linux/drivers/media/v4l2-core/v4l2-ioctl.c

2974 lines
96 KiB
C
Raw Normal View History

/*
* Video capture interface for Linux version 2
*
* A generic framework to process V4L2 ioctl commands.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Authors: Alan Cox, <alan@lxorguk.ukuu.org.uk> (version 1)
* Mauro Carvalho Chehab <mchehab@infradead.org> (version 2)
*/
[media] v4l2-core: Use kvmalloc() for potentially big allocations There are multiple places where arrays or otherwise variable sized buffer are allocated through V4L2 core code, including things like controls, memory pages, staging buffers for ioctls and so on. Such allocations can potentially require an order > 0 allocation from the page allocator, which is not guaranteed to be fulfilled and is likely to fail on a system with severe memory fragmentation (e.g. a system with very long uptime). Since the memory being allocated is intended to be used by the CPU exclusively, we can consider using vmalloc() as a fallback and this is exactly what the recently merged kvmalloc() helpers do. A kmalloc() call is still attempted, even for order > 0 allocations, but it is done with __GFP_NORETRY and __GFP_NOWARN, with expectation of failing if requested memory is not available instantly. Only then the vmalloc() fallback is used. This should give us fast and more reliable allocations even on systems with higher memory pressure and/or more fragmentation, while still retaining the same performance level on systems not suffering from such conditions. While at it, replace explicit array size calculations on changed allocations with kvmalloc_array(). Purposedly not touching videobuf1, as it is deprecated, has only few users remaining and would rather be seen removed instead. Signed-off-by: Tomasz Figa <tfiga@chromium.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-06-19 03:53:43 +00:00
#include <linux/mm.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/videodev2.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-event.h>
#include <media/v4l2-device.h>
#include <media/videobuf2-v4l2.h>
#include <media/v4l2-mc.h>
#include <trace/events/v4l2.h>
/* Zero out the end of the struct pointed to by p. Everything after, but
* not including, the specified field is cleared. */
#define CLEAR_AFTER_FIELD(p, field) \
memset((u8 *)(p) + offsetof(typeof(*(p)), field) + sizeof((p)->field), \
0, sizeof(*(p)) - offsetof(typeof(*(p)), field) - sizeof((p)->field))
#define is_valid_ioctl(vfd, cmd) test_bit(_IOC_NR(cmd), (vfd)->valid_ioctls)
struct std_descr {
v4l2_std_id std;
const char *descr;
};
static const struct std_descr standards[] = {
{ V4L2_STD_NTSC, "NTSC" },
{ V4L2_STD_NTSC_M, "NTSC-M" },
{ V4L2_STD_NTSC_M_JP, "NTSC-M-JP" },
{ V4L2_STD_NTSC_M_KR, "NTSC-M-KR" },
{ V4L2_STD_NTSC_443, "NTSC-443" },
{ V4L2_STD_PAL, "PAL" },
{ V4L2_STD_PAL_BG, "PAL-BG" },
{ V4L2_STD_PAL_B, "PAL-B" },
{ V4L2_STD_PAL_B1, "PAL-B1" },
{ V4L2_STD_PAL_G, "PAL-G" },
{ V4L2_STD_PAL_H, "PAL-H" },
{ V4L2_STD_PAL_I, "PAL-I" },
{ V4L2_STD_PAL_DK, "PAL-DK" },
{ V4L2_STD_PAL_D, "PAL-D" },
{ V4L2_STD_PAL_D1, "PAL-D1" },
{ V4L2_STD_PAL_K, "PAL-K" },
{ V4L2_STD_PAL_M, "PAL-M" },
{ V4L2_STD_PAL_N, "PAL-N" },
{ V4L2_STD_PAL_Nc, "PAL-Nc" },
{ V4L2_STD_PAL_60, "PAL-60" },
{ V4L2_STD_SECAM, "SECAM" },
{ V4L2_STD_SECAM_B, "SECAM-B" },
{ V4L2_STD_SECAM_G, "SECAM-G" },
{ V4L2_STD_SECAM_H, "SECAM-H" },
{ V4L2_STD_SECAM_DK, "SECAM-DK" },
{ V4L2_STD_SECAM_D, "SECAM-D" },
{ V4L2_STD_SECAM_K, "SECAM-K" },
{ V4L2_STD_SECAM_K1, "SECAM-K1" },
{ V4L2_STD_SECAM_L, "SECAM-L" },
{ V4L2_STD_SECAM_LC, "SECAM-Lc" },
{ 0, "Unknown" }
};
/* video4linux standard ID conversion to standard name
*/
const char *v4l2_norm_to_name(v4l2_std_id id)
{
u32 myid = id;
int i;
/* HACK: ppc32 architecture doesn't have __ucmpdi2 function to handle
64 bit comparations. So, on that architecture, with some gcc
variants, compilation fails. Currently, the max value is 30bit wide.
*/
BUG_ON(myid != id);
for (i = 0; standards[i].std; i++)
if (myid == standards[i].std)
break;
return standards[i].descr;
}
EXPORT_SYMBOL(v4l2_norm_to_name);
/* Returns frame period for the given standard */
void v4l2_video_std_frame_period(int id, struct v4l2_fract *frameperiod)
{
if (id & V4L2_STD_525_60) {
frameperiod->numerator = 1001;
frameperiod->denominator = 30000;
} else {
frameperiod->numerator = 1;
frameperiod->denominator = 25;
}
}
EXPORT_SYMBOL(v4l2_video_std_frame_period);
/* Fill in the fields of a v4l2_standard structure according to the
'id' and 'transmission' parameters. Returns negative on error. */
int v4l2_video_std_construct(struct v4l2_standard *vs,
int id, const char *name)
{
vs->id = id;
v4l2_video_std_frame_period(id, &vs->frameperiod);
vs->framelines = (id & V4L2_STD_525_60) ? 525 : 625;
strlcpy(vs->name, name, sizeof(vs->name));
return 0;
}
EXPORT_SYMBOL(v4l2_video_std_construct);
/* ----------------------------------------------------------------- */
/* some arrays for pretty-printing debug messages of enum types */
const char *v4l2_field_names[] = {
[V4L2_FIELD_ANY] = "any",
[V4L2_FIELD_NONE] = "none",
[V4L2_FIELD_TOP] = "top",
[V4L2_FIELD_BOTTOM] = "bottom",
[V4L2_FIELD_INTERLACED] = "interlaced",
[V4L2_FIELD_SEQ_TB] = "seq-tb",
[V4L2_FIELD_SEQ_BT] = "seq-bt",
[V4L2_FIELD_ALTERNATE] = "alternate",
[V4L2_FIELD_INTERLACED_TB] = "interlaced-tb",
[V4L2_FIELD_INTERLACED_BT] = "interlaced-bt",
};
EXPORT_SYMBOL(v4l2_field_names);
const char *v4l2_type_names[] = {
[0] = "0",
[V4L2_BUF_TYPE_VIDEO_CAPTURE] = "vid-cap",
[V4L2_BUF_TYPE_VIDEO_OVERLAY] = "vid-overlay",
[V4L2_BUF_TYPE_VIDEO_OUTPUT] = "vid-out",
[V4L2_BUF_TYPE_VBI_CAPTURE] = "vbi-cap",
[V4L2_BUF_TYPE_VBI_OUTPUT] = "vbi-out",
[V4L2_BUF_TYPE_SLICED_VBI_CAPTURE] = "sliced-vbi-cap",
[V4L2_BUF_TYPE_SLICED_VBI_OUTPUT] = "sliced-vbi-out",
[V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY] = "vid-out-overlay",
[V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE] = "vid-cap-mplane",
[V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE] = "vid-out-mplane",
[V4L2_BUF_TYPE_SDR_CAPTURE] = "sdr-cap",
[V4L2_BUF_TYPE_SDR_OUTPUT] = "sdr-out",
[V4L2_BUF_TYPE_META_CAPTURE] = "meta-cap",
};
EXPORT_SYMBOL(v4l2_type_names);
static const char *v4l2_memory_names[] = {
[V4L2_MEMORY_MMAP] = "mmap",
[V4L2_MEMORY_USERPTR] = "userptr",
[V4L2_MEMORY_OVERLAY] = "overlay",
[V4L2_MEMORY_DMABUF] = "dmabuf",
};
#define prt_names(a, arr) (((unsigned)(a)) < ARRAY_SIZE(arr) ? arr[a] : "unknown")
/* ------------------------------------------------------------------ */
/* debug help functions */
static void v4l_print_querycap(const void *arg, bool write_only)
{
const struct v4l2_capability *p = arg;
pr_cont("driver=%.*s, card=%.*s, bus=%.*s, version=0x%08x, capabilities=0x%08x, device_caps=0x%08x\n",
(int)sizeof(p->driver), p->driver,
(int)sizeof(p->card), p->card,
(int)sizeof(p->bus_info), p->bus_info,
p->version, p->capabilities, p->device_caps);
}
static void v4l_print_enuminput(const void *arg, bool write_only)
{
const struct v4l2_input *p = arg;
pr_cont("index=%u, name=%.*s, type=%u, audioset=0x%x, tuner=%u, std=0x%08Lx, status=0x%x, capabilities=0x%x\n",
p->index, (int)sizeof(p->name), p->name, p->type, p->audioset,
p->tuner, (unsigned long long)p->std, p->status,
p->capabilities);
}
static void v4l_print_enumoutput(const void *arg, bool write_only)
{
const struct v4l2_output *p = arg;
pr_cont("index=%u, name=%.*s, type=%u, audioset=0x%x, modulator=%u, std=0x%08Lx, capabilities=0x%x\n",
p->index, (int)sizeof(p->name), p->name, p->type, p->audioset,
p->modulator, (unsigned long long)p->std, p->capabilities);
}
static void v4l_print_audio(const void *arg, bool write_only)
{
const struct v4l2_audio *p = arg;
if (write_only)
pr_cont("index=%u, mode=0x%x\n", p->index, p->mode);
else
pr_cont("index=%u, name=%.*s, capability=0x%x, mode=0x%x\n",
p->index, (int)sizeof(p->name), p->name,
p->capability, p->mode);
}
static void v4l_print_audioout(const void *arg, bool write_only)
{
const struct v4l2_audioout *p = arg;
if (write_only)
pr_cont("index=%u\n", p->index);
else
pr_cont("index=%u, name=%.*s, capability=0x%x, mode=0x%x\n",
p->index, (int)sizeof(p->name), p->name,
p->capability, p->mode);
}
static void v4l_print_fmtdesc(const void *arg, bool write_only)
{
const struct v4l2_fmtdesc *p = arg;
pr_cont("index=%u, type=%s, flags=0x%x, pixelformat=%c%c%c%c, description='%.*s'\n",
p->index, prt_names(p->type, v4l2_type_names),
p->flags, (p->pixelformat & 0xff),
(p->pixelformat >> 8) & 0xff,
(p->pixelformat >> 16) & 0xff,
(p->pixelformat >> 24) & 0xff,
(int)sizeof(p->description), p->description);
}
static void v4l_print_format(const void *arg, bool write_only)
{
const struct v4l2_format *p = arg;
const struct v4l2_pix_format *pix;
const struct v4l2_pix_format_mplane *mp;
const struct v4l2_vbi_format *vbi;
const struct v4l2_sliced_vbi_format *sliced;
const struct v4l2_window *win;
const struct v4l2_sdr_format *sdr;
const struct v4l2_meta_format *meta;
unsigned i;
pr_cont("type=%s", prt_names(p->type, v4l2_type_names));
switch (p->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
pix = &p->fmt.pix;
pr_cont(", width=%u, height=%u, pixelformat=%c%c%c%c, field=%s, bytesperline=%u, sizeimage=%u, colorspace=%d, flags=0x%x, ycbcr_enc=%u, quantization=%u, xfer_func=%u\n",
pix->width, pix->height,
(pix->pixelformat & 0xff),
(pix->pixelformat >> 8) & 0xff,
(pix->pixelformat >> 16) & 0xff,
(pix->pixelformat >> 24) & 0xff,
prt_names(pix->field, v4l2_field_names),
pix->bytesperline, pix->sizeimage,
pix->colorspace, pix->flags, pix->ycbcr_enc,
pix->quantization, pix->xfer_func);
break;
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
mp = &p->fmt.pix_mp;
pr_cont(", width=%u, height=%u, format=%c%c%c%c, field=%s, colorspace=%d, num_planes=%u, flags=0x%x, ycbcr_enc=%u, quantization=%u, xfer_func=%u\n",
mp->width, mp->height,
(mp->pixelformat & 0xff),
(mp->pixelformat >> 8) & 0xff,
(mp->pixelformat >> 16) & 0xff,
(mp->pixelformat >> 24) & 0xff,
prt_names(mp->field, v4l2_field_names),
mp->colorspace, mp->num_planes, mp->flags,
mp->ycbcr_enc, mp->quantization, mp->xfer_func);
for (i = 0; i < mp->num_planes; i++)
printk(KERN_DEBUG "plane %u: bytesperline=%u sizeimage=%u\n", i,
mp->plane_fmt[i].bytesperline,
mp->plane_fmt[i].sizeimage);
break;
case V4L2_BUF_TYPE_VIDEO_OVERLAY:
case V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY:
win = &p->fmt.win;
/* Note: we can't print the clip list here since the clips
* pointer is a userspace pointer, not a kernelspace
* pointer. */
pr_cont(", wxh=%dx%d, x,y=%d,%d, field=%s, chromakey=0x%08x, clipcount=%u, clips=%p, bitmap=%p, global_alpha=0x%02x\n",
win->w.width, win->w.height, win->w.left, win->w.top,
prt_names(win->field, v4l2_field_names),
win->chromakey, win->clipcount, win->clips,
win->bitmap, win->global_alpha);
break;
case V4L2_BUF_TYPE_VBI_CAPTURE:
case V4L2_BUF_TYPE_VBI_OUTPUT:
vbi = &p->fmt.vbi;
pr_cont(", sampling_rate=%u, offset=%u, samples_per_line=%u, sample_format=%c%c%c%c, start=%u,%u, count=%u,%u\n",
vbi->sampling_rate, vbi->offset,
vbi->samples_per_line,
(vbi->sample_format & 0xff),
(vbi->sample_format >> 8) & 0xff,
(vbi->sample_format >> 16) & 0xff,
(vbi->sample_format >> 24) & 0xff,
vbi->start[0], vbi->start[1],
vbi->count[0], vbi->count[1]);
break;
case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
case V4L2_BUF_TYPE_SLICED_VBI_OUTPUT:
sliced = &p->fmt.sliced;
pr_cont(", service_set=0x%08x, io_size=%d\n",
sliced->service_set, sliced->io_size);
for (i = 0; i < 24; i++)
printk(KERN_DEBUG "line[%02u]=0x%04x, 0x%04x\n", i,
sliced->service_lines[0][i],
sliced->service_lines[1][i]);
break;
case V4L2_BUF_TYPE_SDR_CAPTURE:
case V4L2_BUF_TYPE_SDR_OUTPUT:
sdr = &p->fmt.sdr;
pr_cont(", pixelformat=%c%c%c%c\n",
(sdr->pixelformat >> 0) & 0xff,
(sdr->pixelformat >> 8) & 0xff,
(sdr->pixelformat >> 16) & 0xff,
(sdr->pixelformat >> 24) & 0xff);
break;
case V4L2_BUF_TYPE_META_CAPTURE:
meta = &p->fmt.meta;
pr_cont(", dataformat=%c%c%c%c, buffersize=%u\n",
(meta->dataformat >> 0) & 0xff,
(meta->dataformat >> 8) & 0xff,
(meta->dataformat >> 16) & 0xff,
(meta->dataformat >> 24) & 0xff,
meta->buffersize);
break;
}
}
static void v4l_print_framebuffer(const void *arg, bool write_only)
{
const struct v4l2_framebuffer *p = arg;
pr_cont("capability=0x%x, flags=0x%x, base=0x%p, width=%u, height=%u, pixelformat=%c%c%c%c, bytesperline=%u, sizeimage=%u, colorspace=%d\n",
p->capability, p->flags, p->base,
p->fmt.width, p->fmt.height,
(p->fmt.pixelformat & 0xff),
(p->fmt.pixelformat >> 8) & 0xff,
(p->fmt.pixelformat >> 16) & 0xff,
(p->fmt.pixelformat >> 24) & 0xff,
p->fmt.bytesperline, p->fmt.sizeimage,
p->fmt.colorspace);
}
static void v4l_print_buftype(const void *arg, bool write_only)
{
pr_cont("type=%s\n", prt_names(*(u32 *)arg, v4l2_type_names));
}
static void v4l_print_modulator(const void *arg, bool write_only)
{
const struct v4l2_modulator *p = arg;
if (write_only)
pr_cont("index=%u, txsubchans=0x%x\n", p->index, p->txsubchans);
else
pr_cont("index=%u, name=%.*s, capability=0x%x, rangelow=%u, rangehigh=%u, txsubchans=0x%x\n",
p->index, (int)sizeof(p->name), p->name, p->capability,
p->rangelow, p->rangehigh, p->txsubchans);
}
static void v4l_print_tuner(const void *arg, bool write_only)
{
const struct v4l2_tuner *p = arg;
if (write_only)
pr_cont("index=%u, audmode=%u\n", p->index, p->audmode);
else
pr_cont("index=%u, name=%.*s, type=%u, capability=0x%x, rangelow=%u, rangehigh=%u, signal=%u, afc=%d, rxsubchans=0x%x, audmode=%u\n",
p->index, (int)sizeof(p->name), p->name, p->type,
p->capability, p->rangelow,
