linux/drivers/gpu/drm/amd/powerplay/hwmgr/tonga_hwmgr.c

6070 lines
206 KiB
C
Raw Normal View History

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include "linux/delay.h"
#include "pp_acpi.h"
#include "hwmgr.h"
#include <atombios.h>
#include "tonga_hwmgr.h"
#include "pptable.h"
#include "processpptables.h"
#include "tonga_processpptables.h"
#include "tonga_pptable.h"
#include "pp_debug.h"
#include "tonga_ppsmc.h"
#include "cgs_common.h"
#include "pppcielanes.h"
#include "tonga_dyn_defaults.h"
#include "smumgr.h"
#include "tonga_smumgr.h"
#include "tonga_clockpowergating.h"
#include "tonga_thermal.h"
#include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "cgs_linux.h"
#include "eventmgr.h"
#include "amd_pcie_helpers.h"
#define MC_CG_ARB_FREQ_F0 0x0a
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
#define MC_CG_SEQ_DRAMCONF_S0 0x05
#define MC_CG_SEQ_DRAMCONF_S1 0x06
#define MC_CG_SEQ_YCLK_SUSPEND 0x04
#define MC_CG_SEQ_YCLK_RESUME 0x0a
#define PCIE_BUS_CLK 10000
#define TCLK (PCIE_BUS_CLK / 10)
#define SMC_RAM_END 0x40000
#define SMC_CG_IND_START 0xc0030000
#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/
#define VOLTAGE_SCALE 4
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
#define VDDC_VDDCI_DELTA 200
#define VDDC_VDDGFX_DELTA 300
#define MC_SEQ_MISC0_GDDR5_SHIFT 28
#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
#define MC_SEQ_MISC0_GDDR5_VALUE 5
typedef uint32_t PECI_RegistryValue;
/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
uint16_t PP_ClockStretcherLookupTable[2][4] = {
{600, 1050, 3, 0},
{600, 1050, 6, 1} };
/* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
uint32_t PP_ClockStretcherDDTTable[2][4][4] = {
{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
uint8_t PP_ClockStretchAmountConversion[2][6] = {
{0, 1, 3, 2, 4, 5},
{0, 2, 4, 5, 6, 5} };
/* Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
enum DPM_EVENT_SRC {
DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
};
typedef enum DPM_EVENT_SRC DPM_EVENT_SRC;
const unsigned long PhwTonga_Magic = (unsigned long)(PHM_VIslands_Magic);
struct tonga_power_state *cast_phw_tonga_power_state(
struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL;);
return (struct tonga_power_state *)hw_ps;
}
const struct tonga_power_state *cast_const_phw_tonga_power_state(
const struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwTonga_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL;);
return (const struct tonga_power_state *)hw_ps;
}
int tonga_add_voltage(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *look_up_table,
phm_ppt_v1_voltage_lookup_record *record)
{
uint32_t i;
PP_ASSERT_WITH_CODE((NULL != look_up_table),
"Lookup Table empty.", return -1;);
PP_ASSERT_WITH_CODE((0 != look_up_table->count),
"Lookup Table empty.", return -1;);
PP_ASSERT_WITH_CODE((SMU72_MAX_LEVELS_VDDGFX >= look_up_table->count),
"Lookup Table is full.", return -1;);
/* This is to avoid entering duplicate calculated records. */
for (i = 0; i < look_up_table->count; i++) {
if (look_up_table->entries[i].us_vdd == record->us_vdd) {
if (look_up_table->entries[i].us_calculated == 1)
return 0;
else
break;
}
}
look_up_table->entries[i].us_calculated = 1;
look_up_table->entries[i].us_vdd = record->us_vdd;
look_up_table->entries[i].us_cac_low = record->us_cac_low;
look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
look_up_table->entries[i].us_cac_high = record->us_cac_high;
/* Only increment the count when we're appending, not replacing duplicate entry. */
if (i == look_up_table->count)
look_up_table->count++;
return 0;
}
int tonga_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
{
PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
}
uint8_t tonga_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
uint32_t voltage)
{
uint8_t count = (uint8_t) (voltage_table->count);
uint8_t i = 0;
PP_ASSERT_WITH_CODE((NULL != voltage_table),
"Voltage Table empty.", return 0;);
PP_ASSERT_WITH_CODE((0 != count),
"Voltage Table empty.", return 0;);
for (i = 0; i < count; i++) {
/* find first voltage bigger than requested */
if (voltage_table->entries[i].value >= voltage)
return i;
}
/* voltage is bigger than max voltage in the table */
return i - 1;
}
/**
* @brief PhwTonga_GetVoltageOrder
* Returns index of requested voltage record in lookup(table)
* @param hwmgr - pointer to hardware manager
* @param lookupTable - lookup list to search in
* @param voltage - voltage to look for
* @return 0 on success
*/
uint8_t tonga_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table,
uint16_t voltage)
{
uint8_t count = (uint8_t) (look_up_table->count);
uint8_t i;
PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;);
PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;);
for (i = 0; i < count; i++) {
/* find first voltage equal or bigger than requested */
if (look_up_table->entries[i].us_vdd >= voltage)
return i;
}
/* voltage is bigger than max voltage in the table */
return i-1;
}
bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
{
/*
* We return the status of Voltage Control instead of checking SCLK/MCLK DPM
* because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
* whereas voltage control is a fundemental change that will not be disabled
*/
return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0);
}
/**
* Re-generate the DPM level mask value
* @param hwmgr the address of the hardware manager
*/
static uint32_t tonga_get_dpm_level_enable_mask_value(
struct tonga_single_dpm_table * dpm_table)
{
uint32_t i;
uint32_t mask_value = 0;
for (i = dpm_table->count; i > 0; i--) {
mask_value = mask_value << 1;
if (dpm_table->dpm_levels[i-1].enabled)
mask_value |= 0x1;
else
mask_value &= 0xFFFFFFFE;
}
return mask_value;
}
/**
* Retrieve DPM default values from registry (if available)
*
* @param hwmgr the address of the powerplay hardware manager.
