linux/net/mptcp/protocol.c

2868 lines
70 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
*
* Copyright (c) 2017 - 2019, Intel Corporation.
*/
#define pr_fmt(fmt) "MPTCP: " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/sched/signal.h>
#include <linux/atomic.h>
#include <net/sock.h>
#include <net/inet_common.h>
#include <net/inet_hashtables.h>
#include <net/protocol.h>
#include <net/tcp.h>
#include <net/tcp_states.h>
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
#include <net/transp_v6.h>
#endif
#include <net/mptcp.h>
#include "protocol.h"
#include "mib.h"
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
struct mptcp6_sock {
struct mptcp_sock msk;
struct ipv6_pinfo np;
};
#endif
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
struct mptcp_skb_cb {
u64 map_seq;
u64 end_seq;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
u32 offset;
};
#define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0]))
static struct percpu_counter mptcp_sockets_allocated;
/* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
* completed yet or has failed, return the subflow socket.
* Otherwise return NULL.
*/
static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
{
if (!msk->subflow || READ_ONCE(msk->can_ack))
return NULL;
return msk->subflow;
}
static bool mptcp_is_tcpsk(struct sock *sk)
mptcp: fix tcp fallback crash Christoph Paasch reports following crash: general protection fault [..] CPU: 0 PID: 2874 Comm: syz-executor072 Not tainted 5.6.0-rc5 #62 RIP: 0010:__pv_queued_spin_lock_slowpath kernel/locking/qspinlock.c:471 [..] queued_spin_lock_slowpath arch/x86/include/asm/qspinlock.h:50 [inline] do_raw_spin_lock include/linux/spinlock.h:181 [inline] spin_lock_bh include/linux/spinlock.h:343 [inline] __mptcp_flush_join_list+0x44/0xb0 net/mptcp/protocol.c:278 mptcp_shutdown+0xb3/0x230 net/mptcp/protocol.c:1882 [..] Problem is that mptcp_shutdown() socket isn't an mptcp socket, its a plain tcp_sk. Thus, trying to access mptcp_sk specific members accesses garbage. Root cause is that accept() returns a fallback (tcp) socket, not an mptcp one. There is code in getpeername to detect this and override the sockets stream_ops. But this will only run when accept() caller provided a sockaddr struct. "accept(fd, NULL, 0)" will therefore result in mptcp stream ops, but with sock->sk pointing at a tcp_sk. Update the existing fallback handling to detect this as well. Moreover, mptcp_shutdown did not have fallback handling, and mptcp_poll did it too late so add that there as well. Reported-by: Christoph Paasch <cpaasch@apple.com> Tested-by: Christoph Paasch <cpaasch@apple.com> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-02 11:44:51 +00:00
{
struct socket *sock = sk->sk_socket;
if (unlikely(sk->sk_prot == &tcp_prot)) {
/* we are being invoked after mptcp_accept() has
* accepted a non-mp-capable flow: sk is a tcp_sk,
* not an mptcp one.
*
* Hand the socket over to tcp so all further socket ops
* bypass mptcp.
*/
sock->ops = &inet_stream_ops;
return true;
mptcp: fix tcp fallback crash Christoph Paasch reports following crash: general protection fault [..] CPU: 0 PID: 2874 Comm: syz-executor072 Not tainted 5.6.0-rc5 #62 RIP: 0010:__pv_queued_spin_lock_slowpath kernel/locking/qspinlock.c:471 [..] queued_spin_lock_slowpath arch/x86/include/asm/qspinlock.h:50 [inline] do_raw_spin_lock include/linux/spinlock.h:181 [inline] spin_lock_bh include/linux/spinlock.h:343 [inline] __mptcp_flush_join_list+0x44/0xb0 net/mptcp/protocol.c:278 mptcp_shutdown+0xb3/0x230 net/mptcp/protocol.c:1882 [..] Problem is that mptcp_shutdown() socket isn't an mptcp socket, its a plain tcp_sk. Thus, trying to access mptcp_sk specific members accesses garbage. Root cause is that accept() returns a fallback (tcp) socket, not an mptcp one. There is code in getpeername to detect this and override the sockets stream_ops. But this will only run when accept() caller provided a sockaddr struct. "accept(fd, NULL, 0)" will therefore result in mptcp stream ops, but with sock->sk pointing at a tcp_sk. Update the existing fallback handling to detect this as well. Moreover, mptcp_shutdown did not have fallback handling, and mptcp_poll did it too late so add that there as well. Reported-by: Christoph Paasch <cpaasch@apple.com> Tested-by: Christoph Paasch <cpaasch@apple.com> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-02 11:44:51 +00:00
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
sock->ops = &inet6_stream_ops;
return true;
mptcp: fix tcp fallback crash Christoph Paasch reports following crash: general protection fault [..] CPU: 0 PID: 2874 Comm: syz-executor072 Not tainted 5.6.0-rc5 #62 RIP: 0010:__pv_queued_spin_lock_slowpath kernel/locking/qspinlock.c:471 [..] queued_spin_lock_slowpath arch/x86/include/asm/qspinlock.h:50 [inline] do_raw_spin_lock include/linux/spinlock.h:181 [inline] spin_lock_bh include/linux/spinlock.h:343 [inline] __mptcp_flush_join_list+0x44/0xb0 net/mptcp/protocol.c:278 mptcp_shutdown+0xb3/0x230 net/mptcp/protocol.c:1882 [..] Problem is that mptcp_shutdown() socket isn't an mptcp socket, its a plain tcp_sk. Thus, trying to access mptcp_sk specific members accesses garbage. Root cause is that accept() returns a fallback (tcp) socket, not an mptcp one. There is code in getpeername to detect this and override the sockets stream_ops. But this will only run when accept() caller provided a sockaddr struct. "accept(fd, NULL, 0)" will therefore result in mptcp stream ops, but with sock->sk pointing at a tcp_sk. Update the existing fallback handling to detect this as well. Moreover, mptcp_shutdown did not have fallback handling, and mptcp_poll did it too late so add that there as well. Reported-by: Christoph Paasch <cpaasch@apple.com> Tested-by: Christoph Paasch <cpaasch@apple.com> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-02 11:44:51 +00:00
#endif
}
return false;
mptcp: fix tcp fallback crash Christoph Paasch reports following crash: general protection fault [..] CPU: 0 PID: 2874 Comm: syz-executor072 Not tainted 5.6.0-rc5 #62 RIP: 0010:__pv_queued_spin_lock_slowpath kernel/locking/qspinlock.c:471 [..] queued_spin_lock_slowpath arch/x86/include/asm/qspinlock.h:50 [inline] do_raw_spin_lock include/linux/spinlock.h:181 [inline] spin_lock_bh include/linux/spinlock.h:343 [inline] __mptcp_flush_join_list+0x44/0xb0 net/mptcp/protocol.c:278 mptcp_shutdown+0xb3/0x230 net/mptcp/protocol.c:1882 [..] Problem is that mptcp_shutdown() socket isn't an mptcp socket, its a plain tcp_sk. Thus, trying to access mptcp_sk specific members accesses garbage. Root cause is that accept() returns a fallback (tcp) socket, not an mptcp one. There is code in getpeername to detect this and override the sockets stream_ops. But this will only run when accept() caller provided a sockaddr struct. "accept(fd, NULL, 0)" will therefore result in mptcp stream ops, but with sock->sk pointing at a tcp_sk. Update the existing fallback handling to detect this as well. Moreover, mptcp_shutdown did not have fallback handling, and mptcp_poll did it too late so add that there as well. Reported-by: Christoph Paasch <cpaasch@apple.com> Tested-by: Christoph Paasch <cpaasch@apple.com> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-02 11:44:51 +00:00
}
static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk)
{
sock_owned_by_me((const struct sock *)msk);
if (likely(!__mptcp_check_fallback(msk)))
return NULL;
return msk->first;
}
static int __mptcp_socket_create(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
struct socket *ssock;
int err;
err = mptcp_subflow_create_socket(sk, &ssock);
if (err)
return err;
msk->first = ssock->sk;
msk->subflow = ssock;
subflow = mptcp_subflow_ctx(ssock->sk);
list_add(&subflow->node, &msk->conn_list);
subflow->request_mptcp = 1;
/* accept() will wait on first subflow sk_wq, and we always wakes up
* via msk->sk_socket
*/
RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq);
return 0;
}
static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
{
sk_drops_add(sk, skb);
__kfree_skb(skb);
}
static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
struct sk_buff *from)
{
bool fragstolen;
int delta;
if (MPTCP_SKB_CB(from)->offset ||
!skb_try_coalesce(to, from, &fragstolen, &delta))
return false;
pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
to->len, MPTCP_SKB_CB(from)->end_seq);
MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
kfree_skb_partial(from, fragstolen);
atomic_add(delta, &sk->sk_rmem_alloc);
sk_mem_charge(sk, delta);
return true;
}
static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
struct sk_buff *from)
{
if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
return false;
return mptcp_try_coalesce((struct sock *)msk, to, from);
}
/* "inspired" by tcp_data_queue_ofo(), main differences:
* - use mptcp seqs
* - don't cope with sacks
*/
static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
{
struct sock *sk = (struct sock *)msk;
struct rb_node **p, *parent;
u64 seq, end_seq, max_seq;
struct sk_buff *skb1;
int space;
seq = MPTCP_SKB_CB(skb)->map_seq;
end_seq = MPTCP_SKB_CB(skb)->end_seq;
space = tcp_space(sk);
max_seq = space > 0 ? space + msk->ack_seq : msk->ack_seq;
pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
RB_EMPTY_ROOT(&msk->out_of_order_queue));
if (after64(seq, max_seq)) {
/* out of window */
mptcp_drop(sk, skb);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
return;
}
p = &msk->out_of_order_queue.rb_node;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
rb_link_node(&skb->rbnode, NULL, p);
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
msk->ooo_last_skb = skb;
goto end;
}
/* with 2 subflows, adding at end of ooo queue is quite likely
* Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
*/
if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
return;
}
/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
parent = &msk->ooo_last_skb->rbnode;
p = &parent->rb_right;
goto insert;
}
/* Find place to insert this segment. Handle overlaps on the way. */
parent = NULL;
while (*p) {
parent = *p;
skb1 = rb_to_skb(parent);
if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
p = &parent->rb_left;
continue;
}
if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
/* All the bits are present. Drop. */
mptcp_drop(sk, skb);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
return;
}
if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
/* partial overlap:
* | skb |
* | skb1 |
* continue traversing
*/
} else {
/* skb's seq == skb1's seq and skb covers skb1.
* Replace skb1 with skb.
*/
rb_replace_node(&skb1->rbnode, &skb->rbnode,
&msk->out_of_order_queue);
mptcp_drop(sk, skb1);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
goto merge_right;
}
} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
return;
}
p = &parent->rb_right;
}
insert:
/* Insert segment into RB tree. */
rb_link_node(&skb->rbnode, parent, p);
rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
merge_right:
/* Remove other segments covered by skb. */
while ((skb1 = skb_rb_next(skb)) != NULL) {
if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
break;
rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
mptcp_drop(sk, skb1);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
}
/* If there is no skb after us, we are the last_skb ! */
if (!skb1)
msk->ooo_last_skb = skb;
end:
skb_condense(skb);
skb_set_owner_r(skb, sk);
}
static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
struct sk_buff *skb, unsigned int offset,
size_t copy_len)
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
struct sock *sk = (struct sock *)msk;
struct sk_buff *tail;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
__skb_unlink(skb, &ssk->sk_receive_queue);
skb_ext_reset(skb);
skb_orphan(skb);
/* try to fetch required memory from subflow */
if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
if (ssk->sk_forward_alloc < skb->truesize)
goto drop;
__sk_mem_reclaim(ssk, skb->truesize);
if (!sk_rmem_schedule(sk, skb, skb->truesize))
goto drop;
}
/* the skb map_seq accounts for the skb offset:
* mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
* value
*/
MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
MPTCP_SKB_CB(skb)->offset = offset;
if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
/* in sequence */
WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
tail = skb_peek_tail(&sk->sk_receive_queue);
if (tail && mptcp_try_coalesce(sk, tail, skb))
return true;
skb_set_owner_r(skb, sk);
__skb_queue_tail(&sk->sk_receive_queue, skb);
return true;
} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
mptcp_data_queue_ofo(msk, skb);
return false;
}
/* old data, keep it simple and drop the whole pkt, sender
* will retransmit as needed, if needed.
*/
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
drop:
mptcp_drop(sk, skb);
return false;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
}
static void mptcp_stop_timer(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
mptcp_sk(sk)->timer_ival = 0;
}
static void mptcp_check_data_fin_ack(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (__mptcp_check_fallback(msk))
return;
/* Look for an acknowledged DATA_FIN */
if (((1 << sk->sk_state) &
(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
msk->write_seq == atomic64_read(&msk->snd_una)) {
mptcp_stop_timer(sk);
WRITE_ONCE(msk->snd_data_fin_enable, 0);
switch (sk->sk_state) {
case TCP_FIN_WAIT1:
inet_sk_state_store(sk, TCP_FIN_WAIT2);
sk->sk_state_change(sk);
break;
case TCP_CLOSING:
case TCP_LAST_ACK:
inet_sk_state_store(sk, TCP_CLOSE);
sk->sk_state_change(sk);
break;
}
if (sk->sk_shutdown == SHUTDOWN_MASK ||
sk->sk_state == TCP_CLOSE)
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
else
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
}
}
static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (READ_ONCE(msk->rcv_data_fin) &&
((1 << sk->sk_state) &
(TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
if (msk->ack_seq == rcv_data_fin_seq) {
if (seq)
*seq = rcv_data_fin_seq;
return true;
}
}
return false;
}
static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
{
long tout = ssk && inet_csk(ssk)->icsk_pending ?
inet_csk(ssk)->icsk_timeout - jiffies : 0;
if (tout <= 0)
tout = mptcp_sk(sk)->timer_ival;
mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
}
static void mptcp_check_data_fin(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
u64 rcv_data_fin_seq;
if (__mptcp_check_fallback(msk) || !msk->first)
return;
/* Need to ack a DATA_FIN received from a peer while this side
* of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
* msk->rcv_data_fin was set when parsing the incoming options
* at the subflow level and the msk lock was not held, so this
* is the first opportunity to act on the DATA_FIN and change
* the msk state.
*
* If we are caught up to the sequence number of the incoming
* DATA_FIN, send the DATA_ACK now and do state transition. If
* not caught up, do nothing and let the recv code send DATA_ACK
* when catching up.