p->rangehigh, p->signal, p->afc,
p->rxsubchans, p->audmode);
}
static void v4l_print_frequency(const void *arg, bool write_only)
{
const struct v4l2_frequency *p = arg;
pr_cont("tuner=%u, type=%u, frequency=%u\n",
p->tuner, p->type, p->frequency);
}
static void v4l_print_standard(const void *arg, bool write_only)
{
const struct v4l2_standard *p = arg;
pr_cont("index=%u, id=0x%Lx, name=%.*s, fps=%u/%u, framelines=%u\n",
p->index,
(unsigned long long)p->id, (int)sizeof(p->name), p->name,
p->frameperiod.numerator,
p->frameperiod.denominator,
p->framelines);
}
static void v4l_print_std(const void *arg, bool write_only)
{
pr_cont("std=0x%08Lx\n", *(const long long unsigned *)arg);
}
static void v4l_print_hw_freq_seek(const void *arg, bool write_only)
{
const struct v4l2_hw_freq_seek *p = arg;
pr_cont("tuner=%u, type=%u, seek_upward=%u, wrap_around=%u, spacing=%u, rangelow=%u, rangehigh=%u\n",
p->tuner, p->type, p->seek_upward, p->wrap_around, p->spacing,
p->rangelow, p->rangehigh);
}
static void v4l_print_requestbuffers(const void *arg, bool write_only)
{
const struct v4l2_requestbuffers *p = arg;
pr_cont("count=%d, type=%s, memory=%s\n",
p->count,
prt_names(p->type, v4l2_type_names),
prt_names(p->memory, v4l2_memory_names));
}
static void v4l_print_buffer(const void *arg, bool write_only)
{
const struct v4l2_buffer *p = arg;
const struct v4l2_timecode *tc = &p->timecode;
const struct v4l2_plane *plane;
int i;
pr_cont("%02ld:%02d:%02d.%08ld index=%d, type=%s, flags=0x%08x, field=%s, sequence=%d, memory=%s",
p->timestamp.tv_sec / 3600,
(int)(p->timestamp.tv_sec / 60) % 60,
(int)(p->timestamp.tv_sec % 60),
(long)p->timestamp.tv_usec,
p->index,
prt_names(p->type, v4l2_type_names),
p->flags, prt_names(p->field, v4l2_field_names),
p->sequence, prt_names(p->memory, v4l2_memory_names));
if (V4L2_TYPE_IS_MULTIPLANAR(p->type) && p->m.planes) {
pr_cont("\n");
for (i = 0; i < p->length; ++i) {
plane = &p->m.planes[i];
printk(KERN_DEBUG
"plane %d: bytesused=%d, data_offset=0x%08x, offset/userptr=0x%lx, length=%d\n",
i, plane->bytesused, plane->data_offset,
plane->m.userptr, plane->length);
}
} else {
pr_cont(", bytesused=%d, offset/userptr=0x%lx, length=%d\n",
p->bytesused, p->m.userptr, p->length);
}
printk(KERN_DEBUG "timecode=%02d:%02d:%02d type=%d, flags=0x%08x, frames=%d, userbits=0x%08x\n",
tc->hours, tc->minutes, tc->seconds,
tc->type, tc->flags, tc->frames, *(__u32 *)tc->userbits);
}
static void v4l_print_exportbuffer(const void *arg, bool write_only)
{
const struct v4l2_exportbuffer *p = arg;
pr_cont("fd=%d, type=%s, index=%u, plane=%u, flags=0x%08x\n",
p->fd, prt_names(p->type, v4l2_type_names),
p->index, p->plane, p->flags);
}
static void v4l_print_create_buffers(const void *arg, bool write_only)
{
const struct v4l2_create_buffers *p = arg;
pr_cont("index=%d, count=%d, memory=%s, ",
p->index, p->count,
prt_names(p->memory, v4l2_memory_names));
v4l_print_format(&p->format, write_only);
}
static void v4l_print_streamparm(const void *arg, bool write_only)
{
const struct v4l2_streamparm *p = arg;
pr_cont("type=%s", prt_names(p->type, v4l2_type_names));
if (p->type == V4L2_BUF_TYPE_VIDEO_CAPTURE ||
p->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) {
const struct v4l2_captureparm *c = &p->parm.capture;
pr_cont(", capability=0x%x, capturemode=0x%x, timeperframe=%d/%d, extendedmode=%d, readbuffers=%d\n",
c->capability, c->capturemode,
c->timeperframe.numerator, c->timeperframe.denominator,
c->extendedmode, c->readbuffers);
} else if (p->type == V4L2_BUF_TYPE_VIDEO_OUTPUT ||
p->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
const struct v4l2_outputparm *c = &p->parm.output;
pr_cont(", capability=0x%x, outputmode=0x%x, timeperframe=%d/%d, extendedmode=%d, writebuffers=%d\n",
c->capability, c->outputmode,
c->timeperframe.numerator, c->timeperframe.denominator,
c->extendedmode, c->writebuffers);
} else {
pr_cont("\n");
}
}
static void v4l_print_queryctrl(const void *arg, bool write_only)
{
const struct v4l2_queryctrl *p = arg;
pr_cont("id=0x%x, type=%d, name=%.*s, min/max=%d/%d, step=%d, default=%d, flags=0x%08x\n",
p->id, p->type, (int)sizeof(p->name), p->name,
p->minimum, p->maximum,
p->step, p->default_value, p->flags);
}
static void v4l_print_query_ext_ctrl(const void *arg, bool write_only)
{
const struct v4l2_query_ext_ctrl *p = arg;
pr_cont("id=0x%x, type=%d, name=%.*s, min/max=%lld/%lld, step=%lld, default=%lld, flags=0x%08x, elem_size=%u, elems=%u, nr_of_dims=%u, dims=%u,%u,%u,%u\n",
p->id, p->type, (int)sizeof(p->name), p->name,
p->minimum, p->maximum,
p->step, p->default_value, p->flags,
p->elem_size, p->elems, p->nr_of_dims,
p->dims[0], p->dims[1], p->dims[2], p->dims[3]);
}
static void v4l_print_querymenu(const void *arg, bool write_only)
{
const struct v4l2_querymenu *p = arg;
pr_cont("id=0x%x, index=%d\n", p->id, p->index);
}
static void v4l_print_control(const void *arg, bool write_only)
{
const struct v4l2_control *p = arg;
pr_cont("id=0x%x, value=%d\n", p->id, p->value);
}
static void v4l_print_ext_controls(const void *arg, bool write_only)
{
const struct v4l2_ext_controls *p = arg;
int i;
pr_cont("which=0x%x, count=%d, error_idx=%d",
p->which, p->count, p->error_idx);
for (i = 0; i < p->count; i++) {
if (!p->controls[i].size)
pr_cont(", id/val=0x%x/0x%x",
p->controls[i].id, p->controls[i].value);
else
pr_cont(", id/size=0x%x/%u",
p->controls[i].id, p->controls[i].size);
}
pr_cont("\n");
}
static void v4l_print_cropcap(const void *arg, bool write_only)
{
const struct v4l2_cropcap *p = arg;
pr_cont("type=%s, bounds wxh=%dx%d, x,y=%d,%d, defrect wxh=%dx%d, x,y=%d,%d, pixelaspect %d/%d\n",
prt_names(p->type, v4l2_type_names),
p->bounds.width, p->bounds.height,
p->bounds.left, p->bounds.top,
p->defrect.width, p->defrect.height,
p->defrect.left, p->defrect.top,
p->pixelaspect.numerator, p->pixelaspect.denominator);
}
static void v4l_print_crop(const void *arg, bool write_only)
{
const struct v4l2_crop *p = arg;
pr_cont("type=%s, wxh=%dx%d, x,y=%d,%d\n",
prt_names(p->type, v4l2_type_names),
p->c.width, p->c.height,
p->c.left, p->c.top);
}
static void v4l_print_selection(const void *arg, bool write_only)
{
const struct v4l2_selection *p = arg;
pr_cont("type=%s, target=%d, flags=0x%x, wxh=%dx%d, x,y=%d,%d\n",
prt_names(p->type, v4l2_type_names),
p->target, p->flags,
p->r.width, p->r.height, p->r.left, p->r.top);
}
static void v4l_print_jpegcompression(const void *arg, bool write_only)
{
const struct v4l2_jpegcompression *p = arg;
pr_cont("quality=%d, APPn=%d, APP_len=%d, COM_len=%d, jpeg_markers=0x%x\n",
p->quality, p->APPn, p->APP_len,
p->COM_len, p->jpeg_markers);
}
static void v4l_print_enc_idx(const void *arg, bool write_only)
{
const struct v4l2_enc_idx *p = arg;
pr_cont("entries=%d, entries_cap=%d\n",
p->entries, p->entries_cap);
}
static void v4l_print_encoder_cmd(const void *arg, bool write_only)
{
const struct v4l2_encoder_cmd *p = arg;
pr_cont("cmd=%d, flags=0x%x\n",
p->cmd, p->flags);
}
static void v4l_print_decoder_cmd(const void *arg, bool write_only)
{
const struct v4l2_decoder_cmd *p = arg;
pr_cont("cmd=%d, flags=0x%x\n", p->cmd, p->flags);
if (p->cmd == V4L2_DEC_CMD_START)
pr_info("speed=%d, format=%u\n",
p->start.speed, p->start.format);
else if (p->cmd == V4L2_DEC_CMD_STOP)
pr_info("pts=%llu\n", p->stop.pts);
}
static void v4l_print_dbg_chip_info(const void *arg, bool write_only)
{
const struct v4l2_dbg_chip_info *p = arg;
pr_cont("type=%u, ", p->match.type);
if (p->match.type == V4L2_CHIP_MATCH_I2C_DRIVER)
pr_cont("name=%.*s, ",
(int)sizeof(p->match.name), p->match.name);
else
pr_cont("addr=%u, ", p->match.addr);
pr_cont("name=%.*s\n", (int)sizeof(p->name), p->name);
}
static void v4l_print_dbg_register(const void *arg, bool write_only)
{
const struct v4l2_dbg_register *p = arg;
pr_cont("type=%u, ", p->match.type);
if (p->match.type == V4L2_CHIP_MATCH_I2C_DRIVER)
pr_cont("name=%.*s, ",
(int)sizeof(p->match.name), p->match.name);
else
pr_cont("addr=%u, ", p->match.addr);
pr_cont("reg=0x%llx, val=0x%llx\n",
p->reg, p->val);
}
static void v4l_print_dv_timings(const void *arg, bool write_only)
{
const struct v4l2_dv_timings *p = arg;
switch (p->type) {
case V4L2_DV_BT_656_1120:
pr_cont("type=bt-656/1120, interlaced=%u, pixelclock=%llu, width=%u, height=%u, polarities=0x%x, hfrontporch=%u, hsync=%u, hbackporch=%u, vfrontporch=%u, vsync=%u, vbackporch=%u, il_vfrontporch=%u, il_vsync=%u, il_vbackporch=%u, standards=0x%x, flags=0x%x\n",
p->bt.interlaced, p->bt.pixelclock,
p->bt.width, p->bt.height,
p->bt.polarities, p->bt.hfrontporch,
p->bt.hsync, p->bt.hbackporch,
p->bt.vfrontporch, p->bt.vsync,
p->bt.vbackporch, p->bt.il_vfrontporch,
p->bt.il_vsync, p->bt.il_vbackporch,
p->bt.standards, p->bt.flags);
break;
default:
pr_cont("type=%d\n", p->type);
break;
}
}
static void v4l_print_enum_dv_timings(const void *arg, bool write_only)
{
const struct v4l2_enum_dv_timings *p = arg;
pr_cont("index=%u, ", p->index);
v4l_print_dv_timings(&p->timings, write_only);
}
static void v4l_print_dv_timings_cap(const void *arg, bool write_only)
{
const struct v4l2_dv_timings_cap *p = arg;
switch (p->type) {
case V4L2_DV_BT_656_1120:
pr_cont("type=bt-656/1120, width=%u-%u, height=%u-%u, pixelclock=%llu-%llu, standards=0x%x, capabilities=0x%x\n",
p->bt.min_width, p->bt.max_width,
p->bt.min_height, p->bt.max_height,
p->bt.min_pixelclock, p->bt.max_pixelclock,
p->bt.standards, p->bt.capabilities);
break;
default:
pr_cont("type=%u\n", p->type);
break;
}
}
static void v4l_print_frmsizeenum(const void *arg, bool write_only)
{
const struct v4l2_frmsizeenum *p = arg;
pr_cont("index=%u, pixelformat=%c%c%c%c, type=%u",
p->index,
(p->pixel_format & 0xff),
(p->pixel_format >> 8) & 0xff,
(p->pixel_format >> 16) & 0xff,
(p->pixel_format >> 24) & 0xff,
p->type);
switch (p->type) {
case V4L2_FRMSIZE_TYPE_DISCRETE:
pr_cont(", wxh=%ux%u\n",
p->discrete.width, p->discrete.height);
break;
case V4L2_FRMSIZE_TYPE_STEPWISE:
pr_cont(", min=%ux%u, max=%ux%u, step=%ux%u\n",
p->stepwise.min_width,
p->stepwise.min_height,
p->stepwise.max_width,
p->stepwise.max_height,
p->stepwise.step_width,
p->stepwise.step_height);
break;
case V4L2_FRMSIZE_TYPE_CONTINUOUS:
/* fall through */
default:
pr_cont("\n");
break;
}
}
static void v4l_print_frmivalenum(const void *arg, bool write_only)
{
const struct v4l2_frmivalenum *p = arg;
pr_cont("index=%u, pixelformat=%c%c%c%c, wxh=%ux%u, type=%u",
p->index,
(p->pixel_format & 0xff),
(p->pixel_format >> 8) & 0xff,
(p->pixel_format >> 16) & 0xff,
(p->pixel_format >> 24) & 0xff,
p->width, p->height, p->type);
switch (p->type) {
case V4L2_FRMIVAL_TYPE_DISCRETE:
pr_cont(", fps=%d/%d\n",
p->discrete.numerator,
p->discrete.denominator);
break;
case V4L2_FRMIVAL_TYPE_STEPWISE:
pr_cont(", min=%d/%d, max=%d/%d, step=%d/%d\n",
p->stepwise.min.numerator,
p->stepwise.min.denominator,
p->stepwise.max.numerator,
p->stepwise.max.denominator,
p->stepwise.step.numerator,
p->stepwise.step.denominator);
break;
case V4L2_FRMIVAL_TYPE_CONTINUOUS:
/* fall through */
default:
pr_cont("\n");
break;
}
}
static void v4l_print_event(const void *arg, bool write_only)
{
const struct v4l2_event *p = arg;
const struct v4l2_event_ctrl *c;
pr_cont("type=0x%x, pending=%u, sequence=%u, id=%u, timestamp=%lu.%9.9lu\n",
p->type, p->pending, p->sequence, p->id,
p->timestamp.tv_sec, p->timestamp.tv_nsec);
switch (p->type) {
case V4L2_EVENT_VSYNC:
printk(KERN_DEBUG "field=%s\n",
prt_names(p->u.vsync.field, v4l2_field_names));
break;
case V4L2_EVENT_CTRL:
c = &p->u.ctrl;
printk(KERN_DEBUG "changes=0x%x, type=%u, ",
c->changes, c->type);
if (c->type == V4L2_CTRL_TYPE_INTEGER64)
pr_cont("value64=%lld, ", c->value64);
else
pr_cont("value=%d, ", c->value);
pr_cont("flags=0x%x, minimum=%d, maximum=%d, step=%d, default_value=%d\n",
c->flags, c->minimum, c->maximum,
c->step, c->default_value);
break;
case V4L2_EVENT_FRAME_SYNC:
pr_cont("frame_sequence=%u\n",
p->u.frame_sync.frame_sequence);
break;
}
}
static void v4l_print_event_subscription(const void *arg, bool write_only)
{
const struct v4l2_event_subscription *p = arg;
pr_cont("type=0x%x, id=0x%x, flags=0x%x\n",
p->type, p->id, p->flags);
}
static void v4l_print_sliced_vbi_cap(const void *arg, bool write_only)
{
const struct v4l2_sliced_vbi_cap *p = arg;
int i;
pr_cont("type=%s, service_set=0x%08x\n",
prt_names(p->type, v4l2_type_names), p->service_set);
for (i = 0; i < 24; i++)
printk(KERN_DEBUG "line[%02u]=0x%04x, 0x%04x\n", i,
p->service_lines[0][i],
p->service_lines[1][i]);
}
static void v4l_print_freq_band(const void *arg, bool write_only)
{
const struct v4l2_frequency_band *p = arg;
pr_cont("tuner=%u, type=%u, index=%u, capability=0x%x, rangelow=%u, rangehigh=%u, modulation=0x%x\n",
p->tuner, p->type, p->index,
p->capability, p->rangelow,
p->rangehigh, p->modulation);
}
static void v4l_print_edid(const void *arg, bool write_only)
{
const struct v4l2_edid *p = arg;
pr_cont("pad=%u, start_block=%u, blocks=%u\n",
p->pad, p->start_block, p->blocks);
}
static void v4l_print_u32(const void *arg, bool write_only)
{
pr_cont("value=%u\n", *(const u32 *)arg);
}
static void v4l_print_newline(const void *arg, bool write_only)
{
pr_cont("\n");
}
static void v4l_print_default(const void *arg, bool write_only)
{
pr_cont("driver-specific ioctl\n");
}
static int check_ext_ctrls(struct v4l2_ext_controls *c, int allow_priv)
{
__u32 i;
/* zero the reserved fields */
c->reserved[0] = c->reserved[1] = 0;
for (i = 0; i < c->count; i++)
c->controls[i].reserved2[0] = 0;
/* V4L2_CID_PRIVATE_BASE cannot be used as control class
when using extended controls.
