|
if (d != dst)
|
|
|
|
memcpy(dst, buf, bytes);
|
2020-12-13 14:39:29 +00:00
|
|
|
state[12]++;
|
2019-11-08 12:22:14 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-11-08 12:22:15 +00:00
|
|
|
void hchacha_block_arch(const u32 *state, u32 *stream, int nrounds)
|
|
|
|
{
|
|
|
|
if (!IS_ENABLED(CONFIG_KERNEL_MODE_NEON) || !neon_usable()) {
|
|
|
|
hchacha_block_arm(state, stream, nrounds);
|
|
|
|
} else {
|
|
|
|
kernel_neon_begin();
|
|
|
|
hchacha_block_neon(state, stream, nrounds);
|
|
|
|
kernel_neon_end();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(hchacha_block_arch);
|
|
|
|
|
|
|
|
void chacha_init_arch(u32 *state, const u32 *key, const u8 *iv)
|
|
|
|
{
|
|
|
|
chacha_init_generic(state, key, iv);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(chacha_init_arch);
|
|
|
|
|
|
|
|
void chacha_crypt_arch(u32 *state, u8 *dst, const u8 *src, unsigned int bytes,
|
|
|
|
int nrounds)
|
|
|
|
{
|
|
|
|
if (!IS_ENABLED(CONFIG_KERNEL_MODE_NEON) || !neon_usable() ||
|
|
|
|
bytes <= CHACHA_BLOCK_SIZE) {
|
|
|
|
chacha_doarm(dst, src, bytes, state, nrounds);
|
|
|
|
state[12] += DIV_ROUND_UP(bytes, CHACHA_BLOCK_SIZE);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
crypto: arch/lib - limit simd usage to 4k chunks
The initial Zinc patchset, after some mailing list discussion, contained
code to ensure that kernel_fpu_enable would not be kept on for more than
a 4k chunk, since it disables preemption. The choice of 4k isn't totally
scientific, but it's not a bad guess either, and it's what's used in
both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form
of PAGE_SIZE, which this commit corrects to be explicitly 4k for the
former two).
Ard did some back of the envelope calculations and found that
at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k
means we have a maximum preemption disabling of 20us, which Sebastian
confirmed was probably a good limit.
Unfortunately the chunking appears to have been left out of the final
patchset that added the glue code. So, this commit adds it back in.
Fixes: 84e03fa39fbe ("crypto: x86/chacha - expose SIMD ChaCha routine as library function")
Fixes: b3aad5bad26a ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function")
Fixes: a44a3430d71b ("crypto: arm/chacha - expose ARM ChaCha routine as library function")
Fixes: d7d7b8535662 ("crypto: x86/poly1305 - wire up faster implementations for kernel")
Fixes: f569ca164751 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: a6b803b3ddc7 ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: ed0356eda153 ("crypto: blake2s - x86_64 SIMD implementation")
Cc: Eric Biggers <ebiggers@google.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2020-04-22 23:18:53 +00:00
|
|
|
do {
|
|
|
|
unsigned int todo = min_t(unsigned int, bytes, SZ_4K);
|
|
|
|
|
|
|
|
kernel_neon_begin();
|
|
|
|
chacha_doneon(state, dst, src, todo, nrounds);
|
|
|
|
kernel_neon_end();
|
|
|
|
|
|
|
|
bytes -= todo;
|
|
|
|
src += todo;
|
|
|
|
dst += todo;
|
|
|
|
} while (bytes);
|
2019-11-08 12:22:15 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(chacha_crypt_arch);
|
|
|
|
|
2019-11-08 12:22:14 +00:00
|
|
|
static int chacha_stream_xor(struct skcipher_request *req,
|
|
|
|
const struct chacha_ctx *ctx, const u8 *iv,
|
|
|
|
bool neon)
|
|
|
|
{
|
|
|
|
struct skcipher_walk walk;
|
|
|
|
u32 state[16];
|
|
|
|
int err;
|
|
|
|
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
|
|
|
|
chacha_init_generic(state, ctx->key, iv);
|
|
|
|
|
|
|
|
while (walk.nbytes > 0) {
|
|
|
|
unsigned int nbytes = walk.nbytes;
|
|
|
|
|
|
|
|
if (nbytes < walk.total)
|
|
|
|
nbytes = round_down(nbytes, walk.stride);
|
|
|
|
|
2020-01-17 16:43:18 +00:00
|
|
|