*/
if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
struct mptcp_subflow_context *subflow;
WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
WRITE_ONCE(msk->rcv_data_fin, 0);
sk->sk_shutdown |= RCV_SHUTDOWN;
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
set_bit(MPTCP_DATA_READY, &msk->flags);
switch (sk->sk_state) {
case TCP_ESTABLISHED:
inet_sk_state_store(sk, TCP_CLOSE_WAIT);
break;
case TCP_FIN_WAIT1:
inet_sk_state_store(sk, TCP_CLOSING);
break;
case TCP_FIN_WAIT2:
inet_sk_state_store(sk, TCP_CLOSE);
// @@ Close subflows now?
break;
default:
/* Other states not expected */
WARN_ON_ONCE(1);
break;
}
mptcp_set_timeout(sk, NULL);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
lock_sock(ssk);
tcp_send_ack(ssk);
release_sock(ssk);
}
sk->sk_state_change(sk);
if (sk->sk_shutdown == SHUTDOWN_MASK ||
sk->sk_state == TCP_CLOSE)
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
else
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
}
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
struct sock *ssk,
unsigned int *bytes)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct sock *sk = (struct sock *)msk;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
unsigned int moved = 0;
bool more_data_avail;
struct tcp_sock *tp;
u32 old_copied_seq;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
bool done = false;
int sk_rbuf;
sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
if (unlikely(ssk_rbuf > sk_rbuf)) {
WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
sk_rbuf = ssk_rbuf;
}
}
pr_debug("msk=%p ssk=%p", msk, ssk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
tp = tcp_sk(ssk);
old_copied_seq = tp->copied_seq;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
do {
u32 map_remaining, offset;
u32 seq = tp->copied_seq;
struct sk_buff *skb;
bool fin;
/* try to move as much data as available */
map_remaining = subflow->map_data_len -
mptcp_subflow_get_map_offset(subflow);
skb = skb_peek(&ssk->sk_receive_queue);
if (!skb) {
/* if no data is found, a racing workqueue/recvmsg
* already processed the new data, stop here or we
* can enter an infinite loop
*/
if (!moved)
done = true;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
break;
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
if (__mptcp_check_fallback(msk)) {
/* if we are running under the workqueue, TCP could have
* collapsed skbs between dummy map creation and now
* be sure to adjust the size
*/
map_remaining = skb->len;
subflow->map_data_len = skb->len;
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
offset = seq - TCP_SKB_CB(skb)->seq;
fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
if (fin) {
done = true;
seq++;
}
if (offset < skb->len) {
size_t len = skb->len - offset;
if (tp->urg_data)
done = true;
if (__mptcp_move_skb(msk, ssk, skb, offset, len))
moved += len;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
seq += len;
if (WARN_ON_ONCE(map_remaining < len))
break;
} else {
WARN_ON_ONCE(!fin);
sk_eat_skb(ssk, skb);
done = true;
}
WRITE_ONCE(tp->copied_seq, seq);
more_data_avail = mptcp_subflow_data_available(ssk);
if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
done = true;
break;
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
} while (more_data_avail);
*bytes += moved;
if (tp->copied_seq != old_copied_seq)
tcp_cleanup_rbuf(ssk, 1);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
return done;
}
static bool mptcp_ofo_queue(struct mptcp_sock *msk)
{
struct sock *sk = (struct sock *)msk;
struct sk_buff *skb, *tail;
bool moved = false;
struct rb_node *p;
u64 end_seq;
p = rb_first(&msk->out_of_order_queue);
pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
while (p) {
skb = rb_to_skb(p);
if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
break;
p = rb_next(p);
rb_erase(&skb->rbnode, &msk->out_of_order_queue);
if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
msk->ack_seq))) {
mptcp_drop(sk, skb);
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
continue;
}
end_seq = MPTCP_SKB_CB(skb)->end_seq;
tail = skb_peek_tail(&sk->sk_receive_queue);
if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
/* skip overlapping data, if any */
pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
delta);
MPTCP_SKB_CB(skb)->offset += delta;
__skb_queue_tail(&sk->sk_receive_queue, skb);
}
msk->ack_seq = end_seq;
moved = true;
}
return moved;
}
/* In most cases we will be able to lock the mptcp socket. If its already
* owned, we need to defer to the work queue to avoid ABBA deadlock.
*/
static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
{
struct sock *sk = (struct sock *)msk;
unsigned int moved = 0;
if (READ_ONCE(sk->sk_lock.owned))
return false;
if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock)))
return false;
/* must re-check after taking the lock */
if (!READ_ONCE(sk->sk_lock.owned)) {
__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
mptcp_ofo_queue(msk);
/* If the moves have caught up with the DATA_FIN sequence number
* it's time to ack the DATA_FIN and change socket state, but
* this is not a good place to change state. Let the workqueue
* do it.
*/
if (mptcp_pending_data_fin(sk, NULL) &&
schedule_work(&msk->work))
sock_hold(sk);
}
spin_unlock_bh(&sk->sk_lock.slock);
return moved > 0;
}
void mptcp_data_ready(struct sock *sk, struct sock *ssk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
struct mptcp_sock *msk = mptcp_sk(sk);
int sk_rbuf, ssk_rbuf;
bool wake;
/* move_skbs_to_msk below can legitly clear the data_avail flag,
* but we will need later to properly woke the reader, cache its
* value
*/
wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL;
if (wake)
set_bit(MPTCP_DATA_READY, &msk->flags);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
if (unlikely(ssk_rbuf > sk_rbuf))
sk_rbuf = ssk_rbuf;
/* over limit? can't append more skbs to msk */
if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf)
goto wake;
if (move_skbs_to_msk(msk, ssk))
goto wake;
/* mptcp socket is owned, release_cb should retry */
if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED,
&sk->sk_tsq_flags)) {
sock_hold(sk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
/* need to try again, its possible release_cb() has already
* been called after the test_and_set_bit() above.
*/
move_skbs_to_msk(msk, ssk);
}
wake:
if (wake)
sk->sk_data_ready(sk);
}
static void __mptcp_flush_join_list(struct mptcp_sock *msk)
{
if (likely(list_empty(&msk->join_list)))
return;
spin_lock_bh(&msk->join_list_lock);
list_splice_tail_init(&msk->join_list, &msk->conn_list);
spin_unlock_bh(&msk->join_list_lock);
}
static bool mptcp_timer_pending(struct sock *sk)
{
return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
}
static void mptcp_reset_timer(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
unsigned long tout;
/* should never be called with mptcp level timer cleared */
tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
if (WARN_ON_ONCE(!tout))
tout = TCP_RTO_MIN;
sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
}
void mptcp_data_acked(struct sock *sk)
{
mptcp_reset_timer(sk);
if ((!test_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags) ||
(inet_sk_state_load(sk) != TCP_ESTABLISHED)) &&
schedule_work(&mptcp_sk(sk)->work))
sock_hold(sk);
}
void mptcp_subflow_eof(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) &&
schedule_work(&msk->work))
sock_hold(sk);
}
static void mptcp_check_for_eof(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
int receivers = 0;
mptcp_for_each_subflow(msk, subflow)
receivers += !subflow->rx_eof;
if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
/* hopefully temporary hack: propagate shutdown status
* to msk, when all subflows agree on it
*/
sk->sk_shutdown |= RCV_SHUTDOWN;
smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
set_bit(MPTCP_DATA_READY, &msk->flags);
sk->sk_data_ready(sk);
}
}
static bool mptcp_ext_cache_refill(struct mptcp_sock *msk)
{
const struct sock *sk = (const struct sock *)msk;
if (!msk->cached_ext)
msk->cached_ext = __skb_ext_alloc(sk->sk_allocation);
return !!msk->cached_ext;
}
static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
sock_owned_by_me(sk);
mptcp_for_each_subflow(msk, subflow) {
if (subflow->data_avail)
return mptcp_subflow_tcp_sock(subflow);
}
return NULL;
}
static bool mptcp_skb_can_collapse_to(u64 write_seq,
const struct sk_buff *skb,
const struct mptcp_ext *mpext)
{
if (!tcp_skb_can_collapse_to(skb))
return false;
/* can collapse only if MPTCP level sequence is in order and this
* mapping has not been xmitted yet
*/
return mpext && mpext->data_seq + mpext->data_len == write_seq &&
!mpext->frozen;
}
static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
const struct page_frag *pfrag,
const struct mptcp_data_frag *df)
{
return df && pfrag->page == df->page &&
df->data_seq + df->data_len == msk->write_seq;
}
static void dfrag_uncharge(struct sock *sk, int len)
{
sk_mem_uncharge(sk, len);
sk_wmem_queued_add(sk, -len);
}
static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
{
int len = dfrag->data_len + dfrag->overhead;
list_del(&dfrag->list);
dfrag_uncharge(sk, len);
put_page(dfrag->page);
}
static bool mptcp_is_writeable(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
if (!sk_stream_is_writeable((struct sock *)msk))
return false;
mptcp_for_each_subflow(msk, subflow) {
if (sk_stream_is_writeable(subflow->tcp_sock))
return true;
}
return false;
}
static void mptcp_clean_una(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_data_frag *dtmp, *dfrag;
bool cleaned = false;
u64 snd_una;
/* on fallback we just need to ignore snd_una, as this is really
* plain TCP
*/
if (__mptcp_check_fallback(msk))
atomic64_set(&msk->snd_una, msk->write_seq);
snd_una = atomic64_read(&msk->snd_una);
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
break;
dfrag_clear(sk, dfrag);
cleaned = true;
}
dfrag = mptcp_rtx_head(sk);
if (dfrag && after64(snd_una, dfrag->data_seq)) {
u64 delta = snd_una - dfrag->data_seq;
if (WARN_ON_ONCE(delta > dfrag->data_len))
goto out;
dfrag->data_seq += delta;
dfrag->offset += delta;
dfrag->data_len -= delta;
dfrag_uncharge(sk, delta);
cleaned = true;
}
out:
if (cleaned)
sk_mem_reclaim_partial(sk);
}
static void mptcp_clean_una_wakeup(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
mptcp_clean_una(sk);
/* Only wake up writers if a subflow is ready */
if (mptcp_is_writeable(msk)) {
set_bit(MPTCP_SEND_SPACE, &msk->flags);
smp_mb__after_atomic();
/* set SEND_SPACE before sk_stream_write_space clears
* NOSPACE
*/
sk_stream_write_space(sk);
}
}
/* ensure we get enough memory for the frag hdr, beyond some minimal amount of
* data
*/
static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
{
if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
pfrag, sk->sk_allocation)))
return true;
sk->sk_prot->enter_memory_pressure(sk);
sk_stream_moderate_sndbuf(sk);
return false;
}
static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
int orig_offset)
{
int offset = ALIGN(orig_offset, sizeof(long));
struct mptcp_data_frag *dfrag;
dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
dfrag->data_len = 0;
dfrag->data_seq = msk->write_seq;
dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
dfrag->offset = offset + sizeof(struct mptcp_data_frag);
dfrag->page = pfrag->page;
return dfrag;
}
static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
struct msghdr *msg, struct mptcp_data_frag *dfrag,
long *timeo, int *pmss_now,
int *ps_goal)
{
int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0;
bool dfrag_collapsed, can_collapse = false;
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_ext *mpext = NULL;
bool retransmission = !!dfrag;
struct sk_buff *skb, *tail;
struct page_frag *pfrag;
struct page *page;
u64 *write_seq;
size_t psize;
/* use the mptcp page cache so that we can easily move the data
* from one substream to another, but do per subflow memory accounting
* Note: pfrag is used only !retransmission, but the compiler if
* fooled into a warning if we don't init here
*/
pfrag = sk_page_frag(sk);
if (!retransmission) {
write_seq = &msk->write_seq;
page = pfrag->page;
} else {
write_seq = &dfrag->data_seq;
page = dfrag->page;
}
/* compute copy limit */
mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags);
*pmss_now = mss_now;
*ps_goal = size_goal;
avail_size = size_goal;
skb = tcp_write_queue_tail(ssk);
if (skb) {
mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
/* Limit the write to the size available in the
* current skb, if any, so that we create at most a new skb.
* Explicitly tells TCP internals to avoid collapsing on later
* queue management operation, to avoid breaking the ext <->
* SSN association set here
*/
can_collapse = (size_goal - skb->len > 0) &&
mptcp_skb_can_collapse_to(*write_seq, skb, mpext);
if (!can_collapse)
TCP_SKB_CB(skb)->eor = 1;
else
avail_size = size_goal - skb->len;
}
if (!retransmission) {
/* reuse tail pfrag, if possible, or carve a new one from the
* page allocator
*/
dfrag = mptcp_rtx_tail(sk);
offset = pfrag->offset;
dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
if (!dfrag_collapsed) {
dfrag = mptcp_carve_data_frag(msk, pfrag, offset);
offset = dfrag->offset;
frag_truesize = dfrag->overhead;
}
psize = min_t(size_t, pfrag->size - offset, avail_size);
/* Copy to page */
pr_debug("left=%zu", msg_data_left(msg));
psize = copy_page_from_iter(pfrag->page, offset,
min_t(size_t, msg_data_left(msg),
psize),
&msg->msg_iter);
pr_debug("left=%zu", msg_data_left(msg));
if (!psize)
return -EINVAL;
if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) {
iov_iter_revert(&msg->msg_iter, psize);
return -ENOMEM;
}
} else {
offset = dfrag->offset;
psize = min_t(size_t, dfrag->data_len, avail_size);
}
/* tell the TCP stack to delay the push so that we can safely
* access the skb after the sendpages call
*/
ret = do_tcp_sendpages(ssk, page, offset, psize,
msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT);
if (ret <= 0) {
if (!retransmission)
iov_iter_revert(&msg->msg_iter, psize);
return ret;
}
frag_truesize += ret;
if (!retransmission) {
if (unlikely(ret < psize))
iov_iter_revert(&msg->msg_iter, psize - ret);
/* send successful, keep track of sent data for mptcp-level
* retransmission
*/
dfrag->data_len += ret;
if (!dfrag_collapsed) {
get_page(dfrag->page);
list_add_tail(&dfrag->list, &msk->rtx_queue);
sk_wmem_queued_add(sk, frag_truesize);
} else {
sk_wmem_queued_add(sk, ret);
}
/* charge data on mptcp rtx queue to the master socket
* Note: we charge such data both to sk and ssk
*/
sk->sk_forward_alloc -= frag_truesize;
}
/* if the tail skb extension is still the cached one, collapsing
* really happened. Note: we can't check for 'same skb' as the sk_buff
* hdr on tail can be transmitted, freed and re-allocated by the
* do_tcp_sendpages() call
*/
tail = tcp_write_queue_tail(ssk);
if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) {
WARN_ON_ONCE(!can_collapse);
mpext->data_len += ret;
goto out;
}
skb = tcp_write_queue_tail(ssk);
mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext);
msk->cached_ext = NULL;
memset(mpext, 0, sizeof(*mpext));
mpext->data_seq = *write_seq;
mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
mpext->data_len = ret;
mpext->use_map = 1;
mpext->dsn64 = 1;
pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
mpext->data_seq, mpext->subflow_seq, mpext->data_len,
mpext->dsn64);
out:
if (!retransmission)
pfrag->offset += frag_truesize;
WRITE_ONCE(*write_seq, *write_seq + ret);
mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
return ret;
}
static void mptcp_nospace(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
clear_bit(MPTCP_SEND_SPACE, &msk->flags);
smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
struct socket *sock = READ_ONCE(ssk->sk_socket);
/* enables ssk->write_space() callbacks */
if (sock)
set_bit(SOCK_NOSPACE, &sock->flags);
}
}
static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
{
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
/* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */
if (subflow->request_join && !subflow->fully_established)
return false;
/* only send if our side has not closed yet */
return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT));
}
#define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
sizeof(struct tcphdr) - \
MAX_TCP_OPTION_SPACE - \
sizeof(struct ipv6hdr) - \
sizeof(struct frag_hdr))
struct subflow_send_info {
struct sock *ssk;
u64 ratio;
};
static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk,
u32 *sndbuf)
{
struct subflow_send_info send_info[2];
struct mptcp_subflow_context *subflow;
int i, nr_active = 0;
struct sock *ssk;
u64 ratio;
u32 pace;
sock_owned_by_me((struct sock *)msk);
*sndbuf = 0;
if (!mptcp_ext_cache_refill(msk))
return NULL;
if (__mptcp_check_fallback(msk)) {
if (!msk->first)
return NULL;
*sndbuf = msk->first->sk_sndbuf;
return sk_stream_memory_free(msk->first) ? msk->first : NULL;
}
/* re-use last subflow, if the burst allow that */
if (msk->last_snd && msk->snd_burst > 0 &&
sk_stream_memory_free(msk->last_snd) &&
mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
mptcp_for_each_subflow(msk, subflow) {
ssk = mptcp_subflow_tcp_sock(subflow);
*sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf);
}
return msk->last_snd;
}
/* pick the subflow with the lower wmem/wspace ratio */
for (i = 0; i < 2; ++i) {
send_info[i].ssk = NULL;
send_info[i].ratio = -1;
}
mptcp_for_each_subflow(msk, subflow) {
ssk = mptcp_subflow_tcp_sock(subflow);
if (!mptcp_subflow_active(subflow))
continue;
nr_active += !subflow->backup;
*sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf);
if (!sk_stream_memory_free(subflow->tcp_sock))
continue;
pace = READ_ONCE(ssk->sk_pacing_rate);
if (!pace)
continue;
ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
pace);
if (ratio < send_info[subflow->backup].ratio) {
send_info[subflow->backup].ssk = ssk;
send_info[subflow->backup].ratio = ratio;
}
}
pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld",
msk, nr_active, send_info[0].ssk, send_info[0].ratio,
send_info[1].ssk, send_info[1].ratio);
/* pick the best backup if no other subflow is active */
if (!nr_active)
send_info[0].ssk = send_info[1].ssk;
if (send_info[0].ssk) {
msk->last_snd = send_info[0].ssk;
msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
sk_stream_wspace(msk->last_snd));
return msk->last_snd;
}
return NULL;
}
static void ssk_check_wmem(struct mptcp_sock *msk)
{
if (unlikely(!mptcp_is_writeable(msk)))
mptcp_nospace(msk);
}
static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
{
int mss_now = 0, size_goal = 0, ret = 0;
struct mptcp_sock *msk = mptcp_sk(sk);
struct page_frag *pfrag;
size_t copied = 0;
struct sock *ssk;
u32 sndbuf;
bool tx_ok;
long timeo;
if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
return -EOPNOTSUPP;
lock_sock(sk);
timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
ret = sk_stream_wait_connect(sk, &timeo);
if (ret)
goto out;
}
pfrag = sk_page_frag(sk);
restart:
mptcp_clean_una(sk);
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
ret = -EPIPE;
goto out;
}
__mptcp_flush_join_list(msk);
ssk = mptcp_subflow_get_send(msk, &sndbuf);
while (!sk_stream_memory_free(sk) ||
!ssk ||
!mptcp_page_frag_refill(ssk, pfrag)) {
if (ssk) {
/* make sure retransmit timer is
* running before we wait for memory.