Only when passed in through VIDIOC_G_CTRL and VIDIOC_S_CTRL
is it allowed for backwards compatibility.
*/
if (!allow_priv && c->which == V4L2_CID_PRIVATE_BASE)
return 0;
if (!c->which)
return 1;
/* Check that all controls are from the same control class. */
for (i = 0; i < c->count; i++) {
if (V4L2_CTRL_ID2WHICH(c->controls[i].id) != c->which) {
c->error_idx = i;
return 0;
}
}
return 1;
}
static int check_fmt(struct file *file, enum v4l2_buf_type type)
{
struct video_device *vfd = video_devdata(file);
const struct v4l2_ioctl_ops *ops = vfd->ioctl_ops;
bool is_vid = vfd->vfl_type == VFL_TYPE_GRABBER;
bool is_vbi = vfd->vfl_type == VFL_TYPE_VBI;
bool is_sdr = vfd->vfl_type == VFL_TYPE_SDR;
bool is_tch = vfd->vfl_type == VFL_TYPE_TOUCH;
bool is_rx = vfd->vfl_dir != VFL_DIR_TX;
bool is_tx = vfd->vfl_dir != VFL_DIR_RX;
if (ops == NULL)
return -EINVAL;
switch (type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
if ((is_vid || is_tch) && is_rx &&
(ops->vidioc_g_fmt_vid_cap || ops->vidioc_g_fmt_vid_cap_mplane))
return 0;
break;
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
if (is_vid && is_rx && ops->vidioc_g_fmt_vid_cap_mplane)
return 0;
break;
case V4L2_BUF_TYPE_VIDEO_OVERLAY:
if (is_vid && is_rx && ops->vidioc_g_fmt_vid_overlay)
return 0;
break;
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
if (is_vid && is_tx &&
(ops->vidioc_g_fmt_vid_out || ops->vidioc_g_fmt_vid_out_mplane))
return 0;
break;
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
if (is_vid && is_tx && ops->vidioc_g_fmt_vid_out_mplane)
return 0;
break;
case V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY:
if (is_vid && is_tx && ops->vidioc_g_fmt_vid_out_overlay)
return 0;
break;
case V4L2_BUF_TYPE_VBI_CAPTURE:
if (is_vbi && is_rx && ops->vidioc_g_fmt_vbi_cap)
return 0;
break;
case V4L2_BUF_TYPE_VBI_OUTPUT:
if (is_vbi && is_tx && ops->vidioc_g_fmt_vbi_out)
return 0;
break;
case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
if (is_vbi && is_rx && ops->vidioc_g_fmt_sliced_vbi_cap)
return 0;
break;
case V4L2_BUF_TYPE_SLICED_VBI_OUTPUT:
if (is_vbi && is_tx && ops->vidioc_g_fmt_sliced_vbi_out)
return 0;
break;
case V4L2_BUF_TYPE_SDR_CAPTURE:
if (is_sdr && is_rx && ops->vidioc_g_fmt_sdr_cap)
return 0;
break;
case V4L2_BUF_TYPE_SDR_OUTPUT:
if (is_sdr && is_tx && ops->vidioc_g_fmt_sdr_out)
return 0;
break;
case V4L2_BUF_TYPE_META_CAPTURE:
if (is_vid && is_rx && ops->vidioc_g_fmt_meta_cap)
return 0;
break;
default:
break;
}
return -EINVAL;
}
static void v4l_sanitize_format(struct v4l2_format *fmt)
{
unsigned int offset;
/*
* The v4l2_pix_format structure has been extended with fields that were
* not previously required to be set to zero by applications. The priv
* field, when set to a magic value, indicates the the extended fields
* are valid. Otherwise they will contain undefined values. To simplify
* the API towards drivers zero the extended fields and set the priv
* field to the magic value when the extended pixel format structure
* isn't used by applications.
*/
if (fmt->type != V4L2_BUF_TYPE_VIDEO_CAPTURE &&
fmt->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
return;
if (fmt->fmt.pix.priv == V4L2_PIX_FMT_PRIV_MAGIC)
return;
fmt->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
offset = offsetof(struct v4l2_pix_format, priv)
+ sizeof(fmt->fmt.pix.priv);
memset(((void *)&fmt->fmt.pix) + offset, 0,
sizeof(fmt->fmt.pix) - offset);
}
static int v4l_querycap(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_capability *cap = (struct v4l2_capability *)arg;
struct video_device *vfd = video_devdata(file);
int ret;
cap->version = LINUX_VERSION_CODE;
cap->device_caps = vfd->device_caps;
cap->capabilities = vfd->device_caps | V4L2_CAP_DEVICE_CAPS;
ret = ops->vidioc_querycap(file, fh, cap);
cap->capabilities |= V4L2_CAP_EXT_PIX_FORMAT;
/*
* Drivers MUST fill in device_caps, so check for this and
* warn if it was forgotten.
*/
WARN(!(cap->capabilities & V4L2_CAP_DEVICE_CAPS) ||
!cap->device_caps, "Bad caps for driver %s, %x %x",
cap->driver, cap->capabilities, cap->device_caps);
cap->device_caps |= V4L2_CAP_EXT_PIX_FORMAT;
return ret;
}
static int v4l_s_input(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
int ret;
ret = v4l_enable_media_source(vfd);
if (ret)
return ret;
return ops->vidioc_s_input(file, fh, *(unsigned int *)arg);
}
static int v4l_s_output(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
return ops->vidioc_s_output(file, fh, *(unsigned int *)arg);
}
static int v4l_g_priority(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd;
u32 *p = arg;
vfd = video_devdata(file);
*p = v4l2_prio_max(vfd->prio);
return 0;
}
static int v4l_s_priority(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd;
struct v4l2_fh *vfh;
u32 *p = arg;
vfd = video_devdata(file);
if (!test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags))
return -ENOTTY;
vfh = file->private_data;
return v4l2_prio_change(vfd->prio, &vfh->prio, *p);
}
static int v4l_enuminput(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_input *p = arg;
/*
* We set the flags for CAP_DV_TIMINGS &
* CAP_STD here based on ioctl handler provided by the
* driver. If the driver doesn't support these
* for a specific input, it must override these flags.
*/
if (is_valid_ioctl(vfd, VIDIOC_S_STD))
p->capabilities |= V4L2_IN_CAP_STD;
return ops->vidioc_enum_input(file, fh, p);
}
static int v4l_enumoutput(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_output *p = arg;
/*
* We set the flags for CAP_DV_TIMINGS &
* CAP_STD here based on ioctl handler provided by the
* driver. If the driver doesn't support these
* for a specific output, it must override these flags.
*/
if (is_valid_ioctl(vfd, VIDIOC_S_STD))
p->capabilities |= V4L2_OUT_CAP_STD;
return ops->vidioc_enum_output(file, fh, p);
}
static void v4l_fill_fmtdesc(struct v4l2_fmtdesc *fmt)
{
const unsigned sz = sizeof(fmt->description);
const char *descr = NULL;
u32 flags = 0;
/*
* We depart from the normal coding style here since the descriptions
* should be aligned so it is easy to see which descriptions will be
* longer than 31 characters (the max length for a description).
* And frankly, this is easier to read anyway.
*
* Note that gcc will use O(log N) comparisons to find the right case.
*/
switch (fmt->pixelformat) {
/* Max description length mask: descr = "0123456789012345678901234567890" */
case V4L2_PIX_FMT_RGB332: descr = "8-bit RGB 3-3-2"; break;
case V4L2_PIX_FMT_RGB444: descr = "16-bit A/XRGB 4-4-4-4"; break;
case V4L2_PIX_FMT_ARGB444: descr = "16-bit ARGB 4-4-4-4"; break;
case V4L2_PIX_FMT_XRGB444: descr = "16-bit XRGB 4-4-4-4"; break;
case V4L2_PIX_FMT_RGB555: descr = "16-bit A/XRGB 1-5-5-5"; break;
case V4L2_PIX_FMT_ARGB555: descr = "16-bit ARGB 1-5-5-5"; break;
case V4L2_PIX_FMT_XRGB555: descr = "16-bit XRGB 1-5-5-5"; break;
case V4L2_PIX_FMT_RGB565: descr = "16-bit RGB 5-6-5"; break;
case V4L2_PIX_FMT_RGB555X: descr = "16-bit A/XRGB 1-5-5-5 BE"; break;
case V4L2_PIX_FMT_ARGB555X: descr = "16-bit ARGB 1-5-5-5 BE"; break;
case V4L2_PIX_FMT_XRGB555X: descr = "16-bit XRGB 1-5-5-5 BE"; break;
case V4L2_PIX_FMT_RGB565X: descr = "16-bit RGB 5-6-5 BE"; break;
case V4L2_PIX_FMT_BGR666: descr = "18-bit BGRX 6-6-6-14"; break;
case V4L2_PIX_FMT_BGR24: descr = "24-bit BGR 8-8-8"; break;
case V4L2_PIX_FMT_RGB24: descr = "24-bit RGB 8-8-8"; break;
case V4L2_PIX_FMT_BGR32: descr = "32-bit BGRA/X 8-8-8-8"; break;
case V4L2_PIX_FMT_ABGR32: descr = "32-bit BGRA 8-8-8-8"; break;
case V4L2_PIX_FMT_XBGR32: descr = "32-bit BGRX 8-8-8-8"; break;
case V4L2_PIX_FMT_RGB32: descr = "32-bit A/XRGB 8-8-8-8"; break;
case V4L2_PIX_FMT_ARGB32: descr = "32-bit ARGB 8-8-8-8"; break;
case V4L2_PIX_FMT_XRGB32: descr = "32-bit XRGB 8-8-8-8"; break;
case V4L2_PIX_FMT_GREY: descr = "8-bit Greyscale"; break;
case V4L2_PIX_FMT_Y4: descr = "4-bit Greyscale"; break;
case V4L2_PIX_FMT_Y6: descr = "6-bit Greyscale"; break;
case V4L2_PIX_FMT_Y10: descr = "10-bit Greyscale"; break;
case V4L2_PIX_FMT_Y12: descr = "12-bit Greyscale"; break;
case V4L2_PIX_FMT_Y16: descr = "16-bit Greyscale"; break;
case V4L2_PIX_FMT_Y16_BE: descr = "16-bit Greyscale BE"; break;
case V4L2_PIX_FMT_Y10BPACK: descr = "10-bit Greyscale (Packed)"; break;
case V4L2_PIX_FMT_Y8I: descr = "Interleaved 8-bit Greyscale"; break;
case V4L2_PIX_FMT_Y12I: descr = "Interleaved 12-bit Greyscale"; break;
case V4L2_PIX_FMT_Z16: descr = "16-bit Depth"; break;
case V4L2_PIX_FMT_INZI: descr = "Planar 10:16 Greyscale Depth"; break;
case V4L2_PIX_FMT_PAL8: descr = "8-bit Palette"; break;
case V4L2_PIX_FMT_UV8: descr = "8-bit Chrominance UV 4-4"; break;
case V4L2_PIX_FMT_YVU410: descr = "Planar YVU 4:1:0"; break;
case V4L2_PIX_FMT_YVU420: descr = "Planar YVU 4:2:0"; break;
case V4L2_PIX_FMT_YUYV: descr = "YUYV 4:2:2"; break;
case V4L2_PIX_FMT_YYUV: descr = "YYUV 4:2:2"; break;
case V4L2_PIX_FMT_YVYU: descr = "YVYU 4:2:2"; break;
case V4L2_PIX_FMT_UYVY: descr = "UYVY 4:2:2"; break;
case V4L2_PIX_FMT_VYUY: descr = "VYUY 4:2:2"; break;
case V4L2_PIX_FMT_YUV422P: descr = "Planar YUV 4:2:2"; break;
case V4L2_PIX_FMT_YUV411P: descr = "Planar YUV 4:1:1"; break;
case V4L2_PIX_FMT_Y41P: descr = "YUV 4:1:1 (Packed)"; break;
case V4L2_PIX_FMT_YUV444: descr = "16-bit A/XYUV 4-4-4-4"; break;
case V4L2_PIX_FMT_YUV555: descr = "16-bit A/XYUV 1-5-5-5"; break;
case V4L2_PIX_FMT_YUV565: descr = "16-bit YUV 5-6-5"; break;
case V4L2_PIX_FMT_YUV32: descr = "32-bit A/XYUV 8-8-8-8"; break;
case V4L2_PIX_FMT_YUV410: descr = "Planar YUV 4:1:0"; break;
case V4L2_PIX_FMT_YUV420: descr = "Planar YUV 4:2:0"; break;
case V4L2_PIX_FMT_HI240: descr = "8-bit Dithered RGB (BTTV)"; break;
case V4L2_PIX_FMT_HM12: descr = "YUV 4:2:0 (16x16 Macroblocks)"; break;
case V4L2_PIX_FMT_M420: descr = "YUV 4:2:0 (M420)"; break;
case V4L2_PIX_FMT_NV12: descr = "Y/CbCr 4:2:0"; break;
case V4L2_PIX_FMT_NV21: descr = "Y/CrCb 4:2:0"; break;
case V4L2_PIX_FMT_NV16: descr = "Y/CbCr 4:2:2"; break;
case V4L2_PIX_FMT_NV61: descr = "Y/CrCb 4:2:2"; break;
case V4L2_PIX_FMT_NV24: descr = "Y/CbCr 4:4:4"; break;
case V4L2_PIX_FMT_NV42: descr = "Y/CrCb 4:4:4"; break;
case V4L2_PIX_FMT_NV12M: descr = "Y/CbCr 4:2:0 (N-C)"; break;
case V4L2_PIX_FMT_NV21M: descr = "Y/CrCb 4:2:0 (N-C)"; break;
case V4L2_PIX_FMT_NV16M: descr = "Y/CbCr 4:2:2 (N-C)"; break;
case V4L2_PIX_FMT_NV61M: descr = "Y/CrCb 4:2:2 (N-C)"; break;
case V4L2_PIX_FMT_NV12MT: descr = "Y/CbCr 4:2:0 (64x32 MB, N-C)"; break;
case V4L2_PIX_FMT_NV12MT_16X16: descr = "Y/CbCr 4:2:0 (16x16 MB, N-C)"; break;
case V4L2_PIX_FMT_YUV420M: descr = "Planar YUV 4:2:0 (N-C)"; break;
case V4L2_PIX_FMT_YVU420M: descr = "Planar YVU 4:2:0 (N-C)"; break;
case V4L2_PIX_FMT_YUV422M: descr = "Planar YUV 4:2:2 (N-C)"; break;
case V4L2_PIX_FMT_YVU422M: descr = "Planar YVU 4:2:2 (N-C)"; break;
case V4L2_PIX_FMT_YUV444M: descr = "Planar YUV 4:4:4 (N-C)"; break;
case V4L2_PIX_FMT_YVU444M: descr = "Planar YVU 4:4:4 (N-C)"; break;
case V4L2_PIX_FMT_SBGGR8: descr = "8-bit Bayer BGBG/GRGR"; break;
case V4L2_PIX_FMT_SGBRG8: descr = "8-bit Bayer GBGB/RGRG"; break;
case V4L2_PIX_FMT_SGRBG8: descr = "8-bit Bayer GRGR/BGBG"; break;
case V4L2_PIX_FMT_SRGGB8: descr = "8-bit Bayer RGRG/GBGB"; break;
case V4L2_PIX_FMT_SBGGR10: descr = "10-bit Bayer BGBG/GRGR"; break;
case V4L2_PIX_FMT_SGBRG10: descr = "10-bit Bayer GBGB/RGRG"; break;
case V4L2_PIX_FMT_SGRBG10: descr = "10-bit Bayer GRGR/BGBG"; break;
case V4L2_PIX_FMT_SRGGB10: descr = "10-bit Bayer RGRG/GBGB"; break;