if (!IS_ENABLED(CONFIG_KERNEL_MODE_NEON) || !neon) {
|
2019-11-08 12:22:14 +00:00
|
|
|
chacha_doarm(walk.dst.virt.addr, walk.src.virt.addr,
|
|
|
|
nbytes, state, ctx->nrounds);
|
|
|
|
state[12] += DIV_ROUND_UP(nbytes, CHACHA_BLOCK_SIZE);
|
|
|
|
} else {
|
|
|
|
kernel_neon_begin();
|
|
|
|
chacha_doneon(state, walk.dst.virt.addr,
|
|
|
|
walk.src.virt.addr, nbytes, ctx->nrounds);
|
|
|
|
kernel_neon_end();
|
|
|
|
}
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int do_chacha(struct skcipher_request *req, bool neon)
|
|
|
|
{
|
|
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
|
|
struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
|
|
|
|
return chacha_stream_xor(req, ctx, req->iv, neon);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int chacha_arm(struct skcipher_request *req)
|
|
|
|
{
|
|
|
|
return do_chacha(req, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int chacha_neon(struct skcipher_request *req)
|
|
|
|
{
|
|
|
|
return do_chacha(req, neon_usable());
|
|
|
|
}
|
|
|
|
|
|
|
|
static int do_xchacha(struct skcipher_request *req, bool neon)
|
|
|
|
{
|
|
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
|
|
struct chacha_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
struct chacha_ctx subctx;
|
|
|
|
u32 state[16];
|
|
|
|
u8 real_iv[16];
|
|
|
|
|
|
|
|
chacha_init_generic(state, ctx->key, req->iv);
|
|
|
|
|
2020-01-17 16:43:18 +00:00
|
|
|
if (!IS_ENABLED(CONFIG_KERNEL_MODE_NEON) || !neon) {
|
2019-11-08 12:22:14 +00:00
|
|
|
hchacha_block_arm(state, subctx.key, ctx->nrounds);
|
|
|
|
} else {
|
|
|
|
kernel_neon_begin();
|
|
|
|
hchacha_block_neon(state, subctx.key, ctx->nrounds);
|
|
|
|
kernel_neon_end();
|
|
|
|
}
|
|
|
|
subctx.nrounds = ctx->nrounds;
|
|
|
|
|
|
|
|
memcpy(&real_iv[0], req->iv + 24, 8);
|
|
|
|
memcpy(&real_iv[8], req->iv + 16, 8);
|
|
|
|
return chacha_stream_xor(req, &subctx, real_iv, neon);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xchacha_arm(struct skcipher_request *req)
|
|
|
|
{
|
|
|
|
return do_xchacha(req, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xchacha_neon(struct skcipher_request *req)
|
|
|
|
{
|
|
|
|
return do_xchacha(req, neon_usable());
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct skcipher_alg arm_algs[] = {
|
|
|
|
{
|
|
|
|
.base.cra_name = "chacha20",
|
|
|
|
.base.cra_driver_name = "chacha20-arm",
|
|
|
|
.base.cra_priority = 200,
|
|
|
|
.base.cra_blocksize = 1,
|
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = CHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
|
|
|
.setkey = chacha20_setkey,
|
|
|
|
.encrypt = chacha_arm,
|
|
|
|
.decrypt = chacha_arm,
|
|
|
|
}, {
|
|
|
|
.base.cra_name = "xchacha20",
|
|
|
|
.base.cra_driver_name = "xchacha20-arm",
|
|
|
|
.base.cra_priority = 200,
|
|
|
|
.base.cra_blocksize = 1,
|
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = XCHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
|
|
|
.setkey = chacha20_setkey,
|
|
|
|
.encrypt = xchacha_arm,
|
|
|
|
.decrypt = xchacha_arm,
|
|
|
|
}, {
|
|
|
|
.base.cra_name = "xchacha12",
|
|
|
|
.base.cra_driver_name = "xchacha12-arm",
|
|
|
|
.base.cra_priority = 200,
|
|
|
|
.base.cra_blocksize = 1,
|
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = XCHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
|
|
|
.setkey = chacha12_setkey,
|
|
|
|
.encrypt = xchacha_arm,
|
|
|
|
.decrypt = xchacha_arm,
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct skcipher_alg neon_algs[] = {
|
|
|
|
{
|
|
|
|
.base.cra_name = "chacha20",
|
|
|
|
.base.cra_driver_name = "chacha20-neon",
|
|
|
|
.base.cra_priority = 300,
|
|
|
|
.base.cra_blocksize = 1,
|
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = CHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