*
* The retransmit timer might be needed
* to make the peer send an up-to-date
* MPTCP Ack.
*/
mptcp_set_timeout(sk, ssk);
if (!mptcp_timer_pending(sk))
mptcp_reset_timer(sk);
}
mptcp_nospace(msk);
ret = sk_stream_wait_memory(sk, &timeo);
if (ret)
goto out;
mptcp_clean_una(sk);
ssk = mptcp_subflow_get_send(msk, &sndbuf);
if (list_empty(&msk->conn_list)) {
ret = -ENOTCONN;
goto out;
}
}
/* do auto tuning */
if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
sndbuf > READ_ONCE(sk->sk_sndbuf))
WRITE_ONCE(sk->sk_sndbuf, sndbuf);
pr_debug("conn_list->subflow=%p", ssk);
lock_sock(ssk);
tx_ok = msg_data_left(msg);
while (tx_ok) {
ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now,
&size_goal);
if (ret < 0) {
if (ret == -EAGAIN && timeo > 0) {
mptcp_set_timeout(sk, ssk);
release_sock(ssk);
goto restart;
}
break;
}
/* burst can be negative, we will try move to the next subflow
* at selection time, if possible.
*/
msk->snd_burst -= ret;
copied += ret;
tx_ok = msg_data_left(msg);
if (!tx_ok)
break;
if (!sk_stream_memory_free(ssk) ||
!mptcp_page_frag_refill(ssk, pfrag) ||
!mptcp_ext_cache_refill(msk)) {
tcp_push(ssk, msg->msg_flags, mss_now,
tcp_sk(ssk)->nonagle, size_goal);
mptcp_set_timeout(sk, ssk);
release_sock(ssk);
goto restart;
}
/* memory is charged to mptcp level socket as well, i.e.
* if msg is very large, mptcp socket may run out of buffer
* space. mptcp_clean_una() will release data that has
* been acked at mptcp level in the mean time, so there is
* a good chance we can continue sending data right away.
*
* Normally, when the tcp subflow can accept more data, then
* so can the MPTCP socket. However, we need to cope with
* peers that might lag behind in their MPTCP-level
* acknowledgements, i.e. data might have been acked at
* tcp level only. So, we must also check the MPTCP socket
* limits before we send more data.
*/
if (unlikely(!sk_stream_memory_free(sk))) {
tcp_push(ssk, msg->msg_flags, mss_now,
tcp_sk(ssk)->nonagle, size_goal);
mptcp_clean_una(sk);
if (!sk_stream_memory_free(sk)) {
/* can't send more for now, need to wait for
* MPTCP-level ACKs from peer.
*
* Wakeup will happen via mptcp_clean_una().
*/
mptcp_set_timeout(sk, ssk);
release_sock(ssk);
goto restart;
}
}
}
mptcp_set_timeout(sk, ssk);
if (copied) {
tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle,
size_goal);
/* start the timer, if it's not pending */
if (!mptcp_timer_pending(sk))
mptcp_reset_timer(sk);
}
release_sock(ssk);
out:
ssk_check_wmem(msk);
release_sock(sk);
return copied ? : ret;
}
static void mptcp_wait_data(struct sock *sk, long *timeo)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
struct mptcp_sock *msk = mptcp_sk(sk);
add_wait_queue(sk_sleep(sk), &wait);
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
sk_wait_event(sk, timeo,
test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
remove_wait_queue(sk_sleep(sk), &wait);
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
struct msghdr *msg,
size_t len)
{
struct sock *sk = (struct sock *)msk;
struct sk_buff *skb;
int copied = 0;
while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
u32 offset = MPTCP_SKB_CB(skb)->offset;
u32 data_len = skb->len - offset;
u32 count = min_t(size_t, len - copied, data_len);
int err;
err = skb_copy_datagram_msg(skb, offset, msg, count);
if (unlikely(err < 0)) {
if (!copied)
return err;
break;
}
copied += count;
if (count < data_len) {
MPTCP_SKB_CB(skb)->offset += count;
break;
}
__skb_unlink(skb, &sk->sk_receive_queue);
__kfree_skb(skb);
if (copied >= len)
break;
}
return copied;
}
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
/* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
*
* Only difference: Use highest rtt estimate of the subflows in use.
*/
static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
{
struct mptcp_subflow_context *subflow;
struct sock *sk = (struct sock *)msk;
u32 time, advmss = 1;
u64 rtt_us, mstamp;
sock_owned_by_me(sk);
if (copied <= 0)
return;
msk->rcvq_space.copied += copied;
mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
rtt_us = msk->rcvq_space.rtt_us;
if (rtt_us && time < (rtt_us >> 3))
return;
rtt_us = 0;
mptcp_for_each_subflow(msk, subflow) {
const struct tcp_sock *tp;
u64 sf_rtt_us;
u32 sf_advmss;
tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
sf_advmss = READ_ONCE(tp->advmss);
rtt_us = max(sf_rtt_us, rtt_us);
advmss = max(sf_advmss, advmss);
}
msk->rcvq_space.rtt_us = rtt_us;
if (time < (rtt_us >> 3) || rtt_us == 0)
return;
if (msk->rcvq_space.copied <= msk->rcvq_space.space)
goto new_measure;
if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
int rcvmem, rcvbuf;
u64 rcvwin, grow;
rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
do_div(grow, msk->rcvq_space.space);
rcvwin += (grow << 1);
rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
while (tcp_win_from_space(sk, rcvmem) < advmss)
rcvmem += 128;
do_div(rcvwin, advmss);
rcvbuf = min_t(u64, rcvwin * rcvmem,
sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
if (rcvbuf > sk->sk_rcvbuf) {
u32 window_clamp;
window_clamp = tcp_win_from_space(sk, rcvbuf);
WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
/* Make subflows follow along. If we do not do this, we
* get drops at subflow level if skbs can't be moved to
* the mptcp rx queue fast enough (announced rcv_win can
* exceed ssk->sk_rcvbuf).
*/
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk;
bool slow;
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
ssk = mptcp_subflow_tcp_sock(subflow);
slow = lock_sock_fast(ssk);
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
tcp_sk(ssk)->window_clamp = window_clamp;
tcp_cleanup_rbuf(ssk, 1);
unlock_sock_fast(ssk, slow);
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
}
}
}
msk->rcvq_space.space = msk->rcvq_space.copied;
new_measure:
msk->rcvq_space.copied = 0;
msk->rcvq_space.time = mstamp;
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
static bool __mptcp_move_skbs(struct mptcp_sock *msk)
{
unsigned int moved = 0;
bool done;
/* avoid looping forever below on racing close */
if (((struct sock *)msk)->sk_state == TCP_CLOSE)
return false;
__mptcp_flush_join_list(msk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
do {
struct sock *ssk = mptcp_subflow_recv_lookup(msk);
bool slowpath;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
if (!ssk)
break;
slowpath = lock_sock_fast(ssk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
unlock_sock_fast(ssk, slowpath);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
} while (!done);
if (mptcp_ofo_queue(msk) || moved > 0) {
mptcp_check_data_fin((struct sock *)msk);
return true;
}
return false;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
}
static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags, int *addr_len)
{
struct mptcp_sock *msk = mptcp_sk(sk);
int copied = 0;
int target;
long timeo;
if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT))
return -EOPNOTSUPP;
lock_sock(sk);
timeo = sock_rcvtimeo(sk, nonblock);
len = min_t(size_t, len, INT_MAX);
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
__mptcp_flush_join_list(msk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
while (len > (size_t)copied) {
int bytes_read;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied);
if (unlikely(bytes_read < 0)) {
if (!copied)
copied = bytes_read;
goto out_err;
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
copied += bytes_read;
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
if (skb_queue_empty(&sk->sk_receive_queue) &&
__mptcp_move_skbs(msk))
continue;
/* only the master socket status is relevant here. The exit
* conditions mirror closely tcp_recvmsg()
*/
if (copied >= target)
break;
if (copied) {
if (sk->sk_err ||
sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
!timeo ||
signal_pending(current))
break;
} else {
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
mptcp_check_for_eof(msk);
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
copied = -ENOTCONN;
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
pr_debug("block timeout %ld", timeo);
mptcp_wait_data(sk, &timeo);
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
if (skb_queue_empty(&sk->sk_receive_queue)) {
/* entire backlog drained, clear DATA_READY. */
clear_bit(MPTCP_DATA_READY, &msk->flags);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
/* .. race-breaker: ssk might have gotten new data
* after last __mptcp_move_skbs() returned false.
*/
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
if (unlikely(__mptcp_move_skbs(msk)))
set_bit(MPTCP_DATA_READY, &msk->flags);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
/* data to read but mptcp_wait_data() cleared DATA_READY */
set_bit(MPTCP_DATA_READY, &msk->flags);
}
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
out_err:
pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
msk, test_bit(MPTCP_DATA_READY, &msk->flags),
skb_queue_empty(&sk->sk_receive_queue), copied);
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
mptcp_rcv_space_adjust(msk, copied);
release_sock(sk);
return copied;
}
static void mptcp_retransmit_handler(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) {
mptcp_stop_timer(sk);
} else {
set_bit(MPTCP_WORK_RTX, &msk->flags);
if (schedule_work(&msk->work))
sock_hold(sk);
}
}
static void mptcp_retransmit_timer(struct timer_list *t)
{
struct inet_connection_sock *icsk = from_timer(icsk, t,
icsk_retransmit_timer);
struct sock *sk = &icsk->icsk_inet.sk;
bh_lock_sock(sk);
if (!sock_owned_by_user(sk)) {
mptcp_retransmit_handler(sk);
} else {
/* delegate our work to tcp_release_cb() */
if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED,
&sk->sk_tsq_flags))
sock_hold(sk);
}
bh_unlock_sock(sk);
sock_put(sk);
}
/* Find an idle subflow. Return NULL if there is unacked data at tcp
* level.
*
* A backup subflow is returned only if that is the only kind available.
*/
static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow;
struct sock *backup = NULL;
sock_owned_by_me((const struct sock *)msk);
if (__mptcp_check_fallback(msk))
return msk->first;
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (!mptcp_subflow_active(subflow))
continue;
/* still data outstanding at TCP level? Don't retransmit. */
if (!tcp_write_queue_empty(ssk))
return NULL;
if (subflow->backup) {
if (!backup)
backup = ssk;
continue;
}
return ssk;
}
return backup;
}
/* subflow sockets can be either outgoing (connect) or incoming
* (accept).
*
* Outgoing subflows use in-kernel sockets.
* Incoming subflows do not have their own 'struct socket' allocated,
* so we need to use tcp_close() after detaching them from the mptcp
* parent socket.