case V4L2_PIX_FMT_SBGGR10P: descr = "10-bit Bayer BGBG/GRGR Packed"; break;
case V4L2_PIX_FMT_SGBRG10P: descr = "10-bit Bayer GBGB/RGRG Packed"; break;
case V4L2_PIX_FMT_SGRBG10P: descr = "10-bit Bayer GRGR/BGBG Packed"; break;
case V4L2_PIX_FMT_SRGGB10P: descr = "10-bit Bayer RGRG/GBGB Packed"; break;
case V4L2_PIX_FMT_SBGGR10ALAW8: descr = "8-bit Bayer BGBG/GRGR (A-law)"; break;
case V4L2_PIX_FMT_SGBRG10ALAW8: descr = "8-bit Bayer GBGB/RGRG (A-law)"; break;
case V4L2_PIX_FMT_SGRBG10ALAW8: descr = "8-bit Bayer GRGR/BGBG (A-law)"; break;
case V4L2_PIX_FMT_SRGGB10ALAW8: descr = "8-bit Bayer RGRG/GBGB (A-law)"; break;
case V4L2_PIX_FMT_SBGGR10DPCM8: descr = "8-bit Bayer BGBG/GRGR (DPCM)"; break;
case V4L2_PIX_FMT_SGBRG10DPCM8: descr = "8-bit Bayer GBGB/RGRG (DPCM)"; break;
case V4L2_PIX_FMT_SGRBG10DPCM8: descr = "8-bit Bayer GRGR/BGBG (DPCM)"; break;
case V4L2_PIX_FMT_SRGGB10DPCM8: descr = "8-bit Bayer RGRG/GBGB (DPCM)"; break;
case V4L2_PIX_FMT_SBGGR12: descr = "12-bit Bayer BGBG/GRGR"; break;
case V4L2_PIX_FMT_SGBRG12: descr = "12-bit Bayer GBGB/RGRG"; break;
case V4L2_PIX_FMT_SGRBG12: descr = "12-bit Bayer GRGR/BGBG"; break;
case V4L2_PIX_FMT_SRGGB12: descr = "12-bit Bayer RGRG/GBGB"; break;
case V4L2_PIX_FMT_SBGGR12P: descr = "12-bit Bayer BGBG/GRGR Packed"; break;
case V4L2_PIX_FMT_SGBRG12P: descr = "12-bit Bayer GBGB/RGRG Packed"; break;
case V4L2_PIX_FMT_SGRBG12P: descr = "12-bit Bayer GRGR/BGBG Packed"; break;
case V4L2_PIX_FMT_SRGGB12P: descr = "12-bit Bayer RGRG/GBGB Packed"; break;
case V4L2_PIX_FMT_SBGGR16: descr = "16-bit Bayer BGBG/GRGR"; break;
case V4L2_PIX_FMT_SGBRG16: descr = "16-bit Bayer GBGB/RGRG"; break;
case V4L2_PIX_FMT_SGRBG16: descr = "16-bit Bayer GRGR/BGBG"; break;
case V4L2_PIX_FMT_SRGGB16: descr = "16-bit Bayer RGRG/GBGB"; break;
case V4L2_PIX_FMT_SN9C20X_I420: descr = "GSPCA SN9C20X I420"; break;
case V4L2_PIX_FMT_SPCA501: descr = "GSPCA SPCA501"; break;
case V4L2_PIX_FMT_SPCA505: descr = "GSPCA SPCA505"; break;
case V4L2_PIX_FMT_SPCA508: descr = "GSPCA SPCA508"; break;
case V4L2_PIX_FMT_STV0680: descr = "GSPCA STV0680"; break;
case V4L2_PIX_FMT_TM6000: descr = "A/V + VBI Mux Packet"; break;
case V4L2_PIX_FMT_CIT_YYVYUY: descr = "GSPCA CIT YYVYUY"; break;
case V4L2_PIX_FMT_KONICA420: descr = "GSPCA KONICA420"; break;
case V4L2_PIX_FMT_HSV24: descr = "24-bit HSV 8-8-8"; break;
case V4L2_PIX_FMT_HSV32: descr = "32-bit XHSV 8-8-8-8"; break;
case V4L2_SDR_FMT_CU8: descr = "Complex U8"; break;
case V4L2_SDR_FMT_CU16LE: descr = "Complex U16LE"; break;
case V4L2_SDR_FMT_CS8: descr = "Complex S8"; break;
case V4L2_SDR_FMT_CS14LE: descr = "Complex S14LE"; break;
case V4L2_SDR_FMT_RU12LE: descr = "Real U12LE"; break;
case V4L2_SDR_FMT_PCU16BE: descr = "Planar Complex U16BE"; break;
case V4L2_SDR_FMT_PCU18BE: descr = "Planar Complex U18BE"; break;
case V4L2_SDR_FMT_PCU20BE: descr = "Planar Complex U20BE"; break;
case V4L2_TCH_FMT_DELTA_TD16: descr = "16-bit signed deltas"; break;
case V4L2_TCH_FMT_DELTA_TD08: descr = "8-bit signed deltas"; break;
case V4L2_TCH_FMT_TU16: descr = "16-bit unsigned touch data"; break;
case V4L2_TCH_FMT_TU08: descr = "8-bit unsigned touch data"; break;
case V4L2_META_FMT_VSP1_HGO: descr = "R-Car VSP1 1-D Histogram"; break;
case V4L2_META_FMT_VSP1_HGT: descr = "R-Car VSP1 2-D Histogram"; break;
default:
/* Compressed formats */
flags = V4L2_FMT_FLAG_COMPRESSED;
switch (fmt->pixelformat) {
/* Max description length mask: descr = "0123456789012345678901234567890" */
case V4L2_PIX_FMT_MJPEG: descr = "Motion-JPEG"; break;
case V4L2_PIX_FMT_JPEG: descr = "JFIF JPEG"; break;
case V4L2_PIX_FMT_DV: descr = "1394"; break;
case V4L2_PIX_FMT_MPEG: descr = "MPEG-1/2/4"; break;
case V4L2_PIX_FMT_H264: descr = "H.264"; break;
case V4L2_PIX_FMT_H264_NO_SC: descr = "H.264 (No Start Codes)"; break;
case V4L2_PIX_FMT_H264_MVC: descr = "H.264 MVC"; break;
case V4L2_PIX_FMT_H263: descr = "H.263"; break;
case V4L2_PIX_FMT_MPEG1: descr = "MPEG-1 ES"; break;
case V4L2_PIX_FMT_MPEG2: descr = "MPEG-2 ES"; break;
case V4L2_PIX_FMT_MPEG4: descr = "MPEG-4 part 2 ES"; break;
case V4L2_PIX_FMT_XVID: descr = "Xvid"; break;
case V4L2_PIX_FMT_VC1_ANNEX_G: descr = "VC-1 (SMPTE 412M Annex G)"; break;
case V4L2_PIX_FMT_VC1_ANNEX_L: descr = "VC-1 (SMPTE 412M Annex L)"; break;
case V4L2_PIX_FMT_VP8: descr = "VP8"; break;
case V4L2_PIX_FMT_VP9: descr = "VP9"; break;
case V4L2_PIX_FMT_CPIA1: descr = "GSPCA CPiA YUV"; break;
case V4L2_PIX_FMT_WNVA: descr = "WNVA"; break;
case V4L2_PIX_FMT_SN9C10X: descr = "GSPCA SN9C10X"; break;
case V4L2_PIX_FMT_PWC1: descr = "Raw Philips Webcam Type (Old)"; break;
case V4L2_PIX_FMT_PWC2: descr = "Raw Philips Webcam Type (New)"; break;
case V4L2_PIX_FMT_ET61X251: descr = "GSPCA ET61X251"; break;
case V4L2_PIX_FMT_SPCA561: descr = "GSPCA SPCA561"; break;
case V4L2_PIX_FMT_PAC207: descr = "GSPCA PAC207"; break;
case V4L2_PIX_FMT_MR97310A: descr = "GSPCA MR97310A"; break;
case V4L2_PIX_FMT_JL2005BCD: descr = "GSPCA JL2005BCD"; break;
case V4L2_PIX_FMT_SN9C2028: descr = "GSPCA SN9C2028"; break;
case V4L2_PIX_FMT_SQ905C: descr = "GSPCA SQ905C"; break;
case V4L2_PIX_FMT_PJPG: descr = "GSPCA PJPG"; break;
case V4L2_PIX_FMT_OV511: descr = "GSPCA OV511"; break;
case V4L2_PIX_FMT_OV518: descr = "GSPCA OV518"; break;
case V4L2_PIX_FMT_JPGL: descr = "JPEG Lite"; break;
case V4L2_PIX_FMT_SE401: descr = "GSPCA SE401"; break;
case V4L2_PIX_FMT_S5C_UYVY_JPG: descr = "S5C73MX interleaved UYVY/JPEG"; break;
case V4L2_PIX_FMT_MT21C: descr = "Mediatek Compressed Format"; break;
default:
WARN(1, "Unknown pixelformat 0x%08x\n", fmt->pixelformat);
if (fmt->description[0])
return;
flags = 0;
snprintf(fmt->description, sz, "%c%c%c%c%s",
(char)(fmt->pixelformat & 0x7f),
(char)((fmt->pixelformat >> 8) & 0x7f),
(char)((fmt->pixelformat >> 16) & 0x7f),
(char)((fmt->pixelformat >> 24) & 0x7f),
(fmt->pixelformat & (1 << 31)) ? "-BE" : "");
break;
}
}
if (descr)
WARN_ON(strlcpy(fmt->description, descr, sz) >= sz);
fmt->flags = flags;
}
static int v4l_enum_fmt(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_fmtdesc *p = arg;
struct video_device *vfd = video_devdata(file);
bool is_vid = vfd->vfl_type == VFL_TYPE_GRABBER;
bool is_sdr = vfd->vfl_type == VFL_TYPE_SDR;
bool is_tch = vfd->vfl_type == VFL_TYPE_TOUCH;
bool is_rx = vfd->vfl_dir != VFL_DIR_TX;
bool is_tx = vfd->vfl_dir != VFL_DIR_RX;
int ret = -EINVAL;
switch (p->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
if (unlikely(!is_rx || (!is_vid && !is_tch) || !ops->vidioc_enum_fmt_vid_cap))
break;
ret = ops->vidioc_enum_fmt_vid_cap(file, fh, arg);
break;
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_enum_fmt_vid_cap_mplane))
break;
ret = ops->vidioc_enum_fmt_vid_cap_mplane(file, fh, arg);
break;
case V4L2_BUF_TYPE_VIDEO_OVERLAY:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_enum_fmt_vid_overlay))
break;
ret = ops->vidioc_enum_fmt_vid_overlay(file, fh, arg);
break;
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_enum_fmt_vid_out))
break;
ret = ops->vidioc_enum_fmt_vid_out(file, fh, arg);
break;
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_enum_fmt_vid_out_mplane))
break;
ret = ops->vidioc_enum_fmt_vid_out_mplane(file, fh, arg);
break;
case V4L2_BUF_TYPE_SDR_CAPTURE:
if (unlikely(!is_rx || !is_sdr || !ops->vidioc_enum_fmt_sdr_cap))
break;
ret = ops->vidioc_enum_fmt_sdr_cap(file, fh, arg);
break;
case V4L2_BUF_TYPE_SDR_OUTPUT:
if (unlikely(!is_tx || !is_sdr || !ops->vidioc_enum_fmt_sdr_out))
break;
ret = ops->vidioc_enum_fmt_sdr_out(file, fh, arg);
break;
case V4L2_BUF_TYPE_META_CAPTURE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_enum_fmt_meta_cap))
break;
ret = ops->vidioc_enum_fmt_meta_cap(file, fh, arg);
break;
}
if (ret == 0)
v4l_fill_fmtdesc(p);
return ret;
}
static int v4l_g_fmt(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_format *p = arg;
struct video_device *vfd = video_devdata(file);
bool is_vid = vfd->vfl_type == VFL_TYPE_GRABBER;
bool is_sdr = vfd->vfl_type == VFL_TYPE_SDR;
bool is_tch = vfd->vfl_type == VFL_TYPE_TOUCH;
bool is_rx = vfd->vfl_dir != VFL_DIR_TX;
bool is_tx = vfd->vfl_dir != VFL_DIR_RX;
int ret;
/*
* fmt can't be cleared for these overlay types due to the 'clips'
* 'clipcount' and 'bitmap' pointers in struct v4l2_window.
* Those are provided by the user. So handle these two overlay types
* first, and then just do a simple memset for the other types.
*/
switch (p->type) {
case V4L2_BUF_TYPE_VIDEO_OVERLAY:
case V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY: {
struct v4l2_clip __user *clips = p->fmt.win.clips;
u32 clipcount = p->fmt.win.clipcount;
void __user *bitmap = p->fmt.win.bitmap;
memset(&p->fmt, 0, sizeof(p->fmt));
p->fmt.win.clips = clips;
p->fmt.win.clipcount = clipcount;
p->fmt.win.bitmap = bitmap;
break;
}
default:
memset(&p->fmt, 0, sizeof(p->fmt));
break;
}
switch (p->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
if (unlikely(!is_rx || (!is_vid && !is_tch) || !ops->vidioc_g_fmt_vid_cap))
break;
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
ret = ops->vidioc_g_fmt_vid_cap(file, fh, arg);
/* just in case the driver zeroed it again */
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
return ret;
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_g_fmt_vid_cap_mplane))
break;
return ops->vidioc_g_fmt_vid_cap_mplane(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OVERLAY:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_g_fmt_vid_overlay))
break;
return ops->vidioc_g_fmt_vid_overlay(file, fh, arg);
case V4L2_BUF_TYPE_VBI_CAPTURE:
if (unlikely(!is_rx || is_vid || !ops->vidioc_g_fmt_vbi_cap))
break;
return ops->vidioc_g_fmt_vbi_cap(file, fh, arg);
case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
if (unlikely(!is_rx || is_vid || !ops->vidioc_g_fmt_sliced_vbi_cap))
break;
return ops->vidioc_g_fmt_sliced_vbi_cap(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_g_fmt_vid_out))
break;
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
ret = ops->vidioc_g_fmt_vid_out(file, fh, arg);
/* just in case the driver zeroed it again */
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
return ret;
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_g_fmt_vid_out_mplane))
break;
return ops->vidioc_g_fmt_vid_out_mplane(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_g_fmt_vid_out_overlay))
break;
return ops->vidioc_g_fmt_vid_out_overlay(file, fh, arg);
case V4L2_BUF_TYPE_VBI_OUTPUT:
if (unlikely(!is_tx || is_vid || !ops->vidioc_g_fmt_vbi_out))
break;
return ops->vidioc_g_fmt_vbi_out(file, fh, arg);
case V4L2_BUF_TYPE_SLICED_VBI_OUTPUT:
if (unlikely(!is_tx || is_vid || !ops->vidioc_g_fmt_sliced_vbi_out))
break;
return ops->vidioc_g_fmt_sliced_vbi_out(file, fh, arg);
case V4L2_BUF_TYPE_SDR_CAPTURE:
if (unlikely(!is_rx || !is_sdr || !ops->vidioc_g_fmt_sdr_cap))
break;
return ops->vidioc_g_fmt_sdr_cap(file, fh, arg);
case V4L2_BUF_TYPE_SDR_OUTPUT:
if (unlikely(!is_tx || !is_sdr || !ops->vidioc_g_fmt_sdr_out))
break;
return ops->vidioc_g_fmt_sdr_out(file, fh, arg);
case V4L2_BUF_TYPE_META_CAPTURE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_g_fmt_meta_cap))
break;
return ops->vidioc_g_fmt_meta_cap(file, fh, arg);
}
return -EINVAL;
}
static void v4l_pix_format_touch(struct v4l2_pix_format *p)
{
/*
* The v4l2_pix_format structure contains fields that make no sense for
* touch. Set them to default values in this case.