|
|
|
.walksize = 4 * CHACHA_BLOCK_SIZE,
|
|
|
|
.setkey = chacha20_setkey,
|
|
|
|
.encrypt = chacha_neon,
|
|
|
|
.decrypt = chacha_neon,
|
|
|
|
}, {
|
|
|
|
.base.cra_name = "xchacha20",
|
|
|
|
.base.cra_driver_name = "xchacha20-neon",
|
|
|
|
.base.cra_priority = 300,
|
|
|
|
.base.cra_blocksize = 1,
|
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = XCHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
|
|
|
.walksize = 4 * CHACHA_BLOCK_SIZE,
|
|
|
|
.setkey = chacha20_setkey,
|
|
|
|
.encrypt = xchacha_neon,
|
|
|
|
.decrypt = xchacha_neon,
|
|
|
|
}, {
|
|
|
|
.base.cra_name = "xchacha12",
|
|
|
|
.base.cra_driver_name = "xchacha12-neon",
|
|
|
|
.base.cra_priority = 300,
|
|
|
|
.base.cra_blocksize = 1,
|
|
|
|
.base.cra_ctxsize = sizeof(struct chacha_ctx),
|
|
|
|
.base.cra_module = THIS_MODULE,
|
|
|
|
|
|
|
|
.min_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.max_keysize = CHACHA_KEY_SIZE,
|
|
|
|
.ivsize = XCHACHA_IV_SIZE,
|
|
|
|
.chunksize = CHACHA_BLOCK_SIZE,
|
|
|
|
.walksize = 4 * CHACHA_BLOCK_SIZE,
|
|
|
|
.setkey = chacha12_setkey,
|
|
|
|
.encrypt = xchacha_neon,
|
|
|
|
.decrypt = xchacha_neon,
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static int __init chacha_simd_mod_init(void)
|
|
|
|
{
|
2019-11-25 10:31:12 +00:00
|
|
|
int err = 0;
|
2019-11-08 12:22:14 +00:00
|
|
|
|
2019-11-25 10:31:12 +00:00
|
|
|
if (IS_REACHABLE(CONFIG_CRYPTO_SKCIPHER)) {
|
|
|
|
err = crypto_register_skciphers(arm_algs, ARRAY_SIZE(arm_algs));
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
}
|
2019-11-08 12:22:14 +00:00
|
|
|
|
|
|
|
if (IS_ENABLED(CONFIG_KERNEL_MODE_NEON) && (elf_hwcap & HWCAP_NEON)) {
|
|
|
|
int i;
|
|
|
|
|
|
|
|
switch (read_cpuid_part()) {
|
|
|
|
case ARM_CPU_PART_CORTEX_A7:
|
|
|
|
case ARM_CPU_PART_CORTEX_A5:
|
|
|
|
/*
|
|
|
|
* The Cortex-A7 and Cortex-A5 do not perform well with
|
|
|
|
* the NEON implementation but do incredibly with the
|
|
|
|
* scalar one and use less power.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < ARRAY_SIZE(neon_algs); i++)
|
|
|
|
neon_algs[i].base.cra_priority = 0;
|
|
|
|
break;
|
2019-11-08 12:22:15 +00:00
|
|
|
default:
|
|
|
|
static_branch_enable(&use_neon);
|
2019-11-08 12:22:14 +00:00
|
|
|
}
|
|
|
|
|
2019-11-25 10:31:12 +00:00
|
|
|
if (IS_REACHABLE(CONFIG_CRYPTO_SKCIPHER)) {
|
|
|
|
err = crypto_register_skciphers(neon_algs, ARRAY_SIZE(neon_algs));
|
|
|
|
if (err)
|
|
|
|
crypto_unregister_skciphers(arm_algs, ARRAY_SIZE(arm_algs));
|
|
|
|
}
|
2019-11-08 12:22:14 +00:00
|
|
|
}
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __exit chacha_simd_mod_fini(void)
|
|
|
|
{
|
2019-11-25 10:31:12 +00:00
|
|
|
if (IS_REACHABLE(CONFIG_CRYPTO_SKCIPHER)) {
|
|
|
|
crypto_unregister_skciphers(arm_algs, ARRAY_SIZE(arm_algs));
|
|
|
|
if (IS_ENABLED(CONFIG_KERNEL_MODE_NEON) && (elf_hwcap & HWCAP_NEON))
|
|
|
|
crypto_unregister_skciphers(neon_algs, ARRAY_SIZE(neon_algs));
|
|
|
|
}
|
2019-11-08 12:22:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
module_init(chacha_simd_mod_init);
|
|
|
|
module_exit(chacha_simd_mod_fini);
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION("ChaCha and XChaCha stream ciphers (scalar and NEON accelerated)");
|
|
|
|
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
MODULE_ALIAS_CRYPTO("chacha20");
|
|
|
|
MODULE_ALIAS_CRYPTO("chacha20-arm");
|
|
|
|
MODULE_ALIAS_CRYPTO("xchacha20");
|
|
|
|
MODULE_ALIAS_CRYPTO("xchacha20-arm");
|
|
|
|
MODULE_ALIAS_CRYPTO("xchacha12");
|
|
|
|
MODULE_ALIAS_CRYPTO("xchacha12-arm");
|
|
|
|
#ifdef CONFIG_KERNEL_MODE_NEON
|
|
|
|
MODULE_ALIAS_CRYPTO("chacha20-neon");
|
|
|
|
MODULE_ALIAS_CRYPTO("xchacha20-neon");
|
|
|
|
MODULE_ALIAS_CRYPTO("xchacha12-neon");
|
|
|
|
#endif
|