*/
void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
struct mptcp_subflow_context *subflow,
long timeout)
{
struct socket *sock = READ_ONCE(ssk->sk_socket);
list_del(&subflow->node);
if (sock && sock != sk->sk_socket) {
/* outgoing subflow */
sock_release(sock);
} else {
/* incoming subflow */
tcp_close(ssk, timeout);
}
}
mptcp: add dummy icsk_sync_mss() syzbot noted that the master MPTCP socket lacks the icsk_sync_mss callback, and was able to trigger a null pointer dereference: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 8e171067 P4D 8e171067 PUD 93fa2067 PMD 0 Oops: 0010 [#1] PREEMPT SMP KASAN CPU: 0 PID: 8984 Comm: syz-executor066 Not tainted 5.6.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:0x0 Code: Bad RIP value. RSP: 0018:ffffc900020b7b80 EFLAGS: 00010246 RAX: 1ffff110124ba600 RBX: 0000000000000000 RCX: ffff88809fefa600 RDX: ffff8880994cdb18 RSI: 0000000000000000 RDI: ffff8880925d3140 RBP: ffffc900020b7bd8 R08: ffffffff870225be R09: fffffbfff140652a R10: fffffbfff140652a R11: 0000000000000000 R12: ffff8880925d35d0 R13: ffff8880925d3140 R14: dffffc0000000000 R15: 1ffff110124ba6ba FS: 0000000001a0b880(0000) GS:ffff8880aea00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 00000000a6d6f000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: cipso_v4_sock_setattr+0x34b/0x470 net/ipv4/cipso_ipv4.c:1888 netlbl_sock_setattr+0x2a7/0x310 net/netlabel/netlabel_kapi.c:989 smack_netlabel security/smack/smack_lsm.c:2425 [inline] smack_inode_setsecurity+0x3da/0x4a0 security/smack/smack_lsm.c:2716 security_inode_setsecurity+0xb2/0x140 security/security.c:1364 __vfs_setxattr_noperm+0x16f/0x3e0 fs/xattr.c:197 vfs_setxattr fs/xattr.c:224 [inline] setxattr+0x335/0x430 fs/xattr.c:451 __do_sys_fsetxattr fs/xattr.c:506 [inline] __se_sys_fsetxattr+0x130/0x1b0 fs/xattr.c:495 __x64_sys_fsetxattr+0xbf/0xd0 fs/xattr.c:495 do_syscall_64+0xf7/0x1c0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x440199 Code: 18 89 d0 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 fb 13 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007ffcadc19e48 EFLAGS: 00000246 ORIG_RAX: 00000000000000be RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 0000000000440199 RDX: 0000000020000200 RSI: 00000000200001c0 RDI: 0000000000000003 RBP: 00000000006ca018 R08: 0000000000000003 R09: 00000000004002c8 R10: 0000000000000009 R11: 0000000000000246 R12: 0000000000401a20 R13: 0000000000401ab0 R14: 0000000000000000 R15: 0000000000000000 Modules linked in: CR2: 0000000000000000 Address the issue adding a dummy icsk_sync_mss callback. To properly sync the subflows mss and options list we need some additional infrastructure, which will land to net-next. Reported-by: syzbot+f4dfece964792d80b139@syzkaller.appspotmail.com Fixes: 2303f994b3e1 ("mptcp: Associate MPTCP context with TCP socket") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 11:19:03 +00:00
static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
{
return 0;
}
static void pm_work(struct mptcp_sock *msk)
{
struct mptcp_pm_data *pm = &msk->pm;
spin_lock_bh(&msk->pm.lock);
pr_debug("msk=%p status=%x", msk, pm->status);
if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) {
pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED);
mptcp_pm_nl_add_addr_received(msk);
}
if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) {
pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED);
mptcp_pm_nl_rm_addr_received(msk);
}
if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) {
pm->status &= ~BIT(MPTCP_PM_ESTABLISHED);
mptcp_pm_nl_fully_established(msk);
}
if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) {
pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED);
mptcp_pm_nl_subflow_established(msk);
}
spin_unlock_bh(&msk->pm.lock);
}
static void __mptcp_close_subflow(struct mptcp_sock *msk)
{
struct mptcp_subflow_context *subflow, *tmp;
list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (inet_sk_state_load(ssk) != TCP_CLOSE)
continue;
__mptcp_close_ssk((struct sock *)msk, ssk, subflow, 0);
}
}
static void mptcp_worker(struct work_struct *work)
{
struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
struct sock *ssk, *sk = &msk->sk.icsk_inet.sk;
int orig_len, orig_offset, mss_now = 0, size_goal = 0;
struct mptcp_data_frag *dfrag;
u64 orig_write_seq;
size_t copied = 0;
struct msghdr msg = {
.msg_flags = MSG_DONTWAIT,
};
long timeo = 0;
lock_sock(sk);
mptcp_clean_una_wakeup(sk);
mptcp_check_data_fin_ack(sk);
__mptcp_flush_join_list(msk);
if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
__mptcp_close_subflow(msk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
__mptcp_move_skbs(msk);
if (msk->pm.status)
pm_work(msk);
if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
mptcp_check_for_eof(msk);
mptcp_check_data_fin(sk);
if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
goto unlock;
dfrag = mptcp_rtx_head(sk);
if (!dfrag)
goto unlock;
if (!mptcp_ext_cache_refill(msk))
goto reset_unlock;
ssk = mptcp_subflow_get_retrans(msk);
if (!ssk)
goto reset_unlock;
lock_sock(ssk);
orig_len = dfrag->data_len;
orig_offset = dfrag->offset;
orig_write_seq = dfrag->data_seq;
while (dfrag->data_len > 0) {
int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo,
&mss_now, &size_goal);
if (ret < 0)
break;
MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
copied += ret;
dfrag->data_len -= ret;
dfrag->offset += ret;
if (!mptcp_ext_cache_refill(msk))
break;
}
if (copied)
tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle,
size_goal);
dfrag->data_seq = orig_write_seq;
dfrag->offset = orig_offset;
dfrag->data_len = orig_len;
mptcp_set_timeout(sk, ssk);
release_sock(ssk);
reset_unlock:
if (!mptcp_timer_pending(sk))
mptcp_reset_timer(sk);
unlock:
release_sock(sk);
sock_put(sk);
}
static int __mptcp_init_sock(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
spin_lock_init(&msk->join_list_lock);
INIT_LIST_HEAD(&msk->conn_list);
INIT_LIST_HEAD(&msk->join_list);
INIT_LIST_HEAD(&msk->rtx_queue);
__set_bit(MPTCP_SEND_SPACE, &msk->flags);
INIT_WORK(&msk->work, mptcp_worker);
msk->out_of_order_queue = RB_ROOT;
msk->first = NULL;
mptcp: add dummy icsk_sync_mss() syzbot noted that the master MPTCP socket lacks the icsk_sync_mss callback, and was able to trigger a null pointer dereference: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 8e171067 P4D 8e171067 PUD 93fa2067 PMD 0 Oops: 0010 [#1] PREEMPT SMP KASAN CPU: 0 PID: 8984 Comm: syz-executor066 Not tainted 5.6.0-rc2-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:0x0 Code: Bad RIP value. RSP: 0018:ffffc900020b7b80 EFLAGS: 00010246 RAX: 1ffff110124ba600 RBX: 0000000000000000 RCX: ffff88809fefa600 RDX: ffff8880994cdb18 RSI: 0000000000000000 RDI: ffff8880925d3140 RBP: ffffc900020b7bd8 R08: ffffffff870225be R09: fffffbfff140652a R10: fffffbfff140652a R11: 0000000000000000 R12: ffff8880925d35d0 R13: ffff8880925d3140 R14: dffffc0000000000 R15: 1ffff110124ba6ba FS: 0000000001a0b880(0000) GS:ffff8880aea00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 00000000a6d6f000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: cipso_v4_sock_setattr+0x34b/0x470 net/ipv4/cipso_ipv4.c:1888 netlbl_sock_setattr+0x2a7/0x310 net/netlabel/netlabel_kapi.c:989 smack_netlabel security/smack/smack_lsm.c:2425 [inline] smack_inode_setsecurity+0x3da/0x4a0 security/smack/smack_lsm.c:2716 security_inode_setsecurity+0xb2/0x140 security/security.c:1364 __vfs_setxattr_noperm+0x16f/0x3e0 fs/xattr.c:197 vfs_setxattr fs/xattr.c:224 [inline] setxattr+0x335/0x430 fs/xattr.c:451 __do_sys_fsetxattr fs/xattr.c:506 [inline] __se_sys_fsetxattr+0x130/0x1b0 fs/xattr.c:495 __x64_sys_fsetxattr+0xbf/0xd0 fs/xattr.c:495 do_syscall_64+0xf7/0x1c0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x440199 Code: 18 89 d0 c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 fb 13 fc ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007ffcadc19e48 EFLAGS: 00000246 ORIG_RAX: 00000000000000be RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 0000000000440199 RDX: 0000000020000200 RSI: 00000000200001c0 RDI: 0000000000000003 RBP: 00000000006ca018 R08: 0000000000000003 R09: 00000000004002c8 R10: 0000000000000009 R11: 0000000000000246 R12: 0000000000401a20 R13: 0000000000401ab0 R14: 0000000000000000 R15: 0000000000000000 Modules linked in: CR2: 0000000000000000 Address the issue adding a dummy icsk_sync_mss callback. To properly sync the subflows mss and options list we need some additional infrastructure, which will land to net-next. Reported-by: syzbot+f4dfece964792d80b139@syzkaller.appspotmail.com Fixes: 2303f994b3e1 ("mptcp: Associate MPTCP context with TCP socket") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 11:19:03 +00:00
inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
mptcp_pm_data_init(msk);
/* re-use the csk retrans timer for MPTCP-level retrans */
timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
return 0;
}
static int mptcp_init_sock(struct sock *sk)
{
struct net *net = sock_net(sk);
int ret;
ret = __mptcp_init_sock(sk);
if (ret)
return ret;
if (!mptcp_is_enabled(net))
return -ENOPROTOOPT;
if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
return -ENOMEM;
ret = __mptcp_socket_create(mptcp_sk(sk));
if (ret)
return ret;
sk_sockets_allocated_inc(sk);
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
return 0;
}
static void __mptcp_clear_xmit(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct mptcp_data_frag *dtmp, *dfrag;
sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
dfrag_clear(sk, dfrag);
}
static void mptcp_cancel_work(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (cancel_work_sync(&msk->work))
sock_put(sk);
}
void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
{
lock_sock(ssk);
switch (ssk->sk_state) {
case TCP_LISTEN:
if (!(how & RCV_SHUTDOWN))
break;
fallthrough;
case TCP_SYN_SENT:
tcp_disconnect(ssk, O_NONBLOCK);
break;
default:
if (__mptcp_check_fallback(mptcp_sk(sk))) {
pr_debug("Fallback");
ssk->sk_shutdown |= how;
tcp_shutdown(ssk, how);
} else {
pr_debug("Sending DATA_FIN on subflow %p", ssk);
mptcp_set_timeout(sk, ssk);
tcp_send_ack(ssk);
}
break;
}
release_sock(ssk);
}
static const unsigned char new_state[16] = {
/* current state: new state: action: */
[0 /* (Invalid) */] = TCP_CLOSE,
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
[TCP_SYN_SENT] = TCP_CLOSE,
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
[TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
[TCP_CLOSE] = TCP_CLOSE,
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
[TCP_LAST_ACK] = TCP_LAST_ACK,
[TCP_LISTEN] = TCP_CLOSE,
[TCP_CLOSING] = TCP_CLOSING,
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
};
static int mptcp_close_state(struct sock *sk)
{
int next = (int)new_state[sk->sk_state];
int ns = next & TCP_STATE_MASK;
inet_sk_state_store(sk, ns);
return next & TCP_ACTION_FIN;
}
mptcp: fix use-after-free on tcp fallback When an mptcp socket connects to a tcp peer or when a middlebox interferes with tcp options, mptcp needs to fall back to plain tcp. Problem is that mptcp is trying to be too clever in this case: It attempts to close the mptcp meta sk and transparently replace it with the (only) subflow tcp sk. Unfortunately, this is racy -- the socket is already exposed to userspace. Any parallel calls to send/recv/setsockopt etc. can cause use-after-free: BUG: KASAN: use-after-free in atomic_try_cmpxchg include/asm-generic/atomic-instrumented.h:693 [inline] CPU: 1 PID: 2083 Comm: syz-executor.1 Not tainted 5.5.0 #2 atomic_try_cmpxchg include/asm-generic/atomic-instrumented.h:693 [inline] queued_spin_lock include/asm-generic/qspinlock.h:78 [inline] do_raw_spin_lock include/linux/spinlock.h:181 [inline] __raw_spin_lock_bh include/linux/spinlock_api_smp.h:136 [inline] _raw_spin_lock_bh+0x71/0xd0 kernel/locking/spinlock.c:175 spin_lock_bh include/linux/spinlock.h:343 [inline] __lock_sock+0x105/0x190 net/core/sock.c:2414 lock_sock_nested+0x10f/0x140 net/core/sock.c:2938 lock_sock include/net/sock.h:1516 [inline] mptcp_setsockopt+0x2f/0x1f0 net/mptcp/protocol.c:800 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xb7/0x3d0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x44/0xa9 While the use-after-free can be resolved, there is another problem: sock->ops and sock->sk assignments are not atomic, i.e. we may get calls into mptcp functions with sock->sk already pointing at the subflow socket, or calls into tcp functions with a mptcp meta sk. Remove the fallback code and call the relevant functions for the (only) subflow in case the mptcp socket is connected to tcp peer. Reported-by: Christoph Paasch <cpaasch@apple.com> Diagnosed-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Tested-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-04 17:12:30 +00:00
static void mptcp_close(struct sock *sk, long timeout)
{
struct mptcp_subflow_context *subflow, *tmp;
struct mptcp_sock *msk = mptcp_sk(sk);
mptcp: avoid a lockdep splat when mcast group was joined syzbot triggered following lockdep splat: ffffffff82d2cd40 (rtnl_mutex){+.+.}, at: ip_mc_drop_socket+0x52/0x180 but task is already holding lock: ffff8881187a2310 (sk_lock-AF_INET){+.+.}, at: mptcp_close+0x18/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_INET){+.+.}: lock_acquire+0xee/0x230 lock_sock_nested+0x89/0xc0 do_ip_setsockopt.isra.0+0x335/0x22f0 ip_setsockopt+0x35/0x60 tcp_setsockopt+0x5d/0x90 __sys_setsockopt+0xf3/0x190 __x64_sys_setsockopt+0x61/0x70 do_syscall_64+0x72/0x300 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (rtnl_mutex){+.+.}: check_prevs_add+0x2b7/0x1210 __lock_acquire+0x10b6/0x1400 lock_acquire+0xee/0x230 __mutex_lock+0x120/0xc70 ip_mc_drop_socket+0x52/0x180 inet_release+0x36/0xe0 __sock_release+0xfd/0x130 __mptcp_close+0xa8/0x1f0 inet_release+0x7f/0xe0 __sock_release+0x69/0x130 sock_close+0x18/0x20 __fput+0x179/0x400 task_work_run+0xd5/0x110 do_exit+0x685/0x1510 do_group_exit+0x7e/0x170 __x64_sys_exit_group+0x28/0x30 do_syscall_64+0x72/0x300 entry_SYSCALL_64_after_hwframe+0x49/0xbe The trigger is: socket(AF_INET, SOCK_STREAM, 0x106 /* IPPROTO_MPTCP */) = 4 setsockopt(4, SOL_IP, MCAST_JOIN_GROUP, {gr_interface=7, gr_group={sa_family=AF_INET, sin_port=htons(20003), sin_addr=inet_addr("224.0.0.2")}}, 136) = 0 exit(0) Which results in a call to rtnl_lock while we are holding the parent mptcp socket lock via mptcp_close -> lock_sock(msk) -> inet_release -> ip_mc_drop_socket -> rtnl_lock(). >From lockdep point of view we thus have both 'rtnl_lock; lock_sock' and 'lock_sock; rtnl_lock'. Fix this by stealing the msk conn_list and doing the subflow close without holding the msk lock. Fixes: cec37a6e41aae7bf ("mptcp: Handle MP_CAPABLE options for outgoing connections") Reported-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-29 14:54:45 +00:00
LIST_HEAD(conn_list);
mptcp: fix use-after-free on tcp fallback When an mptcp socket connects to a tcp peer or when a middlebox interferes with tcp options, mptcp needs to fall back to plain tcp. Problem is that mptcp is trying to be too clever in this case: It attempts to close the mptcp meta sk and transparently replace it with the (only) subflow tcp sk. Unfortunately, this is racy -- the socket is already exposed to userspace. Any parallel calls to send/recv/setsockopt etc. can cause use-after-free: BUG: KASAN: use-after-free in atomic_try_cmpxchg include/asm-generic/atomic-instrumented.h:693 [inline] CPU: 1 PID: 2083 Comm: syz-executor.1 Not tainted 5.5.0 #2 atomic_try_cmpxchg include/asm-generic/atomic-instrumented.h:693 [inline] queued_spin_lock include/asm-generic/qspinlock.h:78 [inline] do_raw_spin_lock include/linux/spinlock.h:181 [inline] __raw_spin_lock_bh include/linux/spinlock_api_smp.h:136 [inline] _raw_spin_lock_bh+0x71/0xd0 kernel/locking/spinlock.c:175 spin_lock_bh include/linux/spinlock.h:343 [inline] __lock_sock+0x105/0x190 net/core/sock.c:2414 lock_sock_nested+0x10f/0x140 net/core/sock.c:2938 lock_sock include/net/sock.h:1516 [inline] mptcp_setsockopt+0x2f/0x1f0 net/mptcp/protocol.c:800 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xb7/0x3d0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x44/0xa9 While the use-after-free can be resolved, there is another problem: sock->ops and sock->sk assignments are not atomic, i.e. we may get calls into mptcp functions with sock->sk already pointing at the subflow socket, or calls into tcp functions with a mptcp meta sk. Remove the fallback code and call the relevant functions for the (only) subflow in case the mptcp socket is connected to tcp peer. Reported-by: Christoph Paasch <cpaasch@apple.com> Diagnosed-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Tested-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-04 17:12:30 +00:00
lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
if (sk->sk_state == TCP_LISTEN) {
inet_sk_state_store(sk, TCP_CLOSE);
goto cleanup;
} else if (sk->sk_state == TCP_CLOSE) {
goto cleanup;
}
if (__mptcp_check_fallback(msk)) {
goto update_state;
} else if (mptcp_close_state(sk)) {
pr_debug("Sending DATA_FIN sk=%p", sk);
WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
WRITE_ONCE(msk->snd_data_fin_enable, 1);
mptcp_for_each_subflow(msk, subflow) {
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK);
}
}
mptcp: fix use-after-free on tcp fallback When an mptcp socket connects to a tcp peer or when a middlebox interferes with tcp options, mptcp needs to fall back to plain tcp. Problem is that mptcp is trying to be too clever in this case: It attempts to close the mptcp meta sk and transparently replace it with the (only) subflow tcp sk. Unfortunately, this is racy -- the socket is already exposed to userspace. Any parallel calls to send/recv/setsockopt etc. can cause use-after-free: BUG: KASAN: use-after-free in atomic_try_cmpxchg include/asm-generic/atomic-instrumented.h:693 [inline] CPU: 1 PID: 2083 Comm: syz-executor.1 Not tainted 5.5.0 #2 atomic_try_cmpxchg include/asm-generic/atomic-instrumented.h:693 [inline] queued_spin_lock include/asm-generic/qspinlock.h:78 [inline] do_raw_spin_lock include/linux/spinlock.h:181 [inline] __raw_spin_lock_bh include/linux/spinlock_api_smp.h:136 [inline] _raw_spin_lock_bh+0x71/0xd0 kernel/locking/spinlock.c:175 spin_lock_bh include/linux/spinlock.h:343 [inline] __lock_sock+0x105/0x190 net/core/sock.c:2414 lock_sock_nested+0x10f/0x140 net/core/sock.c:2938 lock_sock include/net/sock.h:1516 [inline] mptcp_setsockopt+0x2f/0x1f0 net/mptcp/protocol.c:800 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xb7/0x3d0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x44/0xa9 While the use-after-free can be resolved, there is another problem: sock->ops and sock->sk assignments are not atomic, i.e. we may get calls into mptcp functions with sock->sk already pointing at the subflow socket, or calls into tcp functions with a mptcp meta sk. Remove the fallback code and call the relevant functions for the (only) subflow in case the mptcp socket is connected to tcp peer. Reported-by: Christoph Paasch <cpaasch@apple.com> Diagnosed-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Tested-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-04 17:12:30 +00:00
sk_stream_wait_close(sk, timeout);
update_state:
inet_sk_state_store(sk, TCP_CLOSE);
cleanup:
/* be sure to always acquire the join list lock, to sync vs
* mptcp_finish_join().