*/
p->field = V4L2_FIELD_NONE;
p->colorspace = V4L2_COLORSPACE_RAW;
p->flags = 0;
p->ycbcr_enc = 0;
p->quantization = 0;
p->xfer_func = 0;
}
static int v4l_s_fmt(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_format *p = arg;
struct video_device *vfd = video_devdata(file);
bool is_vid = vfd->vfl_type == VFL_TYPE_GRABBER;
bool is_sdr = vfd->vfl_type == VFL_TYPE_SDR;
bool is_tch = vfd->vfl_type == VFL_TYPE_TOUCH;
bool is_rx = vfd->vfl_dir != VFL_DIR_TX;
bool is_tx = vfd->vfl_dir != VFL_DIR_RX;
int ret;
ret = v4l_enable_media_source(vfd);
if (ret)
return ret;
v4l_sanitize_format(p);
switch (p->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
if (unlikely(!is_rx || (!is_vid && !is_tch) || !ops->vidioc_s_fmt_vid_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.pix);
ret = ops->vidioc_s_fmt_vid_cap(file, fh, arg);
/* just in case the driver zeroed it again */
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
if (is_tch)
v4l_pix_format_touch(&p->fmt.pix);
return ret;
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_s_fmt_vid_cap_mplane))
break;
CLEAR_AFTER_FIELD(p, fmt.pix_mp.xfer_func);
return ops->vidioc_s_fmt_vid_cap_mplane(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OVERLAY:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_s_fmt_vid_overlay))
break;
CLEAR_AFTER_FIELD(p, fmt.win);
return ops->vidioc_s_fmt_vid_overlay(file, fh, arg);
case V4L2_BUF_TYPE_VBI_CAPTURE:
if (unlikely(!is_rx || is_vid || !ops->vidioc_s_fmt_vbi_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.vbi);
return ops->vidioc_s_fmt_vbi_cap(file, fh, arg);
case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
if (unlikely(!is_rx || is_vid || !ops->vidioc_s_fmt_sliced_vbi_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.sliced);
return ops->vidioc_s_fmt_sliced_vbi_cap(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_s_fmt_vid_out))
break;
CLEAR_AFTER_FIELD(p, fmt.pix);
ret = ops->vidioc_s_fmt_vid_out(file, fh, arg);
/* just in case the driver zeroed it again */
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
return ret;
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_s_fmt_vid_out_mplane))
break;
CLEAR_AFTER_FIELD(p, fmt.pix_mp.xfer_func);
return ops->vidioc_s_fmt_vid_out_mplane(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_s_fmt_vid_out_overlay))
break;
CLEAR_AFTER_FIELD(p, fmt.win);
return ops->vidioc_s_fmt_vid_out_overlay(file, fh, arg);
case V4L2_BUF_TYPE_VBI_OUTPUT:
if (unlikely(!is_tx || is_vid || !ops->vidioc_s_fmt_vbi_out))
break;
CLEAR_AFTER_FIELD(p, fmt.vbi);
return ops->vidioc_s_fmt_vbi_out(file, fh, arg);
case V4L2_BUF_TYPE_SLICED_VBI_OUTPUT:
if (unlikely(!is_tx || is_vid || !ops->vidioc_s_fmt_sliced_vbi_out))
break;
CLEAR_AFTER_FIELD(p, fmt.sliced);
return ops->vidioc_s_fmt_sliced_vbi_out(file, fh, arg);
case V4L2_BUF_TYPE_SDR_CAPTURE:
if (unlikely(!is_rx || !is_sdr || !ops->vidioc_s_fmt_sdr_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.sdr);
return ops->vidioc_s_fmt_sdr_cap(file, fh, arg);
case V4L2_BUF_TYPE_SDR_OUTPUT:
if (unlikely(!is_tx || !is_sdr || !ops->vidioc_s_fmt_sdr_out))
break;
CLEAR_AFTER_FIELD(p, fmt.sdr);
return ops->vidioc_s_fmt_sdr_out(file, fh, arg);
case V4L2_BUF_TYPE_META_CAPTURE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_s_fmt_meta_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.meta);
return ops->vidioc_s_fmt_meta_cap(file, fh, arg);
}
return -EINVAL;
}
static int v4l_try_fmt(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_format *p = arg;
struct video_device *vfd = video_devdata(file);
bool is_vid = vfd->vfl_type == VFL_TYPE_GRABBER;
bool is_sdr = vfd->vfl_type == VFL_TYPE_SDR;
bool is_tch = vfd->vfl_type == VFL_TYPE_TOUCH;
bool is_rx = vfd->vfl_dir != VFL_DIR_TX;
bool is_tx = vfd->vfl_dir != VFL_DIR_RX;
int ret;
v4l_sanitize_format(p);
switch (p->type) {
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
if (unlikely(!is_rx || (!is_vid && !is_tch) || !ops->vidioc_try_fmt_vid_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.pix);
ret = ops->vidioc_try_fmt_vid_cap(file, fh, arg);
/* just in case the driver zeroed it again */
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
return ret;
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_try_fmt_vid_cap_mplane))
break;
CLEAR_AFTER_FIELD(p, fmt.pix_mp.xfer_func);
return ops->vidioc_try_fmt_vid_cap_mplane(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OVERLAY:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_try_fmt_vid_overlay))
break;
CLEAR_AFTER_FIELD(p, fmt.win);
return ops->vidioc_try_fmt_vid_overlay(file, fh, arg);
case V4L2_BUF_TYPE_VBI_CAPTURE:
if (unlikely(!is_rx || is_vid || !ops->vidioc_try_fmt_vbi_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.vbi);
return ops->vidioc_try_fmt_vbi_cap(file, fh, arg);
case V4L2_BUF_TYPE_SLICED_VBI_CAPTURE:
if (unlikely(!is_rx || is_vid || !ops->vidioc_try_fmt_sliced_vbi_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.sliced);
return ops->vidioc_try_fmt_sliced_vbi_cap(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_try_fmt_vid_out))
break;
CLEAR_AFTER_FIELD(p, fmt.pix);
ret = ops->vidioc_try_fmt_vid_out(file, fh, arg);
/* just in case the driver zeroed it again */
p->fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
return ret;
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_try_fmt_vid_out_mplane))
break;
CLEAR_AFTER_FIELD(p, fmt.pix_mp.xfer_func);
return ops->vidioc_try_fmt_vid_out_mplane(file, fh, arg);
case V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY:
if (unlikely(!is_tx || !is_vid || !ops->vidioc_try_fmt_vid_out_overlay))
break;
CLEAR_AFTER_FIELD(p, fmt.win);
return ops->vidioc_try_fmt_vid_out_overlay(file, fh, arg);
case V4L2_BUF_TYPE_VBI_OUTPUT:
if (unlikely(!is_tx || is_vid || !ops->vidioc_try_fmt_vbi_out))
break;
CLEAR_AFTER_FIELD(p, fmt.vbi);
return ops->vidioc_try_fmt_vbi_out(file, fh, arg);
case V4L2_BUF_TYPE_SLICED_VBI_OUTPUT:
if (unlikely(!is_tx || is_vid || !ops->vidioc_try_fmt_sliced_vbi_out))
break;
CLEAR_AFTER_FIELD(p, fmt.sliced);
return ops->vidioc_try_fmt_sliced_vbi_out(file, fh, arg);
case V4L2_BUF_TYPE_SDR_CAPTURE:
if (unlikely(!is_rx || !is_sdr || !ops->vidioc_try_fmt_sdr_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.sdr);
return ops->vidioc_try_fmt_sdr_cap(file, fh, arg);
case V4L2_BUF_TYPE_SDR_OUTPUT:
if (unlikely(!is_tx || !is_sdr || !ops->vidioc_try_fmt_sdr_out))
break;
CLEAR_AFTER_FIELD(p, fmt.sdr);
return ops->vidioc_try_fmt_sdr_out(file, fh, arg);
case V4L2_BUF_TYPE_META_CAPTURE:
if (unlikely(!is_rx || !is_vid || !ops->vidioc_try_fmt_meta_cap))
break;
CLEAR_AFTER_FIELD(p, fmt.meta);
return ops->vidioc_try_fmt_meta_cap(file, fh, arg);
}
return -EINVAL;
}
static int v4l_streamon(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
return ops->vidioc_streamon(file, fh, *(unsigned int *)arg);
}
static int v4l_streamoff(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
return ops->vidioc_streamoff(file, fh, *(unsigned int *)arg);
}
static int v4l_g_tuner(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_tuner *p = arg;
int err;
p->type = (vfd->vfl_type == VFL_TYPE_RADIO) ?
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
err = ops->vidioc_g_tuner(file, fh, p);
if (!err)
p->capability |= V4L2_TUNER_CAP_FREQ_BANDS;
return err;
}
static int v4l_s_tuner(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_tuner *p = arg;
int ret;
ret = v4l_enable_media_source(vfd);
if (ret)
return ret;
p->type = (vfd->vfl_type == VFL_TYPE_RADIO) ?
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
return ops->vidioc_s_tuner(file, fh, p);
}
static int v4l_g_modulator(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_modulator *p = arg;
int err;
if (vfd->vfl_type == VFL_TYPE_RADIO)
p->type = V4L2_TUNER_RADIO;
err = ops->vidioc_g_modulator(file, fh, p);
if (!err)
p->capability |= V4L2_TUNER_CAP_FREQ_BANDS;
return err;
}
static int v4l_s_modulator(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_modulator *p = arg;
if (vfd->vfl_type == VFL_TYPE_RADIO)
p->type = V4L2_TUNER_RADIO;
return ops->vidioc_s_modulator(file, fh, p);
}
static int v4l_g_frequency(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_frequency *p = arg;
if (vfd->vfl_type == VFL_TYPE_SDR)
p->type = V4L2_TUNER_SDR;
else
p->type = (vfd->vfl_type == VFL_TYPE_RADIO) ?
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
return ops->vidioc_g_frequency(file, fh, p);
}
static int v4l_s_frequency(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
const struct v4l2_frequency *p = arg;
enum v4l2_tuner_type type;
int ret;
ret = v4l_enable_media_source(vfd);
if (ret)
return ret;
if (vfd->vfl_type == VFL_TYPE_SDR) {
if (p->type != V4L2_TUNER_SDR && p->type != V4L2_TUNER_RF)
return -EINVAL;
} else {
type = (vfd->vfl_type == VFL_TYPE_RADIO) ?
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
if (type != p->type)
return -EINVAL;
}
return ops->vidioc_s_frequency(file, fh, p);
}
static int v4l_enumstd(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_standard *p = arg;
v4l2_std_id id = vfd->tvnorms, curr_id = 0;
unsigned int index = p->index, i, j = 0;
const char *descr = "";
/* Return -ENODATA if the tvnorms for the current input
or output is 0, meaning that it doesn't support this API. */
if (id == 0)
return -ENODATA;
/* Return norm array in a canonical way */
for (i = 0; i <= index && id; i++) {
/* last std value in the standards array is 0, so this
while always ends there since (id & 0) == 0. */
while ((id & standards[j].std) != standards[j].std)
j++;
curr_id = standards[j].std;
descr = standards[j].descr;
j++;
if (curr_id == 0)
break;
if (curr_id != V4L2_STD_PAL &&
curr_id != V4L2_STD_SECAM &&
curr_id != V4L2_STD_NTSC)
id &= ~curr_id;
}
if (i <= index)
return -EINVAL;
v4l2_video_std_construct(p, curr_id, descr);
return 0;
}
static int v4l_s_std(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
v4l2_std_id id = *(v4l2_std_id *)arg, norm;
int ret;
ret = v4l_enable_media_source(vfd);
if (ret)
return ret;
norm = id & vfd->tvnorms;
if (vfd->tvnorms && !norm) /* Check if std is supported */
return -EINVAL;
/* Calls the specific handler */
return ops->vidioc_s_std(file, fh, norm);
}
static int v4l_querystd(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
v4l2_std_id *p = arg;
int ret;
ret = v4l_enable_media_source(vfd);
if (ret)
return ret;
/*
* If no signal is detected, then the driver should return
* V4L2_STD_UNKNOWN. Otherwise it should return tvnorms with
* any standards that do not apply removed.
*
* This means that tuners, audio and video decoders can join
* their efforts to improve the standards detection.
*/
*p = vfd->tvnorms;
return ops->vidioc_querystd(file, fh, arg);
}
static int v4l_s_hw_freq_seek(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_hw_freq_seek *p = arg;
enum v4l2_tuner_type type;
int ret;
ret = v4l_enable_media_source(vfd);
if (ret)
return ret;
/* s_hw_freq_seek is not supported for SDR for now */
if (vfd->vfl_type == VFL_TYPE_SDR)
return -EINVAL;
type = (vfd->vfl_type == VFL_TYPE_RADIO) ?
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
if (p->type != type)
return -EINVAL;
return ops->vidioc_s_hw_freq_seek(file, fh, p);
}
static int v4l_overlay(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
return ops->vidioc_overlay(file, fh, *(unsigned int *)arg);
}
static int v4l_reqbufs(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_requestbuffers *p = arg;
int ret = check_fmt(file, p->type);
if (ret)
return ret;
CLEAR_AFTER_FIELD(p, memory);
return ops->vidioc_reqbufs(file, fh, p);
}
static int v4l_querybuf(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_buffer *p = arg;
int ret = check_fmt(file, p->type);
return ret ? ret : ops->vidioc_querybuf(file, fh, p);
}
static int v4l_qbuf(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_buffer *p = arg;
int ret = check_fmt(file, p->type);
return ret ? ret : ops->vidioc_qbuf(file, fh, p);
}
static int v4l_dqbuf(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_buffer *p = arg;
int ret = check_fmt(file, p->type);
return ret ? ret : ops->vidioc_dqbuf(file, fh, p);
}
static int v4l_create_bufs(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_create_buffers *create = arg;
int ret = check_fmt(file, create->format.type);
if (ret)
return ret;
CLEAR_AFTER_FIELD(create, format);
v4l_sanitize_format(&create->format);
ret = ops->vidioc_create_bufs(file, fh, create);
if (create->format.type == V4L2_BUF_TYPE_VIDEO_CAPTURE ||
create->format.type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
create->format.fmt.pix.priv = V4L2_PIX_FMT_PRIV_MAGIC;
return ret;
}
static int v4l_prepare_buf(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_buffer *b = arg;
int ret = check_fmt(file, b->type);
return ret ? ret : ops->vidioc_prepare_buf(file, fh, b);
}
static int v4l_g_parm(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_streamparm *p = arg;
v4l2_std_id std;
int ret = check_fmt(file, p->type);
if (ret)
return ret;
if (ops->vidioc_g_parm)
return ops->vidioc_g_parm(file, fh, p);
if (p->type != V4L2_BUF_TYPE_VIDEO_CAPTURE &&
p->type != V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
return -EINVAL;
p->parm.capture.readbuffers = 2;
ret = ops->vidioc_g_std(file, fh, &std);
if (ret == 0)
v4l2_video_std_frame_period(std, &p->parm.capture.timeperframe);
return ret;
}
static int v4l_s_parm(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_streamparm *p = arg;
int ret = check_fmt(file, p->type);
return ret ? ret : ops->vidioc_s_parm(file, fh, p);
}
static int v4l_queryctrl(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_queryctrl *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
if (vfh && vfh->ctrl_handler)
return v4l2_queryctrl(vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_queryctrl(vfd->ctrl_handler, p);
if (ops->vidioc_queryctrl)
return ops->vidioc_queryctrl(file, fh, p);
return -ENOTTY;
}
static int v4l_query_ext_ctrl(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_query_ext_ctrl *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
if (vfh && vfh->ctrl_handler)
return v4l2_query_ext_ctrl(vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_query_ext_ctrl(vfd->ctrl_handler, p);
if (ops->vidioc_query_ext_ctrl)
return ops->vidioc_query_ext_ctrl(file, fh, p);
return -ENOTTY;
}
static int v4l_querymenu(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_querymenu *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
if (vfh && vfh->ctrl_handler)
return v4l2_querymenu(vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_querymenu(vfd->ctrl_handler, p);
if (ops->vidioc_querymenu)
return ops->vidioc_querymenu(file, fh, p);
return -ENOTTY;
}
static int v4l_g_ctrl(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_control *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
struct v4l2_ext_controls ctrls;
struct v4l2_ext_control ctrl;
if (vfh && vfh->ctrl_handler)
return v4l2_g_ctrl(vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_g_ctrl(vfd->ctrl_handler, p);
if (ops->vidioc_g_ctrl)
return ops->vidioc_g_ctrl(file, fh, p);
if (ops->vidioc_g_ext_ctrls == NULL)
return -ENOTTY;
ctrls.which = V4L2_CTRL_ID2WHICH(p->id);
ctrls.count = 1;
ctrls.controls = &ctrl;
ctrl.id = p->id;
ctrl.value = p->value;
if (check_ext_ctrls(&ctrls, 1)) {
int ret = ops->vidioc_g_ext_ctrls(file, fh, &ctrls);
if (ret == 0)
p->value = ctrl.value;
return ret;
}
return -EINVAL;
}
static int v4l_s_ctrl(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_control *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
struct v4l2_ext_controls ctrls;
struct v4l2_ext_control ctrl;
if (vfh && vfh->ctrl_handler)
return v4l2_s_ctrl(vfh, vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_s_ctrl(NULL, vfd->ctrl_handler, p);
if (ops->vidioc_s_ctrl)
return ops->vidioc_s_ctrl(file, fh, p);
if (ops->vidioc_s_ext_ctrls == NULL)
return -ENOTTY;
ctrls.which = V4L2_CTRL_ID2WHICH(p->id);
ctrls.count = 1;
ctrls.controls = &ctrl;
ctrl.id = p->id;
ctrl.value = p->value;
if (check_ext_ctrls(&ctrls, 1))
return ops->vidioc_s_ext_ctrls(file, fh, &ctrls);
return -EINVAL;
}
static int v4l_g_ext_ctrls(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_ext_controls *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
p->error_idx = p->count;
if (vfh && vfh->ctrl_handler)
return v4l2_g_ext_ctrls(vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_g_ext_ctrls(vfd->ctrl_handler, p);
if (ops->vidioc_g_ext_ctrls == NULL)
return -ENOTTY;
return check_ext_ctrls(p, 0) ? ops->vidioc_g_ext_ctrls(file, fh, p) :
-EINVAL;
}
static int v4l_s_ext_ctrls(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_ext_controls *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
p->error_idx = p->count;
if (vfh && vfh->ctrl_handler)
return v4l2_s_ext_ctrls(vfh, vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_s_ext_ctrls(NULL, vfd->ctrl_handler, p);
if (ops->vidioc_s_ext_ctrls == NULL)
return -ENOTTY;
return check_ext_ctrls(p, 0) ? ops->vidioc_s_ext_ctrls(file, fh, p) :
-EINVAL;
}
static int v4l_try_ext_ctrls(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_ext_controls *p = arg;
struct v4l2_fh *vfh =
test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags) ? fh : NULL;
p->error_idx = p->count;
if (vfh && vfh->ctrl_handler)
return v4l2_try_ext_ctrls(vfh->ctrl_handler, p);
if (vfd->ctrl_handler)
return v4l2_try_ext_ctrls(vfd->ctrl_handler, p);
if (ops->vidioc_try_ext_ctrls == NULL)
return -ENOTTY;
return check_ext_ctrls(p, 0) ? ops->vidioc_try_ext_ctrls(file, fh, p) :
-EINVAL;
}
/*
* The selection API specified originally that the _MPLANE buffer types
* shouldn't be used. The reasons for this are lost in the mists of time
* (or just really crappy memories). Regardless, this is really annoying
* for userspace. So to keep things simple we map _MPLANE buffer types
* to their 'regular' counterparts before calling the driver. And we
* restore it afterwards. This way applications can use either buffer
* type and drivers don't need to check for both.
*/
static int v4l_g_selection(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_selection *p = arg;
u32 old_type = p->type;
int ret;
if (p->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
p->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
else if (p->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
p->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
ret = ops->vidioc_g_selection(file, fh, p);
p->type = old_type;
return ret;
}
static int v4l_s_selection(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_selection *p = arg;
u32 old_type = p->type;
int ret;
if (p->type == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)
p->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
else if (p->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
p->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
ret = ops->vidioc_s_selection(file, fh, p);
p->type = old_type;
return ret;
}
static int v4l_g_crop(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_crop *p = arg;
struct v4l2_selection s = {
.type = p->type,
};
int ret;
if (ops->vidioc_g_crop)
return ops->vidioc_g_crop(file, fh, p);
/* simulate capture crop using selection api */
/* crop means compose for output devices */
if (V4L2_TYPE_IS_OUTPUT(p->type))
s.target = V4L2_SEL_TGT_COMPOSE_ACTIVE;
else
s.target = V4L2_SEL_TGT_CROP_ACTIVE;
ret = v4l_g_selection(ops, file, fh, &s);
/* copying results to old structure on success */
if (!ret)
p->c = s.r;
return ret;
}
static int v4l_s_crop(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_crop *p = arg;
struct v4l2_selection s = {
.type = p->type,
.r = p->c,
};
if (ops->vidioc_s_crop)
return ops->vidioc_s_crop(file, fh, p);
/* simulate capture crop using selection api */
/* crop means compose for output devices */
if (V4L2_TYPE_IS_OUTPUT(p->type))
s.target = V4L2_SEL_TGT_COMPOSE_ACTIVE;
else
s.target = V4L2_SEL_TGT_CROP_ACTIVE;
return v4l_s_selection(ops, file, fh, &s);
}
static int v4l_cropcap(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_cropcap *p = arg;
struct v4l2_selection s = { .type = p->type };
int ret = 0;
/* setting trivial pixelaspect */
p->pixelaspect.numerator = 1;
p->pixelaspect.denominator = 1;
/*
* The determine_valid_ioctls() call already should ensure
* that this can never happen, but just in case...
*/
if (WARN_ON(!ops->vidioc_cropcap && !ops->vidioc_g_selection))
return -ENOTTY;
if (ops->vidioc_cropcap)
ret = ops->vidioc_cropcap(file, fh, p);
if (!ops->vidioc_g_selection)
return ret;
/*
* Ignore ENOTTY or ENOIOCTLCMD error returns, just use the
* square pixel aspect ratio in that case.
*/
if (ret && ret != -ENOTTY && ret != -ENOIOCTLCMD)
return ret;
/* Use g_selection() to fill in the bounds and defrect rectangles */
/* obtaining bounds */
if (V4L2_TYPE_IS_OUTPUT(p->type))
s.target = V4L2_SEL_TGT_COMPOSE_BOUNDS;
else
s.target = V4L2_SEL_TGT_CROP_BOUNDS;
ret = v4l_g_selection(ops, file, fh, &s);
if (ret)
return ret;
p->bounds = s.r;
/* obtaining defrect */
if (V4L2_TYPE_IS_OUTPUT(p->type))
s.target = V4L2_SEL_TGT_COMPOSE_DEFAULT;
else
s.target = V4L2_SEL_TGT_CROP_DEFAULT;
ret = v4l_g_selection(ops, file, fh, &s);
if (ret)
return ret;
p->defrect = s.r;
return 0;
}
static int v4l_log_status(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
int ret;
if (vfd->v4l2_dev)
pr_info("%s: ================= START STATUS =================\n",
vfd->v4l2_dev->name);
ret = ops->vidioc_log_status(file, fh);
if (vfd->v4l2_dev)
pr_info("%s: ================== END STATUS ==================\n",
vfd->v4l2_dev->name);
return ret;
}
static int v4l_dbg_g_register(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
#ifdef CONFIG_VIDEO_ADV_DEBUG
struct v4l2_dbg_register *p = arg;
struct video_device *vfd = video_devdata(file);
struct v4l2_subdev *sd;
int idx = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (p->match.type == V4L2_CHIP_MATCH_SUBDEV) {
if (vfd->v4l2_dev == NULL)
return -EINVAL;
v4l2_device_for_each_subdev(sd, vfd->v4l2_dev)
if (p->match.addr == idx++)
return v4l2_subdev_call(sd, core, g_register, p);
return -EINVAL;
}
if (ops->vidioc_g_register && p->match.type == V4L2_CHIP_MATCH_BRIDGE &&
(ops->vidioc_g_chip_info || p->match.addr == 0))
return ops->vidioc_g_register(file, fh, p);
return -EINVAL;
#else
return -ENOTTY;
#endif
}
static int v4l_dbg_s_register(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
#ifdef CONFIG_VIDEO_ADV_DEBUG
const struct v4l2_dbg_register *p = arg;
struct video_device *vfd = video_devdata(file);
struct v4l2_subdev *sd;
int idx = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (p->match.type == V4L2_CHIP_MATCH_SUBDEV) {
if (vfd->v4l2_dev == NULL)
return -EINVAL;
v4l2_device_for_each_subdev(sd, vfd->v4l2_dev)
if (p->match.addr == idx++)
return v4l2_subdev_call(sd, core, s_register, p);
return -EINVAL;
}
if (ops->vidioc_s_register && p->match.type == V4L2_CHIP_MATCH_BRIDGE &&
(ops->vidioc_g_chip_info || p->match.addr == 0))
return ops->vidioc_s_register(file, fh, p);
return -EINVAL;
#else
return -ENOTTY;
#endif
}
static int v4l_dbg_g_chip_info(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
#ifdef CONFIG_VIDEO_ADV_DEBUG
struct video_device *vfd = video_devdata(file);
struct v4l2_dbg_chip_info *p = arg;
struct v4l2_subdev *sd;
int idx = 0;
switch (p->match.type) {
case V4L2_CHIP_MATCH_BRIDGE:
if (ops->vidioc_s_register)
p->flags |= V4L2_CHIP_FL_WRITABLE;
if (ops->vidioc_g_register)
p->flags |= V4L2_CHIP_FL_READABLE;
strlcpy(p->name, vfd->v4l2_dev->name, sizeof(p->name));
if (ops->vidioc_g_chip_info)
return ops->vidioc_g_chip_info(file, fh, arg);
if (p->match.addr)
return -EINVAL;
return 0;
case V4L2_CHIP_MATCH_SUBDEV:
if (vfd->v4l2_dev == NULL)
break;
v4l2_device_for_each_subdev(sd, vfd->v4l2_dev) {
if (p->match.addr != idx++)
continue;
if (sd->ops->core && sd->ops->core->s_register)
p->flags |= V4L2_CHIP_FL_WRITABLE;
if (sd->ops->core && sd->ops->core->g_register)
p->flags |= V4L2_CHIP_FL_READABLE;
strlcpy(p->name, sd->name, sizeof(p->name));
return 0;
}
break;
}
return -EINVAL;
#else
return -ENOTTY;
#endif
}
static int v4l_dqevent(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
return v4l2_event_dequeue(fh, arg, file->f_flags & O_NONBLOCK);
}
static int v4l_subscribe_event(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
return ops->vidioc_subscribe_event(fh, arg);
}
static int v4l_unsubscribe_event(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
return ops->vidioc_unsubscribe_event(fh, arg);
}
static int v4l_g_sliced_vbi_cap(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct v4l2_sliced_vbi_cap *p = arg;
int ret = check_fmt(file, p->type);
if (ret)
return ret;
/* Clear up to type, everything after type is zeroed already */
memset(p, 0, offsetof(struct v4l2_sliced_vbi_cap, type));
return ops->vidioc_g_sliced_vbi_cap(file, fh, p);
}
static int v4l_enum_freq_bands(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *arg)
{
struct video_device *vfd = video_devdata(file);
struct v4l2_frequency_band *p = arg;
enum v4l2_tuner_type type;
int err;
if (vfd->vfl_type == VFL_TYPE_SDR) {
if (p->type != V4L2_TUNER_SDR && p->type != V4L2_TUNER_RF)
return -EINVAL;
type = p->type;
} else {
type = (vfd->vfl_type == VFL_TYPE_RADIO) ?
V4L2_TUNER_RADIO : V4L2_TUNER_ANALOG_TV;
if (type != p->type)
return -EINVAL;
}
if (ops->vidioc_enum_freq_bands) {
err = ops->vidioc_enum_freq_bands(file, fh, p);
if (err != -ENOTTY)
return err;
}
if (is_valid_ioctl(vfd, VIDIOC_G_TUNER)) {
struct v4l2_tuner t = {
.index = p->tuner,
.type = type,
};
if (p->index)
return -EINVAL;
err = ops->vidioc_g_tuner(file, fh, &t);
if (err)
return err;
p->capability = t.capability | V4L2_TUNER_CAP_FREQ_BANDS;
p->rangelow = t.rangelow;
p->rangehigh = t.rangehigh;
p->modulation = (type == V4L2_TUNER_RADIO) ?
V4L2_BAND_MODULATION_FM : V4L2_BAND_MODULATION_VSB;
return 0;
}
if (is_valid_ioctl(vfd, VIDIOC_G_MODULATOR)) {
struct v4l2_modulator m = {
.index = p->tuner,
};
if (type != V4L2_TUNER_RADIO)
return -EINVAL;
if (p->index)
return -EINVAL;
err = ops->vidioc_g_modulator(file, fh, &m);
if (err)
return err;
p->capability = m.capability | V4L2_TUNER_CAP_FREQ_BANDS;
p->rangelow = m.rangelow;
p->rangehigh = m.rangehigh;
p->modulation = (type == V4L2_TUNER_RADIO) ?