*/
spin_lock_bh(&msk->join_list_lock);
list_splice_tail_init(&msk->join_list, &msk->conn_list);
spin_unlock_bh(&msk->join_list_lock);
mptcp: avoid a lockdep splat when mcast group was joined syzbot triggered following lockdep splat: ffffffff82d2cd40 (rtnl_mutex){+.+.}, at: ip_mc_drop_socket+0x52/0x180 but task is already holding lock: ffff8881187a2310 (sk_lock-AF_INET){+.+.}, at: mptcp_close+0x18/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_INET){+.+.}: lock_acquire+0xee/0x230 lock_sock_nested+0x89/0xc0 do_ip_setsockopt.isra.0+0x335/0x22f0 ip_setsockopt+0x35/0x60 tcp_setsockopt+0x5d/0x90 __sys_setsockopt+0xf3/0x190 __x64_sys_setsockopt+0x61/0x70 do_syscall_64+0x72/0x300 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (rtnl_mutex){+.+.}: check_prevs_add+0x2b7/0x1210 __lock_acquire+0x10b6/0x1400 lock_acquire+0xee/0x230 __mutex_lock+0x120/0xc70 ip_mc_drop_socket+0x52/0x180 inet_release+0x36/0xe0 __sock_release+0xfd/0x130 __mptcp_close+0xa8/0x1f0 inet_release+0x7f/0xe0 __sock_release+0x69/0x130 sock_close+0x18/0x20 __fput+0x179/0x400 task_work_run+0xd5/0x110 do_exit+0x685/0x1510 do_group_exit+0x7e/0x170 __x64_sys_exit_group+0x28/0x30 do_syscall_64+0x72/0x300 entry_SYSCALL_64_after_hwframe+0x49/0xbe The trigger is: socket(AF_INET, SOCK_STREAM, 0x106 /* IPPROTO_MPTCP */) = 4 setsockopt(4, SOL_IP, MCAST_JOIN_GROUP, {gr_interface=7, gr_group={sa_family=AF_INET, sin_port=htons(20003), sin_addr=inet_addr("224.0.0.2")}}, 136) = 0 exit(0) Which results in a call to rtnl_lock while we are holding the parent mptcp socket lock via mptcp_close -> lock_sock(msk) -> inet_release -> ip_mc_drop_socket -> rtnl_lock(). >From lockdep point of view we thus have both 'rtnl_lock; lock_sock' and 'lock_sock; rtnl_lock'. Fix this by stealing the msk conn_list and doing the subflow close without holding the msk lock. Fixes: cec37a6e41aae7bf ("mptcp: Handle MP_CAPABLE options for outgoing connections") Reported-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-29 14:54:45 +00:00
list_splice_init(&msk->conn_list, &conn_list);
__mptcp_clear_xmit(sk);
mptcp: avoid a lockdep splat when mcast group was joined syzbot triggered following lockdep splat: ffffffff82d2cd40 (rtnl_mutex){+.+.}, at: ip_mc_drop_socket+0x52/0x180 but task is already holding lock: ffff8881187a2310 (sk_lock-AF_INET){+.+.}, at: mptcp_close+0x18/0x30 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_INET){+.+.}: lock_acquire+0xee/0x230 lock_sock_nested+0x89/0xc0 do_ip_setsockopt.isra.0+0x335/0x22f0 ip_setsockopt+0x35/0x60 tcp_setsockopt+0x5d/0x90 __sys_setsockopt+0xf3/0x190 __x64_sys_setsockopt+0x61/0x70 do_syscall_64+0x72/0x300 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (rtnl_mutex){+.+.}: check_prevs_add+0x2b7/0x1210 __lock_acquire+0x10b6/0x1400 lock_acquire+0xee/0x230 __mutex_lock+0x120/0xc70 ip_mc_drop_socket+0x52/0x180 inet_release+0x36/0xe0 __sock_release+0xfd/0x130 __mptcp_close+0xa8/0x1f0 inet_release+0x7f/0xe0 __sock_release+0x69/0x130 sock_close+0x18/0x20 __fput+0x179/0x400 task_work_run+0xd5/0x110 do_exit+0x685/0x1510 do_group_exit+0x7e/0x170 __x64_sys_exit_group+0x28/0x30 do_syscall_64+0x72/0x300 entry_SYSCALL_64_after_hwframe+0x49/0xbe The trigger is: socket(AF_INET, SOCK_STREAM, 0x106 /* IPPROTO_MPTCP */) = 4 setsockopt(4, SOL_IP, MCAST_JOIN_GROUP, {gr_interface=7, gr_group={sa_family=AF_INET, sin_port=htons(20003), sin_addr=inet_addr("224.0.0.2")}}, 136) = 0 exit(0) Which results in a call to rtnl_lock while we are holding the parent mptcp socket lock via mptcp_close -> lock_sock(msk) -> inet_release -> ip_mc_drop_socket -> rtnl_lock(). >From lockdep point of view we thus have both 'rtnl_lock; lock_sock' and 'lock_sock; rtnl_lock'. Fix this by stealing the msk conn_list and doing the subflow close without holding the msk lock. Fixes: cec37a6e41aae7bf ("mptcp: Handle MP_CAPABLE options for outgoing connections") Reported-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-29 14:54:45 +00:00
release_sock(sk);
list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
__mptcp_close_ssk(sk, ssk, subflow, timeout);
}
mptcp_cancel_work(sk);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
__skb_queue_purge(&sk->sk_receive_queue);
sk_common_release(sk);
}
static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
struct ipv6_pinfo *msk6 = inet6_sk(msk);
msk->sk_v6_daddr = ssk->sk_v6_daddr;
msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
if (msk6 && ssk6) {
msk6->saddr = ssk6->saddr;
msk6->flow_label = ssk6->flow_label;
}
#endif
inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
}
static int mptcp_disconnect(struct sock *sk, int flags)
{
/* Should never be called.
* inet_stream_connect() calls ->disconnect, but that
* refers to the subflow socket, not the mptcp one.
*/
WARN_ON_ONCE(1);
return 0;
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
{
unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
}
#endif
struct sock *mptcp_sk_clone(const struct sock *sk,
mptcp: move option parsing into mptcp_incoming_options() The mptcp_options_received structure carries several per packet flags (mp_capable, mp_join, etc.). Such fields must be cleared on each packet, even on dropped ones or packet not carrying any MPTCP options, but the current mptcp code clears them only on TCP option reset. On several races/corner cases we end-up with stray bits in incoming options, leading to WARN_ON splats. e.g.: [ 171.164906] Bad mapping: ssn=32714 map_seq=1 map_data_len=32713 [ 171.165006] WARNING: CPU: 1 PID: 5026 at net/mptcp/subflow.c:533 warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531) [ 171.167632] Modules linked in: ip6_vti ip_vti ip_gre ipip sit tunnel4 ip_tunnel geneve ip6_udp_tunnel udp_tunnel macsec macvtap tap ipvlan macvlan 8021q garp mrp xfrm_interface veth netdevsim nlmon dummy team bonding vcan bridge stp llc ip6_gre gre ip6_tunnel tunnel6 tun binfmt_misc intel_rapl_msr intel_rapl_common rfkill kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel joydev virtio_balloon pcspkr i2c_piix4 sunrpc ip_tables xfs libcrc32c crc32c_intel serio_raw virtio_console ata_generic virtio_blk virtio_net net_failover failover ata_piix libata [ 171.199464] CPU: 1 PID: 5026 Comm: repro Not tainted 5.7.0-rc1.mptcp_f227fdf5d388+ #95 [ 171.200886] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014 [ 171.202546] RIP: 0010:warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531) [ 171.206537] Code: c1 ea 03 0f b6 14 02 48 89 f8 83 e0 07 83 c0 03 38 d0 7c 04 84 d2 75 1d 8b 55 3c 44 89 e6 48 c7 c7 20 51 13 95 e8 37 8b 22 fe <0f> 0b 48 83 c4 08 5b 5d 41 5c c3 89 4c 24 04 e8 db d6 94 fe 8b 4c [ 171.220473] RSP: 0018:ffffc90000150560 EFLAGS: 00010282 [ 171.221639] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 171.223108] RDX: 0000000000000000 RSI: 0000000000000008 RDI: fffff5200002a09e [ 171.224388] RBP: ffff8880aa6e3c00 R08: 0000000000000001 R09: fffffbfff2ec9955 [ 171.225706] R10: ffffffff9764caa7 R11: fffffbfff2ec9954 R12: 0000000000007fca [ 171.227211] R13: ffff8881066f4a7f R14: ffff8880aa6e3c00 R15: 0000000000000020 [ 171.228460] FS: 00007f8623719740(0000) GS:ffff88810be00000(0000) knlGS:0000000000000000 [ 171.230065] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 171.231303] CR2: 00007ffdab190a50 CR3: 00000001038ea006 CR4: 0000000000160ee0 [ 171.232586] Call Trace: [ 171.233109] <IRQ> [ 171.233531] get_mapping_status (linux-mptcp/net/mptcp/subflow.c:691) [ 171.234371] mptcp_subflow_data_available (linux-mptcp/net/mptcp/subflow.c:736 linux-mptcp/net/mptcp/subflow.c:832) [ 171.238181] subflow_state_change (linux-mptcp/net/mptcp/subflow.c:1085 (discriminator 1)) [ 171.239066] tcp_fin (linux-mptcp/net/ipv4/tcp_input.c:4217) [ 171.240123] tcp_data_queue (linux-mptcp/./include/linux/compiler.h:199 linux-mptcp/net/ipv4/tcp_input.c:4822) [ 171.245083] tcp_rcv_established (linux-mptcp/./include/linux/skbuff.h:1785 linux-mptcp/./include/net/tcp.h:1774 linux-mptcp/./include/net/tcp.h:1847 linux-mptcp/net/ipv4/tcp_input.c:5238 linux-mptcp/net/ipv4/tcp_input.c:5730) [ 171.254089] tcp_v4_rcv (linux-mptcp/./include/linux/spinlock.h:393 linux-mptcp/net/ipv4/tcp_ipv4.c:2009) [ 171.258969] ip_protocol_deliver_rcu (linux-mptcp/net/ipv4/ip_input.c:204 (discriminator 1)) [ 171.260214] ip_local_deliver_finish (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/ipv4/ip_input.c:232) [ 171.261389] ip_local_deliver (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:252) [ 171.265884] ip_rcv (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:539) [ 171.273666] process_backlog (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/core/dev.c:6135) [ 171.275328] net_rx_action (linux-mptcp/net/core/dev.c:6572 linux-mptcp/net/core/dev.c:6640) [ 171.280472] __do_softirq (linux-mptcp/./arch/x86/include/asm/jump_label.h:25 linux-mptcp/./include/linux/jump_label.h:200 linux-mptcp/./include/trace/events/irq.h:142 linux-mptcp/kernel/softirq.c:293) [ 171.281379] do_softirq_own_stack (linux-mptcp/arch/x86/entry/entry_64.S:1083) [ 171.282358] </IRQ> We could address the issue clearing explicitly the relevant fields in several places - tcp_parse_option, tcp_fast_parse_options, possibly others. Instead we move the MPTCP option parsing into the already existing mptcp ingress hook, so that we need to clear the fields in a single place. This allows us dropping an MPTCP hook from the TCP code and removing the quite large mptcp_options_received from the tcp_sock struct. On the flip side, the MPTCP sockets will traverse the option space twice (in tcp_parse_option() and in mptcp_incoming_options(). That looks acceptable: we already do that for syn and 3rd ack packets, plain TCP socket will benefit from it, and even MPTCP sockets will experience better code locality, reducing the jumps between TCP and MPTCP code. v1 -> v2: - rebased on current '-net' tree Fixes: 648ef4b88673 ("mptcp: Implement MPTCP receive path") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-30 13:01:52 +00:00
const struct mptcp_options_received *mp_opt,
struct request_sock *req)
{
struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
struct mptcp_sock *msk;
u64 ack_seq;
if (!nsk)
return NULL;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
if (nsk->sk_family == AF_INET6)
inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
#endif
__mptcp_init_sock(nsk);
msk = mptcp_sk(nsk);
msk->local_key = subflow_req->local_key;
msk->token = subflow_req->token;
msk->subflow = NULL;
WRITE_ONCE(msk->fully_established, false);
msk->write_seq = subflow_req->idsn + 1;
atomic64_set(&msk->snd_una, msk->write_seq);