V4L2_BAND_MODULATION_FM : V4L2_BAND_MODULATION_VSB;
return 0;
}
return -ENOTTY;
}
struct v4l2_ioctl_info {
unsigned int ioctl;
u32 flags;
const char * const name;
union {
u32 offset;
int (*func)(const struct v4l2_ioctl_ops *ops,
struct file *file, void *fh, void *p);
} u;
void (*debug)(const void *arg, bool write_only);
};
/* This control needs a priority check */
#define INFO_FL_PRIO (1 << 0)
/* This control can be valid if the filehandle passes a control handler. */
#define INFO_FL_CTRL (1 << 1)
/* This is a standard ioctl, no need for special code */
#define INFO_FL_STD (1 << 2)
/* This is ioctl has its own function */
#define INFO_FL_FUNC (1 << 3)
/* Queuing ioctl */
#define INFO_FL_QUEUE (1 << 4)
/* Always copy back result, even on error */
#define INFO_FL_ALWAYS_COPY (1 << 5)
/* Zero struct from after the field to the end */
#define INFO_FL_CLEAR(v4l2_struct, field) \
((offsetof(struct v4l2_struct, field) + \
sizeof(((struct v4l2_struct *)0)->field)) << 16)
#define INFO_FL_CLEAR_MASK (_IOC_SIZEMASK << 16)
#define IOCTL_INFO_STD(_ioctl, _vidioc, _debug, _flags) \
[_IOC_NR(_ioctl)] = { \
.ioctl = _ioctl, \
.flags = _flags | INFO_FL_STD, \
.name = #_ioctl, \
.u.offset = offsetof(struct v4l2_ioctl_ops, _vidioc), \
.debug = _debug, \
}
#define IOCTL_INFO_FNC(_ioctl, _func, _debug, _flags) \
[_IOC_NR(_ioctl)] = { \
.ioctl = _ioctl, \
.flags = _flags | INFO_FL_FUNC, \
.name = #_ioctl, \
.u.func = _func, \
.debug = _debug, \
}
static struct v4l2_ioctl_info v4l2_ioctls[] = {
IOCTL_INFO_FNC(VIDIOC_QUERYCAP, v4l_querycap, v4l_print_querycap, 0),
IOCTL_INFO_FNC(VIDIOC_ENUM_FMT, v4l_enum_fmt, v4l_print_fmtdesc, INFO_FL_CLEAR(v4l2_fmtdesc, type)),
IOCTL_INFO_FNC(VIDIOC_G_FMT, v4l_g_fmt, v4l_print_format, 0),
IOCTL_INFO_FNC(VIDIOC_S_FMT, v4l_s_fmt, v4l_print_format, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_REQBUFS, v4l_reqbufs, v4l_print_requestbuffers, INFO_FL_PRIO | INFO_FL_QUEUE),
IOCTL_INFO_FNC(VIDIOC_QUERYBUF, v4l_querybuf, v4l_print_buffer, INFO_FL_QUEUE | INFO_FL_CLEAR(v4l2_buffer, length)),
IOCTL_INFO_STD(VIDIOC_G_FBUF, vidioc_g_fbuf, v4l_print_framebuffer, 0),
IOCTL_INFO_STD(VIDIOC_S_FBUF, vidioc_s_fbuf, v4l_print_framebuffer, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_OVERLAY, v4l_overlay, v4l_print_u32, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_QBUF, v4l_qbuf, v4l_print_buffer, INFO_FL_QUEUE),
IOCTL_INFO_STD(VIDIOC_EXPBUF, vidioc_expbuf, v4l_print_exportbuffer, INFO_FL_QUEUE | INFO_FL_CLEAR(v4l2_exportbuffer, flags)),
IOCTL_INFO_FNC(VIDIOC_DQBUF, v4l_dqbuf, v4l_print_buffer, INFO_FL_QUEUE),
IOCTL_INFO_FNC(VIDIOC_STREAMON, v4l_streamon, v4l_print_buftype, INFO_FL_PRIO | INFO_FL_QUEUE),
IOCTL_INFO_FNC(VIDIOC_STREAMOFF, v4l_streamoff, v4l_print_buftype, INFO_FL_PRIO | INFO_FL_QUEUE),
IOCTL_INFO_FNC(VIDIOC_G_PARM, v4l_g_parm, v4l_print_streamparm, INFO_FL_CLEAR(v4l2_streamparm, type)),
IOCTL_INFO_FNC(VIDIOC_S_PARM, v4l_s_parm, v4l_print_streamparm, INFO_FL_PRIO),
IOCTL_INFO_STD(VIDIOC_G_STD, vidioc_g_std, v4l_print_std, 0),
IOCTL_INFO_FNC(VIDIOC_S_STD, v4l_s_std, v4l_print_std, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_ENUMSTD, v4l_enumstd, v4l_print_standard, INFO_FL_CLEAR(v4l2_standard, index)),
IOCTL_INFO_FNC(VIDIOC_ENUMINPUT, v4l_enuminput, v4l_print_enuminput, INFO_FL_CLEAR(v4l2_input, index)),
IOCTL_INFO_FNC(VIDIOC_G_CTRL, v4l_g_ctrl, v4l_print_control, INFO_FL_CTRL | INFO_FL_CLEAR(v4l2_control, id)),
IOCTL_INFO_FNC(VIDIOC_S_CTRL, v4l_s_ctrl, v4l_print_control, INFO_FL_PRIO | INFO_FL_CTRL),
IOCTL_INFO_FNC(VIDIOC_G_TUNER, v4l_g_tuner, v4l_print_tuner, INFO_FL_CLEAR(v4l2_tuner, index)),
IOCTL_INFO_FNC(VIDIOC_S_TUNER, v4l_s_tuner, v4l_print_tuner, INFO_FL_PRIO),
IOCTL_INFO_STD(VIDIOC_G_AUDIO, vidioc_g_audio, v4l_print_audio, 0),
IOCTL_INFO_STD(VIDIOC_S_AUDIO, vidioc_s_audio, v4l_print_audio, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_QUERYCTRL, v4l_queryctrl, v4l_print_queryctrl, INFO_FL_CTRL | INFO_FL_CLEAR(v4l2_queryctrl, id)),
IOCTL_INFO_FNC(VIDIOC_QUERYMENU, v4l_querymenu, v4l_print_querymenu, INFO_FL_CTRL | INFO_FL_CLEAR(v4l2_querymenu, index)),
IOCTL_INFO_STD(VIDIOC_G_INPUT, vidioc_g_input, v4l_print_u32, 0),
IOCTL_INFO_FNC(VIDIOC_S_INPUT, v4l_s_input, v4l_print_u32, INFO_FL_PRIO),
IOCTL_INFO_STD(VIDIOC_G_EDID, vidioc_g_edid, v4l_print_edid, INFO_FL_ALWAYS_COPY),
IOCTL_INFO_STD(VIDIOC_S_EDID, vidioc_s_edid, v4l_print_edid, INFO_FL_PRIO | INFO_FL_ALWAYS_COPY),
IOCTL_INFO_STD(VIDIOC_G_OUTPUT, vidioc_g_output, v4l_print_u32, 0),
IOCTL_INFO_FNC(VIDIOC_S_OUTPUT, v4l_s_output, v4l_print_u32, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_ENUMOUTPUT, v4l_enumoutput, v4l_print_enumoutput, INFO_FL_CLEAR(v4l2_output, index)),
IOCTL_INFO_STD(VIDIOC_G_AUDOUT, vidioc_g_audout, v4l_print_audioout, 0),
IOCTL_INFO_STD(VIDIOC_S_AUDOUT, vidioc_s_audout, v4l_print_audioout, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_G_MODULATOR, v4l_g_modulator, v4l_print_modulator, INFO_FL_CLEAR(v4l2_modulator, index)),
IOCTL_INFO_FNC(VIDIOC_S_MODULATOR, v4l_s_modulator, v4l_print_modulator, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_G_FREQUENCY, v4l_g_frequency, v4l_print_frequency, INFO_FL_CLEAR(v4l2_frequency, tuner)),
IOCTL_INFO_FNC(VIDIOC_S_FREQUENCY, v4l_s_frequency, v4l_print_frequency, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_CROPCAP, v4l_cropcap, v4l_print_cropcap, INFO_FL_CLEAR(v4l2_cropcap, type)),
IOCTL_INFO_FNC(VIDIOC_G_CROP, v4l_g_crop, v4l_print_crop, INFO_FL_CLEAR(v4l2_crop, type)),
IOCTL_INFO_FNC(VIDIOC_S_CROP, v4l_s_crop, v4l_print_crop, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_G_SELECTION, v4l_g_selection, v4l_print_selection, INFO_FL_CLEAR(v4l2_selection, r)),
IOCTL_INFO_FNC(VIDIOC_S_SELECTION, v4l_s_selection, v4l_print_selection, INFO_FL_PRIO | INFO_FL_CLEAR(v4l2_selection, r)),
IOCTL_INFO_STD(VIDIOC_G_JPEGCOMP, vidioc_g_jpegcomp, v4l_print_jpegcompression, 0),
IOCTL_INFO_STD(VIDIOC_S_JPEGCOMP, vidioc_s_jpegcomp, v4l_print_jpegcompression, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_QUERYSTD, v4l_querystd, v4l_print_std, 0),
IOCTL_INFO_FNC(VIDIOC_TRY_FMT, v4l_try_fmt, v4l_print_format, 0),
IOCTL_INFO_STD(VIDIOC_ENUMAUDIO, vidioc_enumaudio, v4l_print_audio, INFO_FL_CLEAR(v4l2_audio, index)),
IOCTL_INFO_STD(VIDIOC_ENUMAUDOUT, vidioc_enumaudout, v4l_print_audioout, INFO_FL_CLEAR(v4l2_audioout, index)),
IOCTL_INFO_FNC(VIDIOC_G_PRIORITY, v4l_g_priority, v4l_print_u32, 0),
IOCTL_INFO_FNC(VIDIOC_S_PRIORITY, v4l_s_priority, v4l_print_u32, INFO_FL_PRIO),
IOCTL_INFO_FNC(VIDIOC_G_SLICED_VBI_CAP, v4l_g_sliced_vbi_cap, v4l_print_sliced_vbi_cap, INFO_FL_CLEAR(v4l2_sliced_vbi_cap, type)),
IOCTL_INFO_FNC(VIDIOC_LOG_STATUS, v4l_log_status, v4l_print_newline, 0),
IOCTL_INFO_FNC(VIDIOC_G_EXT_CTRLS, v4l_g_ext_ctrls, v4l_print_ext_controls, INFO_FL_CTRL),
IOCTL_INFO_FNC(VIDIOC_S_EXT_CTRLS, v4l_s_ext_ctrls, v4l_print_ext_controls, INFO_FL_PRIO | INFO_FL_CTRL),
IOCTL_INFO_FNC(VIDIOC_TRY_EXT_CTRLS, v4l_try_ext_ctrls, v4l_print_ext_controls, INFO_FL_CTRL),
IOCTL_INFO_STD(VIDIOC_ENUM_FRAMESIZES, vidioc_enum_framesizes, v4l_print_frmsizeenum, INFO_FL_CLEAR(v4l2_frmsizeenum, pixel_format)),
IOCTL_INFO_STD(VIDIOC_ENUM_FRAMEINTERVALS, vidioc_enum_frameintervals, v4l_print_frmivalenum, INFO_FL_CLEAR(v4l2_frmivalenum, height)),
IOCTL_INFO_STD(VIDIOC_G_ENC_INDEX, vidioc_g_enc_index, v4l_print_enc_idx, 0),
IOCTL_INFO_STD(VIDIOC_ENCODER_CMD, vidioc_encoder_cmd, v4l_print_encoder_cmd, INFO_FL_PRIO | INFO_FL_CLEAR(v4l2_encoder_cmd, flags)),
IOCTL_INFO_STD(VIDIOC_TRY_ENCODER_CMD, vidioc_try_encoder_cmd, v4l_print_encoder_cmd, INFO_FL_CLEAR(v4l2_encoder_cmd, flags)),
IOCTL_INFO_STD(VIDIOC_DECODER_CMD, vidioc_decoder_cmd, v4l_print_decoder_cmd, INFO_FL_PRIO),
IOCTL_INFO_STD(VIDIOC_TRY_DECODER_CMD, vidioc_try_decoder_cmd, v4l_print_decoder_cmd, 0),
IOCTL_INFO_FNC(VIDIOC_DBG_S_REGISTER, v4l_dbg_s_register, v4l_print_dbg_register, 0),
IOCTL_INFO_FNC(VIDIOC_DBG_G_REGISTER, v4l_dbg_g_register, v4l_print_dbg_register, 0),
IOCTL_INFO_FNC(VIDIOC_S_HW_FREQ_SEEK, v4l_s_hw_freq_seek, v4l_print_hw_freq_seek, INFO_FL_PRIO),
IOCTL_INFO_STD(VIDIOC_S_DV_TIMINGS, vidioc_s_dv_timings, v4l_print_dv_timings, INFO_FL_PRIO | INFO_FL_CLEAR(v4l2_dv_timings, bt.flags)),
IOCTL_INFO_STD(VIDIOC_G_DV_TIMINGS, vidioc_g_dv_timings, v4l_print_dv_timings, 0),
IOCTL_INFO_FNC(VIDIOC_DQEVENT, v4l_dqevent, v4l_print_event, 0),
IOCTL_INFO_FNC(VIDIOC_SUBSCRIBE_EVENT, v4l_subscribe_event, v4l_print_event_subscription, 0),
IOCTL_INFO_FNC(VIDIOC_UNSUBSCRIBE_EVENT, v4l_unsubscribe_event, v4l_print_event_subscription, 0),
IOCTL_INFO_FNC(VIDIOC_CREATE_BUFS, v4l_create_bufs, v4l_print_create_buffers, INFO_FL_PRIO | INFO_FL_QUEUE),
IOCTL_INFO_FNC(VIDIOC_PREPARE_BUF, v4l_prepare_buf, v4l_print_buffer, INFO_FL_QUEUE),
IOCTL_INFO_STD(VIDIOC_ENUM_DV_TIMINGS, vidioc_enum_dv_timings, v4l_print_enum_dv_timings, INFO_FL_CLEAR(v4l2_enum_dv_timings, pad)),
IOCTL_INFO_STD(VIDIOC_QUERY_DV_TIMINGS, vidioc_query_dv_timings, v4l_print_dv_timings, INFO_FL_ALWAYS_COPY),
IOCTL_INFO_STD(VIDIOC_DV_TIMINGS_CAP, vidioc_dv_timings_cap, v4l_print_dv_timings_cap, INFO_FL_CLEAR(v4l2_dv_timings_cap, type)),
IOCTL_INFO_FNC(VIDIOC_ENUM_FREQ_BANDS, v4l_enum_freq_bands, v4l_print_freq_band, 0),
IOCTL_INFO_FNC(VIDIOC_DBG_G_CHIP_INFO, v4l_dbg_g_chip_info, v4l_print_dbg_chip_info, INFO_FL_CLEAR(v4l2_dbg_chip_info, match)),
IOCTL_INFO_FNC(VIDIOC_QUERY_EXT_CTRL, v4l_query_ext_ctrl, v4l_print_query_ext_ctrl, INFO_FL_CTRL | INFO_FL_CLEAR(v4l2_query_ext_ctrl, id)),
};
#define V4L2_IOCTLS ARRAY_SIZE(v4l2_ioctls)
bool v4l2_is_known_ioctl(unsigned int cmd)
{
if (_IOC_NR(cmd) >= V4L2_IOCTLS)
return false;
return v4l2_ioctls[_IOC_NR(cmd)].ioctl == cmd;
}
struct mutex *v4l2_ioctl_get_lock(struct video_device *vdev, unsigned cmd)
{
if (_IOC_NR(cmd) >= V4L2_IOCTLS)
return vdev->lock;
if (test_bit(_IOC_NR(cmd), vdev->disable_locking))
return NULL;
if (vdev->queue && vdev->queue->lock &&
(v4l2_ioctls[_IOC_NR(cmd)].flags & INFO_FL_QUEUE))
return vdev->queue->lock;
return vdev->lock;
}
/* Common ioctl debug function. This function can be used by
external ioctl messages as well as internal V4L ioctl */
void v4l_printk_ioctl(const char *prefix, unsigned int cmd)
{
const char *dir, *type;
if (prefix)
printk(KERN_DEBUG "%s: ", prefix);
switch (_IOC_TYPE(cmd)) {
case 'd':
type = "v4l2_int";
break;
case 'V':
if (_IOC_NR(cmd) >= V4L2_IOCTLS) {
type = "v4l2";
break;
}
pr_cont("%s", v4l2_ioctls[_IOC_NR(cmd)].name);
return;
default:
type = "unknown";
break;
}
switch (_IOC_DIR(cmd)) {
case _IOC_NONE: dir = "--"; break;
case _IOC_READ: dir = "r-"; break;
case _IOC_WRITE: dir = "-w"; break;
case _IOC_READ | _IOC_WRITE: dir = "rw"; break;
default: dir = "*ERR*"; break;
}
pr_cont("%s ioctl '%c', dir=%s, #%d (0x%08x)",
type, _IOC_TYPE(cmd), dir, _IOC_NR(cmd), cmd);
}
EXPORT_SYMBOL(v4l_printk_ioctl);
static long __video_do_ioctl(struct file *file,
unsigned int cmd, void *arg)
{
struct video_device *vfd = video_devdata(file);
const struct v4l2_ioctl_ops *ops = vfd->ioctl_ops;
bool write_only = false;
struct v4l2_ioctl_info default_info;
const struct v4l2_ioctl_info *info;
void *fh = file->private_data;
struct v4l2_fh *vfh = NULL;
int dev_debug = vfd->dev_debug;
long ret = -ENOTTY;
if (ops == NULL) {
pr_warn("%s: has no ioctl_ops.\n",
video_device_node_name(vfd));
return ret;
}
if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags))
vfh = file->private_data;
if (v4l2_is_known_ioctl(cmd)) {
info = &v4l2_ioctls[_IOC_NR(cmd)];
if (!test_bit(_IOC_NR(cmd), vfd->valid_ioctls) &&
!((info->flags & INFO_FL_CTRL) && vfh && vfh->ctrl_handler))
goto done;
if (vfh && (info->flags & INFO_FL_PRIO)) {
ret = v4l2_prio_check(vfd->prio, vfh->prio);
if (ret)
goto done;
}
} else {
default_info.ioctl = cmd;
default_info.flags = 0;
default_info.debug = v4l_print_default;
info = &default_info;
}
write_only = _IOC_DIR(cmd) == _IOC_WRITE;
if (info->flags & INFO_FL_STD) {
typedef int (*vidioc_op)(struct file *file, void *fh, void *p);
const void *p = vfd->ioctl_ops;
const vidioc_op *vidioc = p + info->u.offset;
ret = (*vidioc)(file, fh, arg);
} else if (info->flags & INFO_FL_FUNC) {
ret = info->u.func(ops, file, fh, arg);
} else if (!ops->vidioc_default) {
ret = -ENOTTY;
} else {
ret = ops->vidioc_default(file, fh,
vfh ? v4l2_prio_check(vfd->prio, vfh->prio) >= 0 : 0,
cmd, arg);
}
done:
if (dev_debug & (V4L2_DEV_DEBUG_IOCTL | V4L2_DEV_DEBUG_IOCTL_ARG)) {
if (!(dev_debug & V4L2_DEV_DEBUG_STREAMING) &&
(cmd == VIDIOC_QBUF || cmd == VIDIOC_DQBUF))
return ret;
v4l_printk_ioctl(video_device_node_name(vfd), cmd);
if (ret < 0)
pr_cont(": error %ld", ret);
if (!(dev_debug & V4L2_DEV_DEBUG_IOCTL_ARG))
pr_cont("\n");
else if (_IOC_DIR(cmd) == _IOC_NONE)
info->debug(arg, write_only);
else {
pr_cont(": ");
info->debug(arg, write_only);
}
}
return ret;
}
static int check_array_args(unsigned int cmd, void *parg, size_t *array_size,
void __user **user_ptr, void ***kernel_ptr)
{
int ret = 0;
switch (cmd) {
case VIDIOC_PREPARE_BUF:
case VIDIOC_QUERYBUF:
case VIDIOC_QBUF:
case VIDIOC_DQBUF: {
struct v4l2_buffer *buf = parg;
if (V4L2_TYPE_IS_MULTIPLANAR(buf->type) && buf->length > 0) {
if (buf->length > VIDEO_MAX_PLANES) {
ret = -EINVAL;
break;
}
*user_ptr = (void __user *)buf->m.planes;
*kernel_ptr = (void **)&buf->m.planes;
*array_size = sizeof(struct v4l2_plane) * buf->length;
ret = 1;
}
break;
}
case VIDIOC_G_EDID:
case VIDIOC_S_EDID: {
struct v4l2_edid *edid = parg;
if (edid->blocks) {
if (edid->blocks > 256) {
ret = -EINVAL;
break;
}
*user_ptr = (void __user *)edid->edid;
*kernel_ptr = (void **)&edid->edid;
*array_size = edid->blocks * 128;
ret = 1;
}
break;
}
case VIDIOC_S_EXT_CTRLS:
case VIDIOC_G_EXT_CTRLS:
case VIDIOC_TRY_EXT_CTRLS: {
struct v4l2_ext_controls *ctrls = parg;
if (ctrls->count != 0) {
if (ctrls->count > V4L2_CID_MAX_CTRLS) {
ret = -EINVAL;
break;
}
*user_ptr = (void __user *)ctrls->controls;
*kernel_ptr = (void **)&ctrls->controls;
*array_size = sizeof(struct v4l2_ext_control)
* ctrls->count;
ret = 1;
}
break;
}
}
return ret;
}
long
video_usercopy(struct file *file, unsigned int cmd, unsigned long arg,
v4l2_kioctl func)
{
char sbuf[128];
void *mbuf = NULL;
void *parg = (void *)arg;
long err = -EINVAL;
bool has_array_args;
bool always_copy = false;
size_t array_size = 0;
void __user *user_ptr = NULL;
void **kernel_ptr = NULL;
/* Copy arguments into temp kernel buffer */
if (_IOC_DIR(cmd) != _IOC_NONE) {
if (_IOC_SIZE(cmd) <= sizeof(sbuf)) {
parg = sbuf;
} else {
/* too big to allocate from stack */
[media] v4l2-core: Use kvmalloc() for potentially big allocations There are multiple places where arrays or otherwise variable sized buffer are allocated through V4L2 core code, including things like controls, memory pages, staging buffers for ioctls and so on. Such allocations can potentially require an order > 0 allocation from the page allocator, which is not guaranteed to be fulfilled and is likely to fail on a system with severe memory fragmentation (e.g. a system with very long uptime). Since the memory being allocated is intended to be used by the CPU exclusively, we can consider using vmalloc() as a fallback and this is exactly what the recently merged kvmalloc() helpers do. A kmalloc() call is still attempted, even for order > 0 allocations, but it is done with __GFP_NORETRY and __GFP_NOWARN, with expectation of failing if requested memory is not available instantly. Only then the vmalloc() fallback is used. This should give us fast and more reliable allocations even on systems with higher memory pressure and/or more fragmentation, while still retaining the same performance level on systems not suffering from such conditions. While at it, replace explicit array size calculations on changed allocations with kvmalloc_array(). Purposedly not touching videobuf1, as it is deprecated, has only few users remaining and would rather be seen removed instead. Signed-off-by: Tomasz Figa <tfiga@chromium.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-06-19 03:53:43 +00:00
mbuf = kvmalloc(_IOC_SIZE(cmd), GFP_KERNEL);
if (NULL == mbuf)
return -ENOMEM;
parg = mbuf;
}
err = -EFAULT;
V4L/DVB (10811): videodev: only copy needed part of RW ioctl's parameter There are many RW ioctls() in v4l2 where userspace only supplies one or two of the first fields in the structure passed to the ioctl. The driver then fills in the rest of the fields. Instead of copying the entire structure from userspace to the kernel we only need to copy those fields that userspace is actually supposed to supply. What's more, the fields that are meant to be only be output from the driver can be zeroed out in the videodev code, in case the driver doesn't fill them all in. Many of the ioctl handlers in v4l2_ioctl do this already, but my patch does this at one common point and so all the memsets for each ioctl can be deleted. For VIDIOC_G_SLICED_VBI_CAP, which has one input field ('type') and other output-only fields, the input field is near the end of the structure instead of at the beginning. So there is still a memset in it's ioctl handler to zero out the beginning of the struct. There were a couple mistakes with the existing code: For VIDIOC_G_AUDIO the index field was preserved, but G_AUDIO is a read only ioctl so nothing is copied from userspace to preserve. For VIDIOC_G_FREQUENCY the tuner field was not preserved like it should have been. This would be a problem if there was any hardware with more than one tuner/modulator. For VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS, none of the fields were preserved even though each ioctl has several field that are supposed to be inputs to the driver! Obviously these ioctls don't get used much. The index field is needed if the driver has multiple discrete sizes/rates and other fields can be used too, e.g. if the size depends on pixel format or frame rate depends on image size for example. Signed-off-by: Trent Piepho <xyzzy@speakeasy.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-03-04 04:21:02 +00:00
if (_IOC_DIR(cmd) & _IOC_WRITE) {
unsigned int n = _IOC_SIZE(cmd);
/*
* In some cases, only a few fields are used as input,
* i.e. when the app sets "index" and then the driver
* fills in the rest of the structure for the thing
* with that index. We only need to copy up the first
* non-input field.
*/
if (v4l2_is_known_ioctl(cmd)) {
u32 flags = v4l2_ioctls[_IOC_NR(cmd)].flags;
if (flags & INFO_FL_CLEAR_MASK)
n = (flags & INFO_FL_CLEAR_MASK) >> 16;
always_copy = flags & INFO_FL_ALWAYS_COPY;
}
V4L/DVB (10811): videodev: only copy needed part of RW ioctl's parameter There are many RW ioctls() in v4l2 where userspace only supplies one or two of the first fields in the structure passed to the ioctl. The driver then fills in the rest of the fields. Instead of copying the entire structure from userspace to the kernel we only need to copy those fields that userspace is actually supposed to supply. What's more, the fields that are meant to be only be output from the driver can be zeroed out in the videodev code, in case the driver doesn't fill them all in. Many of the ioctl handlers in v4l2_ioctl do this already, but my patch does this at one common point and so all the memsets for each ioctl can be deleted. For VIDIOC_G_SLICED_VBI_CAP, which has one input field ('type') and other output-only fields, the input field is near the end of the structure instead of at the beginning. So there is still a memset in it's ioctl handler to zero out the beginning of the struct. There were a couple mistakes with the existing code: For VIDIOC_G_AUDIO the index field was preserved, but G_AUDIO is a read only ioctl so nothing is copied from userspace to preserve. For VIDIOC_G_FREQUENCY the tuner field was not preserved like it should have been. This would be a problem if there was any hardware with more than one tuner/modulator. For VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS, none of the fields were preserved even though each ioctl has several field that are supposed to be inputs to the driver! Obviously these ioctls don't get used much. The index field is needed if the driver has multiple discrete sizes/rates and other fields can be used too, e.g. if the size depends on pixel format or frame rate depends on image size for example. Signed-off-by: Trent Piepho <xyzzy@speakeasy.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-03-04 04:21:02 +00:00
if (copy_from_user(parg, (void __user *)arg, n))
goto out;
V4L/DVB (10811): videodev: only copy needed part of RW ioctl's parameter There are many RW ioctls() in v4l2 where userspace only supplies one or two of the first fields in the structure passed to the ioctl. The driver then fills in the rest of the fields. Instead of copying the entire structure from userspace to the kernel we only need to copy those fields that userspace is actually supposed to supply. What's more, the fields that are meant to be only be output from the driver can be zeroed out in the videodev code, in case the driver doesn't fill them all in. Many of the ioctl handlers in v4l2_ioctl do this already, but my patch does this at one common point and so all the memsets for each ioctl can be deleted. For VIDIOC_G_SLICED_VBI_CAP, which has one input field ('type') and other output-only fields, the input field is near the end of the structure instead of at the beginning. So there is still a memset in it's ioctl handler to zero out the beginning of the struct. There were a couple mistakes with the existing code: For VIDIOC_G_AUDIO the index field was preserved, but G_AUDIO is a read only ioctl so nothing is copied from userspace to preserve. For VIDIOC_G_FREQUENCY the tuner field was not preserved like it should have been. This would be a problem if there was any hardware with more than one tuner/modulator. For VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS, none of the fields were preserved even though each ioctl has several field that are supposed to be inputs to the driver! Obviously these ioctls don't get used much. The index field is needed if the driver has multiple discrete sizes/rates and other fields can be used too, e.g. if the size depends on pixel format or frame rate depends on image size for example. Signed-off-by: Trent Piepho <xyzzy@speakeasy.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-03-04 04:21:02 +00:00
/* zero out anything we don't copy from userspace */
if (n < _IOC_SIZE(cmd))
memset((u8 *)parg + n, 0, _IOC_SIZE(cmd) - n);
} else {
/* read-only ioctl */
memset(parg, 0, _IOC_SIZE(cmd));
V4L/DVB (10811): videodev: only copy needed part of RW ioctl's parameter There are many RW ioctls() in v4l2 where userspace only supplies one or two of the first fields in the structure passed to the ioctl. The driver then fills in the rest of the fields. Instead of copying the entire structure from userspace to the kernel we only need to copy those fields that userspace is actually supposed to supply. What's more, the fields that are meant to be only be output from the driver can be zeroed out in the videodev code, in case the driver doesn't fill them all in. Many of the ioctl handlers in v4l2_ioctl do this already, but my patch does this at one common point and so all the memsets for each ioctl can be deleted. For VIDIOC_G_SLICED_VBI_CAP, which has one input field ('type') and other output-only fields, the input field is near the end of the structure instead of at the beginning. So there is still a memset in it's ioctl handler to zero out the beginning of the struct. There were a couple mistakes with the existing code: For VIDIOC_G_AUDIO the index field was preserved, but G_AUDIO is a read only ioctl so nothing is copied from userspace to preserve. For VIDIOC_G_FREQUENCY the tuner field was not preserved like it should have been. This would be a problem if there was any hardware with more than one tuner/modulator. For VIDIOC_ENUM_FRAMESIZES and VIDIOC_ENUM_FRAMEINTERVALS, none of the fields were preserved even though each ioctl has several field that are supposed to be inputs to the driver! Obviously these ioctls don't get used much. The index field is needed if the driver has multiple discrete sizes/rates and other fields can be used too, e.g. if the size depends on pixel format or frame rate depends on image size for example. Signed-off-by: Trent Piepho <xyzzy@speakeasy.org> Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-03-04 04:21:02 +00:00
}
}
err = check_array_args(cmd, parg, &array_size, &user_ptr, &kernel_ptr);
if (err < 0)
goto out;
has_array_args = err;
if (has_array_args) {
/*
* When adding new types of array args, make sure that the
* parent argument to ioctl (which contains the pointer to the
* array) fits into sbuf (so that mbuf will still remain
* unused up to here).
*/
[media] v4l2-core: Use kvmalloc() for potentially big allocations There are multiple places where arrays or otherwise variable sized buffer are allocated through V4L2 core code, including things like controls, memory pages, staging buffers for ioctls and so on. Such allocations can potentially require an order > 0 allocation from the page allocator, which is not guaranteed to be fulfilled and is likely to fail on a system with severe memory fragmentation (e.g. a system with very long uptime). Since the memory being allocated is intended to be used by the CPU exclusively, we can consider using vmalloc() as a fallback and this is exactly what the recently merged kvmalloc() helpers do. A kmalloc() call is still attempted, even for order > 0 allocations, but it is done with __GFP_NORETRY and __GFP_NOWARN, with expectation of failing if requested memory is not available instantly. Only then the vmalloc() fallback is used. This should give us fast and more reliable allocations even on systems with higher memory pressure and/or more fragmentation, while still retaining the same performance level on systems not suffering from such conditions. While at it, replace explicit array size calculations on changed allocations with kvmalloc_array(). Purposedly not touching videobuf1, as it is deprecated, has only few users remaining and would rather be seen removed instead. Signed-off-by: Tomasz Figa <tfiga@chromium.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-06-19 03:53:43 +00:00
mbuf = kvmalloc(array_size, GFP_KERNEL);
err = -ENOMEM;
if (NULL == mbuf)
goto out_array_args;
err = -EFAULT;
if (copy_from_user(mbuf, user_ptr, array_size))
goto out_array_args;
*kernel_ptr = mbuf;
}
/* Handles IOCTL */
err = func(file, cmd, parg);
if (err == -ENOIOCTLCMD)
err = -ENOTTY;
if (err == 0) {
if (cmd == VIDIOC_DQBUF)
trace_v4l2_dqbuf(video_devdata(file)->minor, parg);
else if (cmd == VIDIOC_QBUF)
trace_v4l2_qbuf(video_devdata(file)->minor, parg);
}
if (has_array_args) {
*kernel_ptr = (void __force *)user_ptr;
if (copy_to_user(user_ptr, mbuf, array_size))
err = -EFAULT;
goto out_array_args;
}
/*
* Some ioctls can return an error, but still have valid
* results that must be returned.
*/
if (err < 0 && !always_copy)
goto out;
out_array_args:
/* Copy results into user buffer */
switch (_IOC_DIR(cmd)) {
case _IOC_READ:
case (_IOC_WRITE | _IOC_READ):
if (copy_to_user((void __user *)arg, parg, _IOC_SIZE(cmd)))
err = -EFAULT;
break;
}
out:
[media] v4l2-core: Use kvmalloc() for potentially big allocations There are multiple places where arrays or otherwise variable sized buffer are allocated through V4L2 core code, including things like controls, memory pages, staging buffers for ioctls and so on. Such allocations can potentially require an order > 0 allocation from the page allocator, which is not guaranteed to be fulfilled and is likely to fail on a system with severe memory fragmentation (e.g. a system with very long uptime). Since the memory being allocated is intended to be used by the CPU exclusively, we can consider using vmalloc() as a fallback and this is exactly what the recently merged kvmalloc() helpers do. A kmalloc() call is still attempted, even for order > 0 allocations, but it is done with __GFP_NORETRY and __GFP_NOWARN, with expectation of failing if requested memory is not available instantly. Only then the vmalloc() fallback is used. This should give us fast and more reliable allocations even on systems with higher memory pressure and/or more fragmentation, while still retaining the same performance level on systems not suffering from such conditions. While at it, replace explicit array size calculations on changed allocations with kvmalloc_array(). Purposedly not touching videobuf1, as it is deprecated, has only few users remaining and would rather be seen removed instead. Signed-off-by: Tomasz Figa <tfiga@chromium.org> Acked-by: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
2017-06-19 03:53:43 +00:00
kvfree(mbuf);
return err;
}
EXPORT_SYMBOL(video_usercopy);
long video_ioctl2(struct file *file,
unsigned int cmd, unsigned long arg)
{
return video_usercopy(file, cmd, arg, __video_do_ioctl);
}
EXPORT_SYMBOL(video_ioctl2);