mptcp: move option parsing into mptcp_incoming_options() The mptcp_options_received structure carries several per packet flags (mp_capable, mp_join, etc.). Such fields must be cleared on each packet, even on dropped ones or packet not carrying any MPTCP options, but the current mptcp code clears them only on TCP option reset. On several races/corner cases we end-up with stray bits in incoming options, leading to WARN_ON splats. e.g.: [ 171.164906] Bad mapping: ssn=32714 map_seq=1 map_data_len=32713 [ 171.165006] WARNING: CPU: 1 PID: 5026 at net/mptcp/subflow.c:533 warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531) [ 171.167632] Modules linked in: ip6_vti ip_vti ip_gre ipip sit tunnel4 ip_tunnel geneve ip6_udp_tunnel udp_tunnel macsec macvtap tap ipvlan macvlan 8021q garp mrp xfrm_interface veth netdevsim nlmon dummy team bonding vcan bridge stp llc ip6_gre gre ip6_tunnel tunnel6 tun binfmt_misc intel_rapl_msr intel_rapl_common rfkill kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel joydev virtio_balloon pcspkr i2c_piix4 sunrpc ip_tables xfs libcrc32c crc32c_intel serio_raw virtio_console ata_generic virtio_blk virtio_net net_failover failover ata_piix libata [ 171.199464] CPU: 1 PID: 5026 Comm: repro Not tainted 5.7.0-rc1.mptcp_f227fdf5d388+ #95 [ 171.200886] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014 [ 171.202546] RIP: 0010:warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531) [ 171.206537] Code: c1 ea 03 0f b6 14 02 48 89 f8 83 e0 07 83 c0 03 38 d0 7c 04 84 d2 75 1d 8b 55 3c 44 89 e6 48 c7 c7 20 51 13 95 e8 37 8b 22 fe <0f> 0b 48 83 c4 08 5b 5d 41 5c c3 89 4c 24 04 e8 db d6 94 fe 8b 4c [ 171.220473] RSP: 0018:ffffc90000150560 EFLAGS: 00010282 [ 171.221639] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 171.223108] RDX: 0000000000000000 RSI: 0000000000000008 RDI: fffff5200002a09e [ 171.224388] RBP: ffff8880aa6e3c00 R08: 0000000000000001 R09: fffffbfff2ec9955 [ 171.225706] R10: ffffffff9764caa7 R11: fffffbfff2ec9954 R12: 0000000000007fca [ 171.227211] R13: ffff8881066f4a7f R14: ffff8880aa6e3c00 R15: 0000000000000020 [ 171.228460] FS: 00007f8623719740(0000) GS:ffff88810be00000(0000) knlGS:0000000000000000 [ 171.230065] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 171.231303] CR2: 00007ffdab190a50 CR3: 00000001038ea006 CR4: 0000000000160ee0 [ 171.232586] Call Trace: [ 171.233109] <IRQ> [ 171.233531] get_mapping_status (linux-mptcp/net/mptcp/subflow.c:691) [ 171.234371] mptcp_subflow_data_available (linux-mptcp/net/mptcp/subflow.c:736 linux-mptcp/net/mptcp/subflow.c:832) [ 171.238181] subflow_state_change (linux-mptcp/net/mptcp/subflow.c:1085 (discriminator 1)) [ 171.239066] tcp_fin (linux-mptcp/net/ipv4/tcp_input.c:4217) [ 171.240123] tcp_data_queue (linux-mptcp/./include/linux/compiler.h:199 linux-mptcp/net/ipv4/tcp_input.c:4822) [ 171.245083] tcp_rcv_established (linux-mptcp/./include/linux/skbuff.h:1785 linux-mptcp/./include/net/tcp.h:1774 linux-mptcp/./include/net/tcp.h:1847 linux-mptcp/net/ipv4/tcp_input.c:5238 linux-mptcp/net/ipv4/tcp_input.c:5730) [ 171.254089] tcp_v4_rcv (linux-mptcp/./include/linux/spinlock.h:393 linux-mptcp/net/ipv4/tcp_ipv4.c:2009) [ 171.258969] ip_protocol_deliver_rcu (linux-mptcp/net/ipv4/ip_input.c:204 (discriminator 1)) [ 171.260214] ip_local_deliver_finish (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/ipv4/ip_input.c:232) [ 171.261389] ip_local_deliver (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:252) [ 171.265884] ip_rcv (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:539) [ 171.273666] process_backlog (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/core/dev.c:6135) [ 171.275328] net_rx_action (linux-mptcp/net/core/dev.c:6572 linux-mptcp/net/core/dev.c:6640) [ 171.280472] __do_softirq (linux-mptcp/./arch/x86/include/asm/jump_label.h:25 linux-mptcp/./include/linux/jump_label.h:200 linux-mptcp/./include/trace/events/irq.h:142 linux-mptcp/kernel/softirq.c:293) [ 171.281379] do_softirq_own_stack (linux-mptcp/arch/x86/entry/entry_64.S:1083) [ 171.282358] </IRQ> We could address the issue clearing explicitly the relevant fields in several places - tcp_parse_option, tcp_fast_parse_options, possibly others. Instead we move the MPTCP option parsing into the already existing mptcp ingress hook, so that we need to clear the fields in a single place. This allows us dropping an MPTCP hook from the TCP code and removing the quite large mptcp_options_received from the tcp_sock struct. On the flip side, the MPTCP sockets will traverse the option space twice (in tcp_parse_option() and in mptcp_incoming_options(). That looks acceptable: we already do that for syn and 3rd ack packets, plain TCP socket will benefit from it, and even MPTCP sockets will experience better code locality, reducing the jumps between TCP and MPTCP code. v1 -> v2: - rebased on current '-net' tree Fixes: 648ef4b88673 ("mptcp: Implement MPTCP receive path") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-30 13:01:52 +00:00
if (mp_opt->mp_capable) {
msk->can_ack = true;
mptcp: move option parsing into mptcp_incoming_options() The mptcp_options_received structure carries several per packet flags (mp_capable, mp_join, etc.). Such fields must be cleared on each packet, even on dropped ones or packet not carrying any MPTCP options, but the current mptcp code clears them only on TCP option reset. On several races/corner cases we end-up with stray bits in incoming options, leading to WARN_ON splats. e.g.: [ 171.164906] Bad mapping: ssn=32714 map_seq=1 map_data_len=32713 [ 171.165006] WARNING: CPU: 1 PID: 5026 at net/mptcp/subflow.c:533 warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531) [ 171.167632] Modules linked in: ip6_vti ip_vti ip_gre ipip sit tunnel4 ip_tunnel geneve ip6_udp_tunnel udp_tunnel macsec macvtap tap ipvlan macvlan 8021q garp mrp xfrm_interface veth netdevsim nlmon dummy team bonding vcan bridge stp llc ip6_gre gre ip6_tunnel tunnel6 tun binfmt_misc intel_rapl_msr intel_rapl_common rfkill kvm_intel kvm irqbypass crct10dif_pclmul crc32_pclmul ghash_clmulni_intel joydev virtio_balloon pcspkr i2c_piix4 sunrpc ip_tables xfs libcrc32c crc32c_intel serio_raw virtio_console ata_generic virtio_blk virtio_net net_failover failover ata_piix libata [ 171.199464] CPU: 1 PID: 5026 Comm: repro Not tainted 5.7.0-rc1.mptcp_f227fdf5d388+ #95 [ 171.200886] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-2.fc30 04/01/2014 [ 171.202546] RIP: 0010:warn_bad_map (linux-mptcp/net/mptcp/subflow.c:533 linux-mptcp/net/mptcp/subflow.c:531) [ 171.206537] Code: c1 ea 03 0f b6 14 02 48 89 f8 83 e0 07 83 c0 03 38 d0 7c 04 84 d2 75 1d 8b 55 3c 44 89 e6 48 c7 c7 20 51 13 95 e8 37 8b 22 fe <0f> 0b 48 83 c4 08 5b 5d 41 5c c3 89 4c 24 04 e8 db d6 94 fe 8b 4c [ 171.220473] RSP: 0018:ffffc90000150560 EFLAGS: 00010282 [ 171.221639] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [ 171.223108] RDX: 0000000000000000 RSI: 0000000000000008 RDI: fffff5200002a09e [ 171.224388] RBP: ffff8880aa6e3c00 R08: 0000000000000001 R09: fffffbfff2ec9955 [ 171.225706] R10: ffffffff9764caa7 R11: fffffbfff2ec9954 R12: 0000000000007fca [ 171.227211] R13: ffff8881066f4a7f R14: ffff8880aa6e3c00 R15: 0000000000000020 [ 171.228460] FS: 00007f8623719740(0000) GS:ffff88810be00000(0000) knlGS:0000000000000000 [ 171.230065] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 171.231303] CR2: 00007ffdab190a50 CR3: 00000001038ea006 CR4: 0000000000160ee0 [ 171.232586] Call Trace: [ 171.233109] <IRQ> [ 171.233531] get_mapping_status (linux-mptcp/net/mptcp/subflow.c:691) [ 171.234371] mptcp_subflow_data_available (linux-mptcp/net/mptcp/subflow.c:736 linux-mptcp/net/mptcp/subflow.c:832) [ 171.238181] subflow_state_change (linux-mptcp/net/mptcp/subflow.c:1085 (discriminator 1)) [ 171.239066] tcp_fin (linux-mptcp/net/ipv4/tcp_input.c:4217) [ 171.240123] tcp_data_queue (linux-mptcp/./include/linux/compiler.h:199 linux-mptcp/net/ipv4/tcp_input.c:4822) [ 171.245083] tcp_rcv_established (linux-mptcp/./include/linux/skbuff.h:1785 linux-mptcp/./include/net/tcp.h:1774 linux-mptcp/./include/net/tcp.h:1847 linux-mptcp/net/ipv4/tcp_input.c:5238 linux-mptcp/net/ipv4/tcp_input.c:5730) [ 171.254089] tcp_v4_rcv (linux-mptcp/./include/linux/spinlock.h:393 linux-mptcp/net/ipv4/tcp_ipv4.c:2009) [ 171.258969] ip_protocol_deliver_rcu (linux-mptcp/net/ipv4/ip_input.c:204 (discriminator 1)) [ 171.260214] ip_local_deliver_finish (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/ipv4/ip_input.c:232) [ 171.261389] ip_local_deliver (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:252) [ 171.265884] ip_rcv (linux-mptcp/./include/linux/netfilter.h:307 linux-mptcp/./include/linux/netfilter.h:301 linux-mptcp/net/ipv4/ip_input.c:539) [ 171.273666] process_backlog (linux-mptcp/./include/linux/rcupdate.h:651 linux-mptcp/net/core/dev.c:6135) [ 171.275328] net_rx_action (linux-mptcp/net/core/dev.c:6572 linux-mptcp/net/core/dev.c:6640) [ 171.280472] __do_softirq (linux-mptcp/./arch/x86/include/asm/jump_label.h:25 linux-mptcp/./include/linux/jump_label.h:200 linux-mptcp/./include/trace/events/irq.h:142 linux-mptcp/kernel/softirq.c:293) [ 171.281379] do_softirq_own_stack (linux-mptcp/arch/x86/entry/entry_64.S:1083) [ 171.282358] </IRQ> We could address the issue clearing explicitly the relevant fields in several places - tcp_parse_option, tcp_fast_parse_options, possibly others. Instead we move the MPTCP option parsing into the already existing mptcp ingress hook, so that we need to clear the fields in a single place. This allows us dropping an MPTCP hook from the TCP code and removing the quite large mptcp_options_received from the tcp_sock struct. On the flip side, the MPTCP sockets will traverse the option space twice (in tcp_parse_option() and in mptcp_incoming_options(). That looks acceptable: we already do that for syn and 3rd ack packets, plain TCP socket will benefit from it, and even MPTCP sockets will experience better code locality, reducing the jumps between TCP and MPTCP code. v1 -> v2: - rebased on current '-net' tree Fixes: 648ef4b88673 ("mptcp: Implement MPTCP receive path") Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-04-30 13:01:52 +00:00
msk->remote_key = mp_opt->sndr_key;
mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
ack_seq++;
WRITE_ONCE(msk->ack_seq, ack_seq);
}
sock_reset_flag(nsk, SOCK_RCU_FREE);
/* will be fully established after successful MPC subflow creation */
inet_sk_state_store(nsk, TCP_SYN_RECV);
bh_unlock_sock(nsk);
/* keep a single reference */
__sock_put(nsk);
return nsk;
}
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
{
const struct tcp_sock *tp = tcp_sk(ssk);
msk->rcvq_space.copied = 0;
msk->rcvq_space.rtt_us = 0;
msk->rcvq_space.time = tp->tcp_mstamp;
/* initial rcv_space offering made to peer */
msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
TCP_INIT_CWND * tp->advmss);
if (msk->rcvq_space.space == 0)
msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
}
static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
bool kern)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct socket *listener;
struct sock *newsk;
listener = __mptcp_nmpc_socket(msk);
if (WARN_ON_ONCE(!listener)) {
*err = -EINVAL;
return NULL;
}
pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
newsk = inet_csk_accept(listener->sk, flags, err, kern);
if (!newsk)
return NULL;
pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
if (sk_is_mptcp(newsk)) {
struct mptcp_subflow_context *subflow;
struct sock *new_mptcp_sock;
struct sock *ssk = newsk;
subflow = mptcp_subflow_ctx(newsk);
new_mptcp_sock = subflow->conn;
/* is_mptcp should be false if subflow->conn is missing, see
* subflow_syn_recv_sock()
*/
if (WARN_ON_ONCE(!new_mptcp_sock)) {
tcp_sk(newsk)->is_mptcp = 0;
return newsk;
}
/* acquire the 2nd reference for the owning socket */
sock_hold(new_mptcp_sock);
local_bh_disable();
bh_lock_sock(new_mptcp_sock);
msk = mptcp_sk(new_mptcp_sock);
msk->first = newsk;
newsk = new_mptcp_sock;
mptcp_copy_inaddrs(newsk, ssk);
list_add(&subflow->node, &msk->conn_list);
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
mptcp_rcv_space_init(msk, ssk);
bh_unlock_sock(new_mptcp_sock);
__MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
local_bh_enable();
} else {
MPTCP_INC_STATS(sock_net(sk),
MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
}
return newsk;
}
void mptcp_destroy_common(struct mptcp_sock *msk)
{
skb_rbtree_purge(&msk->out_of_order_queue);
mptcp_token_destroy(msk);
mptcp_pm_free_anno_list(msk);
}
static void mptcp_destroy(struct sock *sk)
{
struct mptcp_sock *msk = mptcp_sk(sk);
if (msk->cached_ext)
__skb_ext_put(msk->cached_ext);
mptcp_destroy_common(msk);
sk_sockets_allocated_dec(sk);
}
static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = (struct sock *)msk;
struct socket *ssock;
int ret;
switch (optname) {
case SO_REUSEPORT:
case SO_REUSEADDR:
lock_sock(sk);
ssock = __mptcp_nmpc_socket(msk);
if (!ssock) {
release_sock(sk);
return -EINVAL;
}
ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen);
if (ret == 0) {
if (optname == SO_REUSEPORT)
sk->sk_reuseport = ssock->sk->sk_reuseport;
else if (optname == SO_REUSEADDR)
sk->sk_reuse = ssock->sk->sk_reuse;
}
release_sock(sk);
return ret;
}
return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen);
}
static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname,
sockptr_t optval, unsigned int optlen)
{
struct sock *sk = (struct sock *)msk;
int ret = -EOPNOTSUPP;
struct socket *ssock;
switch (optname) {
case IPV6_V6ONLY:
lock_sock(sk);
ssock = __mptcp_nmpc_socket(msk);
if (!ssock) {
release_sock(sk);
return -EINVAL;
}
ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen);
if (ret == 0)
sk->sk_ipv6only = ssock->sk->sk_ipv6only;
release_sock(sk);
break;
}
return ret;
}
static int mptcp_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct sock *ssk;
pr_debug("msk=%p", msk);
if (level == SOL_SOCKET)
return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen);
/* @@ the meaning of setsockopt() when the socket is connected and
* there are multiple subflows is not yet defined. It is up to the
* MPTCP-level socket to configure the subflows until the subflow
* is in TCP fallback, when TCP socket options are passed through
* to the one remaining subflow.
*/
lock_sock(sk);
ssk = __mptcp_tcp_fallback(msk);
release_sock(sk);
if (ssk)
return tcp_setsockopt(ssk, level, optname, optval, optlen);
mptcp: fix panic on user pointer access Its not possible to call the kernel_(s|g)etsockopt functions here, the address points to user memory: General protection fault in user access. Non-canonical address? WARNING: CPU: 1 PID: 5352 at arch/x86/mm/extable.c:77 ex_handler_uaccess+0xba/0xe0 arch/x86/mm/extable.c:77 Kernel panic - not syncing: panic_on_warn set ... [..] Call Trace: fixup_exception+0x9d/0xcd arch/x86/mm/extable.c:178 general_protection+0x2d/0x40 arch/x86/entry/entry_64.S:1202 do_ip_getsockopt+0x1f6/0x1860 net/ipv4/ip_sockglue.c:1323 ip_getsockopt+0x87/0x1c0 net/ipv4/ip_sockglue.c:1561 tcp_getsockopt net/ipv4/tcp.c:3691 [inline] tcp_getsockopt+0x8c/0xd0 net/ipv4/tcp.c:3685 kernel_getsockopt+0x121/0x1f0 net/socket.c:3736 mptcp_getsockopt+0x69/0x90 net/mptcp/protocol.c:830 __sys_getsockopt+0x13a/0x220 net/socket.c:2175 We can call tcp_get/setsockopt functions instead. Doing so fixes crashing, but still leaves rtnl related lockdep splat: WARNING: possible circular locking dependency detected 5.5.0-rc6 #2 Not tainted ------------------------------------------------------ syz-executor.0/16334 is trying to acquire lock: ffffffff84f7a080 (rtnl_mutex){+.+.}, at: do_ip_setsockopt.isra.0+0x277/0x3820 net/ipv4/ip_sockglue.c:644 but task is already holding lock: ffff888116503b90 (sk_lock-AF_INET){+.+.}, at: lock_sock include/net/sock.h:1516 [inline] ffff888116503b90 (sk_lock-AF_INET){+.+.}, at: mptcp_setsockopt+0x28/0x90 net/mptcp/protocol.c:1284 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_INET){+.+.}: lock_sock_nested+0xca/0x120 net/core/sock.c:2944 lock_sock include/net/sock.h:1516 [inline] do_ip_setsockopt.isra.0+0x281/0x3820 net/ipv4/ip_sockglue.c:645 ip_setsockopt+0x44/0xf0 net/ipv4/ip_sockglue.c:1248 udp_setsockopt+0x5d/0xa0 net/ipv4/udp.c:2639 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xbd/0x5b0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (rtnl_mutex){+.+.}: check_prev_add kernel/locking/lockdep.c:2475 [inline] check_prevs_add kernel/locking/lockdep.c:2580 [inline] validate_chain kernel/locking/lockdep.c:2970 [inline] __lock_acquire+0x1fb2/0x4680 kernel/locking/lockdep.c:3954 lock_acquire+0x127/0x330 kernel/locking/lockdep.c:4484 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x158/0x1340 kernel/locking/mutex.c:1103 do_ip_setsockopt.isra.0+0x277/0x3820 net/ipv4/ip_sockglue.c:644 ip_setsockopt+0x44/0xf0 net/ipv4/ip_sockglue.c:1248 tcp_setsockopt net/ipv4/tcp.c:3159 [inline] tcp_setsockopt+0x8c/0xd0 net/ipv4/tcp.c:3153 kernel_setsockopt+0x121/0x1f0 net/socket.c:3767 mptcp_setsockopt+0x69/0x90 net/mptcp/protocol.c:1288 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xbd/0x5b0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sk_lock-AF_INET); lock(rtnl_mutex); lock(sk_lock-AF_INET); lock(rtnl_mutex); The lockdep complaint is because we hold mptcp socket lock when calling the sk_prot get/setsockopt handler, and those might need to acquire the rtnl mutex. Normally, order is: rtnl_lock(sk) -> lock_sock Whereas for mptcp the order is lock_sock(mptcp_sk) rtnl_lock -> lock_sock(subflow_sk) We can avoid this by releasing the mptcp socket lock early, but, as Paolo points out, we need to get/put the subflow socket refcount before doing so to avoid race with concurrent close(). Fixes: 717e79c867ca5 ("mptcp: Add setsockopt()/getsockopt() socket operations") Reported-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-29 14:54:44 +00:00
if (level == SOL_IPV6)
return mptcp_setsockopt_v6(msk, optname, optval, optlen);
return -EOPNOTSUPP;
}
static int mptcp_getsockopt(struct sock *sk, int level, int optname,
mptcp: fix panic on user pointer access Its not possible to call the kernel_(s|g)etsockopt functions here, the address points to user memory: General protection fault in user access. Non-canonical address? WARNING: CPU: 1 PID: 5352 at arch/x86/mm/extable.c:77 ex_handler_uaccess+0xba/0xe0 arch/x86/mm/extable.c:77 Kernel panic - not syncing: panic_on_warn set ... [..] Call Trace: fixup_exception+0x9d/0xcd arch/x86/mm/extable.c:178 general_protection+0x2d/0x40 arch/x86/entry/entry_64.S:1202 do_ip_getsockopt+0x1f6/0x1860 net/ipv4/ip_sockglue.c:1323 ip_getsockopt+0x87/0x1c0 net/ipv4/ip_sockglue.c:1561 tcp_getsockopt net/ipv4/tcp.c:3691 [inline] tcp_getsockopt+0x8c/0xd0 net/ipv4/tcp.c:3685 kernel_getsockopt+0x121/0x1f0 net/socket.c:3736 mptcp_getsockopt+0x69/0x90 net/mptcp/protocol.c:830 __sys_getsockopt+0x13a/0x220 net/socket.c:2175 We can call tcp_get/setsockopt functions instead. Doing so fixes crashing, but still leaves rtnl related lockdep splat: WARNING: possible circular locking dependency detected 5.5.0-rc6 #2 Not tainted ------------------------------------------------------ syz-executor.0/16334 is trying to acquire lock: ffffffff84f7a080 (rtnl_mutex){+.+.}, at: do_ip_setsockopt.isra.0+0x277/0x3820 net/ipv4/ip_sockglue.c:644 but task is already holding lock: ffff888116503b90 (sk_lock-AF_INET){+.+.}, at: lock_sock include/net/sock.h:1516 [inline] ffff888116503b90 (sk_lock-AF_INET){+.+.}, at: mptcp_setsockopt+0x28/0x90 net/mptcp/protocol.c:1284 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_INET){+.+.}: lock_sock_nested+0xca/0x120 net/core/sock.c:2944 lock_sock include/net/sock.h:1516 [inline] do_ip_setsockopt.isra.0+0x281/0x3820 net/ipv4/ip_sockglue.c:645 ip_setsockopt+0x44/0xf0 net/ipv4/ip_sockglue.c:1248 udp_setsockopt+0x5d/0xa0 net/ipv4/udp.c:2639 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xbd/0x5b0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (rtnl_mutex){+.+.}: check_prev_add kernel/locking/lockdep.c:2475 [inline] check_prevs_add kernel/locking/lockdep.c:2580 [inline] validate_chain kernel/locking/lockdep.c:2970 [inline] __lock_acquire+0x1fb2/0x4680 kernel/locking/lockdep.c:3954 lock_acquire+0x127/0x330 kernel/locking/lockdep.c:4484 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x158/0x1340 kernel/locking/mutex.c:1103 do_ip_setsockopt.isra.0+0x277/0x3820 net/ipv4/ip_sockglue.c:644 ip_setsockopt+0x44/0xf0 net/ipv4/ip_sockglue.c:1248 tcp_setsockopt net/ipv4/tcp.c:3159 [inline] tcp_setsockopt+0x8c/0xd0 net/ipv4/tcp.c:3153 kernel_setsockopt+0x121/0x1f0 net/socket.c:3767 mptcp_setsockopt+0x69/0x90 net/mptcp/protocol.c:1288 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xbd/0x5b0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sk_lock-AF_INET); lock(rtnl_mutex); lock(sk_lock-AF_INET); lock(rtnl_mutex); The lockdep complaint is because we hold mptcp socket lock when calling the sk_prot get/setsockopt handler, and those might need to acquire the rtnl mutex. Normally, order is: rtnl_lock(sk) -> lock_sock Whereas for mptcp the order is lock_sock(mptcp_sk) rtnl_lock -> lock_sock(subflow_sk) We can avoid this by releasing the mptcp socket lock early, but, as Paolo points out, we need to get/put the subflow socket refcount before doing so to avoid race with concurrent close(). Fixes: 717e79c867ca5 ("mptcp: Add setsockopt()/getsockopt() socket operations") Reported-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-29 14:54:44 +00:00
char __user *optval, int __user *option)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct sock *ssk;
pr_debug("msk=%p", msk);
/* @@ the meaning of setsockopt() when the socket is connected and
* there are multiple subflows is not yet defined. It is up to the
* MPTCP-level socket to configure the subflows until the subflow
* is in TCP fallback, when socket options are passed through
* to the one remaining subflow.
*/
lock_sock(sk);
ssk = __mptcp_tcp_fallback(msk);
release_sock(sk);
if (ssk)
return tcp_getsockopt(ssk, level, optname, optval, option);
mptcp: fix panic on user pointer access Its not possible to call the kernel_(s|g)etsockopt functions here, the address points to user memory: General protection fault in user access. Non-canonical address? WARNING: CPU: 1 PID: 5352 at arch/x86/mm/extable.c:77 ex_handler_uaccess+0xba/0xe0 arch/x86/mm/extable.c:77 Kernel panic - not syncing: panic_on_warn set ... [..] Call Trace: fixup_exception+0x9d/0xcd arch/x86/mm/extable.c:178 general_protection+0x2d/0x40 arch/x86/entry/entry_64.S:1202 do_ip_getsockopt+0x1f6/0x1860 net/ipv4/ip_sockglue.c:1323 ip_getsockopt+0x87/0x1c0 net/ipv4/ip_sockglue.c:1561 tcp_getsockopt net/ipv4/tcp.c:3691 [inline] tcp_getsockopt+0x8c/0xd0 net/ipv4/tcp.c:3685 kernel_getsockopt+0x121/0x1f0 net/socket.c:3736 mptcp_getsockopt+0x69/0x90 net/mptcp/protocol.c:830 __sys_getsockopt+0x13a/0x220 net/socket.c:2175 We can call tcp_get/setsockopt functions instead. Doing so fixes crashing, but still leaves rtnl related lockdep splat: WARNING: possible circular locking dependency detected 5.5.0-rc6 #2 Not tainted ------------------------------------------------------ syz-executor.0/16334 is trying to acquire lock: ffffffff84f7a080 (rtnl_mutex){+.+.}, at: do_ip_setsockopt.isra.0+0x277/0x3820 net/ipv4/ip_sockglue.c:644 but task is already holding lock: ffff888116503b90 (sk_lock-AF_INET){+.+.}, at: lock_sock include/net/sock.h:1516 [inline] ffff888116503b90 (sk_lock-AF_INET){+.+.}, at: mptcp_setsockopt+0x28/0x90 net/mptcp/protocol.c:1284 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_INET){+.+.}: lock_sock_nested+0xca/0x120 net/core/sock.c:2944 lock_sock include/net/sock.h:1516 [inline] do_ip_setsockopt.isra.0+0x281/0x3820 net/ipv4/ip_sockglue.c:645 ip_setsockopt+0x44/0xf0 net/ipv4/ip_sockglue.c:1248 udp_setsockopt+0x5d/0xa0 net/ipv4/udp.c:2639 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xbd/0x5b0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe -> #0 (rtnl_mutex){+.+.}: check_prev_add kernel/locking/lockdep.c:2475 [inline] check_prevs_add kernel/locking/lockdep.c:2580 [inline] validate_chain kernel/locking/lockdep.c:2970 [inline] __lock_acquire+0x1fb2/0x4680 kernel/locking/lockdep.c:3954 lock_acquire+0x127/0x330 kernel/locking/lockdep.c:4484 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x158/0x1340 kernel/locking/mutex.c:1103 do_ip_setsockopt.isra.0+0x277/0x3820 net/ipv4/ip_sockglue.c:644 ip_setsockopt+0x44/0xf0 net/ipv4/ip_sockglue.c:1248 tcp_setsockopt net/ipv4/tcp.c:3159 [inline] tcp_setsockopt+0x8c/0xd0 net/ipv4/tcp.c:3153 kernel_setsockopt+0x121/0x1f0 net/socket.c:3767 mptcp_setsockopt+0x69/0x90 net/mptcp/protocol.c:1288 __sys_setsockopt+0x152/0x240 net/socket.c:2130 __do_sys_setsockopt net/socket.c:2146 [inline] __se_sys_setsockopt net/socket.c:2143 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2143 do_syscall_64+0xbd/0x5b0 arch/x86/entry/common.c:294 entry_SYSCALL_64_after_hwframe+0x49/0xbe other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sk_lock-AF_INET); lock(rtnl_mutex); lock(sk_lock-AF_INET); lock(rtnl_mutex); The lockdep complaint is because we hold mptcp socket lock when calling the sk_prot get/setsockopt handler, and those might need to acquire the rtnl mutex. Normally, order is: rtnl_lock(sk) -> lock_sock Whereas for mptcp the order is lock_sock(mptcp_sk) rtnl_lock -> lock_sock(subflow_sk) We can avoid this by releasing the mptcp socket lock early, but, as Paolo points out, we need to get/put the subflow socket refcount before doing so to avoid race with concurrent close(). Fixes: 717e79c867ca5 ("mptcp: Add setsockopt()/getsockopt() socket operations") Reported-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-29 14:54:44 +00:00
return -EOPNOTSUPP;
}
#define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \
TCPF_WRITE_TIMER_DEFERRED)
/* this is very alike tcp_release_cb() but we must handle differently a
* different set of events
*/
static void mptcp_release_cb(struct sock *sk)
{
unsigned long flags, nflags;
do {
flags = sk->sk_tsq_flags;
if (!(flags & MPTCP_DEFERRED_ALL))
return;
nflags = flags & ~MPTCP_DEFERRED_ALL;
} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
sock_release_ownership(sk);
if (flags & TCPF_DELACK_TIMER_DEFERRED) {
struct mptcp_sock *msk = mptcp_sk(sk);
struct sock *ssk;
ssk = mptcp_subflow_recv_lookup(msk);
if (!ssk || !schedule_work(&msk->work))
__sock_put(sk);
}
if (flags & TCPF_WRITE_TIMER_DEFERRED) {
mptcp_retransmit_handler(sk);
__sock_put(sk);
}
}
static int mptcp_hash(struct sock *sk)
{
/* should never be called,
* we hash the TCP subflows not the master socket
*/
WARN_ON_ONCE(1);
return 0;
}
static void mptcp_unhash(struct sock *sk)
{
/* called from sk_common_release(), but nothing to do here */
}
static int mptcp_get_port(struct sock *sk, unsigned short snum)
{
struct mptcp_sock *msk = mptcp_sk(sk);
struct socket *ssock;
ssock = __mptcp_nmpc_socket(msk);
pr_debug("msk=%p, subflow=%p", msk, ssock);
if (WARN_ON_ONCE(!ssock))
return -EINVAL;
return inet_csk_get_port(ssock->sk, snum);
}
void mptcp_finish_connect(struct sock *ssk)
{
struct mptcp_subflow_context *subflow;
struct mptcp_sock *msk;
struct sock *sk;
u64 ack_seq;
subflow = mptcp_subflow_ctx(ssk);
sk = subflow->conn;
msk = mptcp_sk(sk);
pr_debug("msk=%p, token=%u", sk, subflow->token);
mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
ack_seq++;
subflow->map_seq = ack_seq;
subflow->map_subflow_seq = 1;
/* the socket is not connected yet, no msk/subflow ops can access/race
* accessing the field below
*/
WRITE_ONCE(msk->remote_key, subflow->remote_key);
WRITE_ONCE(msk->local_key, subflow->local_key);
WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
WRITE_ONCE(msk->ack_seq, ack_seq);
WRITE_ONCE(msk->can_ack, 1);
atomic64_set(&msk->snd_una, msk->write_seq);
mptcp_pm_new_connection(msk, 0);
mptcp: add receive buffer auto-tuning When mptcp is used, userspace doesn't read from the tcp (subflow) socket but from the parent (mptcp) socket receive queue. skbs are moved from the subflow socket to the mptcp rx queue either from 'data_ready' callback (if mptcp socket can be locked), a work queue, or the socket receive function. This means tcp_rcv_space_adjust() is never called and thus no receive buffer size auto-tuning is done. An earlier (not merged) patch added tcp_rcv_space_adjust() calls to the function that moves skbs from subflow to mptcp socket. While this enabled autotuning, it also meant tuning was done even if userspace was reading the mptcp socket very slowly. This adds mptcp_rcv_space_adjust() and calls it after userspace has read data from the mptcp socket rx queue. Its very similar to tcp_rcv_space_adjust, with two differences: 1. The rtt estimate is the largest one observed on a subflow 2. The rcvbuf size and window clamp of all subflows is adjusted to the mptcp-level rcvbuf. Otherwise, we get spurious drops at tcp (subflow) socket level if the skbs are not moved to the mptcp socket fast enough. Before: time mptcp_connect.sh -t -f $((4*1024*1024)) -d 300 -l 0.01% -r 0 -e "" -m mmap [..] ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 40823ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 23119ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5421ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 41446ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 23427ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5426ms) [ OK ] Time: 1396 seconds After: ns4 MPTCP -> ns3 (10.0.3.2:10108 ) MPTCP (duration 5417ms) [ OK ] ns4 MPTCP -> ns3 (10.0.3.2:10109 ) TCP (duration 5427ms) [ OK ] ns4 TCP -> ns3 (10.0.3.2:10110 ) MPTCP (duration 5422ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10111) MPTCP (duration 5415ms) [ OK ] ns4 MPTCP -> ns3 (dead:beef:3::2:10112) TCP (duration 5422ms) [ OK ] ns4 TCP -> ns3 (dead:beef:3::2:10113) MPTCP (duration 5423ms) [ OK ] Time: 296 seconds Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-30 19:24:45 +00:00
mptcp_rcv_space_init(msk, ssk);
}
static void mptcp_sock_graft(struct sock *sk, struct socket *parent)
{
write_lock_bh(&sk->sk_callback_lock);
rcu_assign_pointer(sk->sk_wq, &parent->wq);
sk_set_socket(sk, parent);
sk->sk_uid = SOCK_INODE(parent)->i_uid;
write_unlock_bh(&sk->sk_callback_lock);
}
bool mptcp_finish_join(struct sock *sk)
{
struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
struct mptcp_sock *msk = mptcp_sk(subflow->conn);
struct sock *parent = (void *)msk;
struct socket *parent_sock;
bool ret;
pr_debug("msk=%p, subflow=%p", msk, subflow);
/* mptcp socket already closing? */
if (!mptcp_is_fully_established(parent))
return false;
if (!msk->pm.server_side)
return true;
if (!mptcp_pm_allow_new_subflow(msk))
return false;
/* active connections are already on conn_list, and we can't acquire
* msk lock here.
* use the join list lock as synchronization point and double-check
* msk status to avoid racing with mptcp_close()
*/
spin_lock_bh(&msk->join_list_lock);
ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node)))
list_add_tail(&subflow->node, &msk->join_list);
spin_unlock_bh(&msk->join_list_lock);
if (!ret)
return false;
/* attach to msk socket only after we are sure he will deal with us
* at close time
*/
parent_sock = READ_ONCE(parent->sk_socket);
if (parent_sock && !sk->sk_socket)
mptcp_sock_graft(sk, parent_sock);
subflow->map_seq = READ_ONCE(msk->ack_seq);
return true;
}
static bool mptcp_memory_free(const struct sock *sk, int wake)
{
struct mptcp_sock *msk = mptcp_sk(sk);
return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true;
}
static struct proto mptcp_prot = {
.name = "MPTCP",
.owner = THIS_MODULE,
.init = mptcp_init_sock,
.disconnect = mptcp_disconnect,
.close = mptcp_close,
.accept = mptcp_accept,
.setsockopt = mptcp_setsockopt,
.getsockopt = mptcp_getsockopt,
.shutdown = tcp_shutdown,
.destroy = mptcp_destroy,
.sendmsg = mptcp_sendmsg,
.recvmsg = mptcp_recvmsg,
.release_cb = mptcp_release_cb,
.hash = mptcp_hash,
.unhash = mptcp_unhash,
.get_port = mptcp_get_port,
.sockets_allocated = &mptcp_sockets_allocated,
.memory_allocated = &tcp_memory_allocated,
.memory_pressure = &tcp_memory_pressure,
.stream_memory_free = mptcp_memory_free,
.sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
.sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
.sysctl_mem = sysctl_tcp_mem,
.obj_size = sizeof(struct mptcp_sock),
.slab_flags = SLAB_TYPESAFE_BY_RCU,
.no_autobind = true,
};
static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct socket *ssock;
int err;
lock_sock(sock->sk);
ssock = __mptcp_nmpc_socket(msk);
if (!ssock) {
err = -EINVAL;
goto unlock;
}
err = ssock->ops->bind(ssock, uaddr, addr_len);
if (!err)
mptcp_copy_inaddrs(sock->sk, ssock->sk);
unlock:
release_sock(sock->sk);
return err;
}
static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
struct mptcp_subflow_context *subflow)
{
subflow->request_mptcp = 0;
__mptcp_do_fallback(msk);
}
static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
int addr_len, int flags)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct mptcp_subflow_context *subflow;
struct socket *ssock;
int err;
lock_sock(sock->sk);
if (sock->state != SS_UNCONNECTED && msk->subflow) {
/* pending connection or invalid state, let existing subflow
* cope with that
*/
ssock = msk->subflow;
goto do_connect;
}
ssock = __mptcp_nmpc_socket(msk);
if (!ssock) {
err = -EINVAL;
goto unlock;
}
mptcp_token_destroy(msk);
inet_sk_state_store(sock->sk, TCP_SYN_SENT);
subflow = mptcp_subflow_ctx(ssock->sk);
#ifdef CONFIG_TCP_MD5SIG
/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
* TCP option space.
*/
if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
mptcp_subflow_early_fallback(msk, subflow);
#endif
if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk))
mptcp_subflow_early_fallback(msk, subflow);
do_connect:
err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
sock->state = ssock->state;
/* on successful connect, the msk state will be moved to established by
* subflow_finish_connect()
*/
if (!err || err == -EINPROGRESS)
mptcp_copy_inaddrs(sock->sk, ssock->sk);
else
inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
unlock:
release_sock(sock->sk);
return err;
}
static int mptcp_listen(struct socket *sock, int backlog)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct socket *ssock;
int err;
pr_debug("msk=%p", msk);
lock_sock(sock->sk);
ssock = __mptcp_nmpc_socket(msk);
if (!ssock) {
err = -EINVAL;
goto unlock;
}
mptcp_token_destroy(msk);
inet_sk_state_store(sock->sk, TCP_LISTEN);
sock_set_flag(sock->sk, SOCK_RCU_FREE);
err = ssock->ops->listen(ssock, backlog);
inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
if (!err)
mptcp_copy_inaddrs(sock->sk, ssock->sk);
unlock:
release_sock(sock->sk);
return err;
}
static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
int flags, bool kern)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct socket *ssock;
int err;
pr_debug("msk=%p", msk);
lock_sock(sock->sk);
if (sock->sk->sk_state != TCP_LISTEN)
goto unlock_fail;
ssock = __mptcp_nmpc_socket(msk);
if (!ssock)
goto unlock_fail;
clear_bit(MPTCP_DATA_READY, &msk->flags);
sock_hold(ssock->sk);
release_sock(sock->sk);
err = ssock->ops->accept(sock, newsock, flags, kern);
if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
struct mptcp_sock *msk = mptcp_sk(newsock->sk);
struct mptcp_subflow_context *subflow;
/* set ssk->sk_socket of accept()ed flows to mptcp socket.
* This is needed so NOSPACE flag can be set from tcp stack.
*/
__mptcp_flush_join_list(msk);
mptcp_for_each_subflow(msk, subflow) {
struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
if (!ssk->sk_socket)
mptcp_sock_graft(ssk, newsock);
}
}
if (inet_csk_listen_poll(ssock->sk))
set_bit(MPTCP_DATA_READY, &msk->flags);
sock_put(ssock->sk);
return err;
unlock_fail:
release_sock(sock->sk);
return -EINVAL;
}
static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
{
return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
0;
}
static __poll_t mptcp_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait)
{
struct sock *sk = sock->sk;
struct mptcp_sock *msk;
__poll_t mask = 0;
int state;
msk = mptcp_sk(sk);
sock_poll_wait(file, sock, wait);
state = inet_sk_state_load(sk);
pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
if (state == TCP_LISTEN)
return mptcp_check_readable(msk);
if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
mask |= mptcp_check_readable(msk);
if (test_bit(MPTCP_SEND_SPACE, &msk->flags))
mask |= EPOLLOUT | EPOLLWRNORM;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
return mask;
}
static int mptcp_shutdown(struct socket *sock, int how)
{
struct mptcp_sock *msk = mptcp_sk(sock->sk);
struct mptcp_subflow_context *subflow;
int ret = 0;
pr_debug("sk=%p, how=%d", msk, how);
lock_sock(sock->sk);
how++;
if ((how & ~SHUTDOWN_MASK) || !how) {
ret = -EINVAL;
goto out_unlock;
}
if (sock->state == SS_CONNECTING) {
if ((1 << sock->sk->sk_state) &
(TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))
sock->state = SS_DISCONNECTING;
else
sock->state = SS_CONNECTED;
}
/* If we've already sent a FIN, or it's a closed state, skip this. */
if (__mptcp_check_fallback(msk)) {
if (how == SHUT_WR || how == SHUT_RDWR)
inet_sk_state_store(sock->sk, TCP_FIN_WAIT1);
mptcp_for_each_subflow(msk, subflow) {
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
}
} else if ((how & SEND_SHUTDOWN) &&
((1 << sock->sk->sk_state) &
(TCPF_ESTABLISHED | TCPF_SYN_SENT |
TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) &&
mptcp_close_state(sock->sk)) {
__mptcp_flush_join_list(msk);
WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
WRITE_ONCE(msk->snd_data_fin_enable, 1);
mptcp_for_each_subflow(msk, subflow) {
struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
mptcp_subflow_shutdown(sock->sk, tcp_sk, how);
}
}
/* Wake up anyone sleeping in poll. */
sock->sk->sk_state_change(sock->sk);
out_unlock:
release_sock(sock->sk);
return ret;
}
static const struct proto_ops mptcp_stream_ops = {
.family = PF_INET,
.owner = THIS_MODULE,
.release = inet_release,
.bind = mptcp_bind,
.connect = mptcp_stream_connect,
.socketpair = sock_no_socketpair,
.accept = mptcp_stream_accept,
.getname = inet_getname,
.poll = mptcp_poll,
.ioctl = inet_ioctl,
.gettstamp = sock_gettstamp,
.listen = mptcp_listen,
.shutdown = mptcp_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet_sendmsg,
.recvmsg = inet_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
};
static struct inet_protosw mptcp_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_MPTCP,
.prot = &mptcp_prot,
.ops = &mptcp_stream_ops,
.flags = INET_PROTOSW_ICSK,
};
void __init mptcp_proto_init(void)
{
mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
panic("Failed to allocate MPTCP pcpu counter\n");
mptcp_subflow_init();
mptcp_pm_init();
mptcp_token_init();
if (proto_register(&mptcp_prot, 1) != 0)
panic("Failed to register MPTCP proto.\n");
inet_register_protosw(&mptcp_protosw);
mptcp: update mptcp ack sequence from work queue If userspace is not reading data, all the mptcp-level acks contain the ack_seq from the last time userspace read data rather than the most recent in-sequence value. This causes pointless retransmissions for data that is already queued. The reason for this is that all the mptcp protocol level processing happens at mptcp_recv time. This adds work queue to move skbs from the subflow sockets receive queue on the mptcp socket receive queue (which was not used so far). This allows us to announce the correct mptcp ack sequence in a timely fashion, even when the application does not call recv() on the mptcp socket for some time. We still wake userspace tasks waiting for POLLIN immediately: If the mptcp level receive queue is empty (because the work queue is still pending) it can be filled from in-sequence subflow sockets at recv time without a need to wait for the worker. The skb_orphan when moving skbs from subflow to mptcp level is needed, because the destructor (sock_rfree) relies on skb->sk (ssk!) lock being taken. A followup patch will add needed rmem accouting for the moved skbs. Other problem: In case application behaves as expected, and calls recv() as soon as mptcp socket becomes readable, the work queue will only waste cpu cycles. This will also be addressed in followup patches. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-02-26 09:14:48 +00:00
BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static const struct proto_ops mptcp_v6_stream_ops = {
.family = PF_INET6,
.owner = THIS_MODULE,
.release = inet6_release,
.bind = mptcp_bind,
.connect = mptcp_stream_connect,
.socketpair = sock_no_socketpair,
.accept = mptcp_stream_accept,
.getname = inet6_getname,
.poll = mptcp_poll,
.ioctl = inet6_ioctl,
.gettstamp = sock_gettstamp,
.listen = mptcp_listen,
.shutdown = mptcp_shutdown,
.setsockopt = sock_common_setsockopt,
.getsockopt = sock_common_getsockopt,
.sendmsg = inet6_sendmsg,
.recvmsg = inet6_recvmsg,
.mmap = sock_no_mmap,
.sendpage = inet_sendpage,
#ifdef CONFIG_COMPAT
.compat_ioctl = inet6_compat_ioctl,
#endif
};
static struct proto mptcp_v6_prot;
static void mptcp_v6_destroy(struct sock *sk)
{
mptcp_destroy(sk);
inet6_destroy_sock(sk);
}
static struct inet_protosw mptcp_v6_protosw = {
.type = SOCK_STREAM,
.protocol = IPPROTO_MPTCP,
.prot = &mptcp_v6_prot,
.ops = &mptcp_v6_stream_ops,
.flags = INET_PROTOSW_ICSK,
};
int __init mptcp_proto_v6_init(void)
{
int err;
mptcp_v6_prot = mptcp_prot;
strcpy(mptcp_v6_prot.name, "MPTCPv6");
mptcp_v6_prot.slab = NULL;
mptcp_v6_prot.destroy = mptcp_v6_destroy;
mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
err = proto_register(&mptcp_v6_prot, 1);
if (err)
return err;
err = inet6_register_protosw(&mptcp_v6_protosw);
if (err)
proto_unregister(&mptcp_v6_prot);
return err;
}
#endif