*/
void tonga_initialize_dpm_defaults(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
phw_tonga_ulv_parm *ulv = &(data->ulv);
uint32_t tmp;
ulv->ch_ulv_parameter = PPTONGA_CGULVPARAMETER_DFLT;
data->voting_rights_clients0 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT0;
data->voting_rights_clients1 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT1;
data->voting_rights_clients2 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT2;
data->voting_rights_clients3 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT3;
data->voting_rights_clients4 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT4;
data->voting_rights_clients5 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT5;
data->voting_rights_clients6 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT6;
data->voting_rights_clients7 = PPTONGA_VOTINGRIGHTSCLIENTS_DFLT7;
data->static_screen_threshold_unit = PPTONGA_STATICSCREENTHRESHOLDUNIT_DFLT;
data->static_screen_threshold = PPTONGA_STATICSCREENTHRESHOLD_DFLT;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ABM);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_NonABMSupportInPPLib);
tmp = 0;
if (tmp == 0)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicACTiming);
tmp = 0;
if (0 != tmp)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableMemoryTransition);
data->mclk_strobe_mode_threshold = 40000;
data->mclk_stutter_mode_threshold = 30000;
data->mclk_edc_enable_threshold = 40000;
data->mclk_edc_wr_enable_threshold = 40000;
tmp = 0;
if (tmp != 0)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableMCLS);
data->pcie_gen_performance.max = PP_PCIEGen1;
data->pcie_gen_performance.min = PP_PCIEGen3;
data->pcie_gen_power_saving.max = PP_PCIEGen1;
data->pcie_gen_power_saving.min = PP_PCIEGen3;
data->pcie_lane_performance.max = 0;
data->pcie_lane_performance.min = 16;
data->pcie_lane_power_saving.max = 0;
data->pcie_lane_power_saving.min = 16;
tmp = 0;
if (tmp)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
}
int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
int result = 0;
uint32_t low_sclk_interrupt_threshold = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification)
&& (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) {
data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold;
low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold;
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = tonga_copy_bytes_to_smc(
hwmgr->smumgr,
data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
sizeof(uint32_t),
data->sram_end
);
}
return result;
}
/**
* Find SCLK value that is associated with specified virtual_voltage_Id.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param virtual_voltage_Id voltageId to look for.
* @param sclk output value .
* @return always 0 if success and 2 if association not found
*/
static int tonga_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
uint16_t virtual_voltage_id, uint32_t *sclk)
{
uint8_t entryId;
uint8_t voltageId;
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -1);
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
for (entryId = 0; entryId < pptable_info->vdd_dep_on_sclk->count; entryId++) {
voltageId = pptable_info->vdd_dep_on_sclk->entries[entryId].vddInd;
if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
break;
}
PP_ASSERT_WITH_CODE(entryId < pptable_info->vdd_dep_on_sclk->count,
"Can't find requested voltage id in vdd_dep_on_sclk table!",
return -1;
);
*sclk = pptable_info->vdd_dep_on_sclk->entries[entryId].clk;
return 0;
}
/**
* Get Leakage VDDC based on leakage ID.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return 2 if vddgfx returned is greater than 2V or if BIOS
*/
int tonga_get_evv_voltage(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
uint16_t virtual_voltage_id;
uint16_t vddc = 0;
uint16_t vddgfx = 0;
uint16_t i, j;
uint32_t sclk = 0;
/* retrieve voltage for leakage ID (0xff01 + i) */
for (i = 0; i < TONGA_MAX_LEAKAGE_COUNT; i++) {
virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
/* in split mode we should have only vddgfx EVV leakages */
if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
pptable_info->vddgfx_lookup_table, virtual_voltage_id, &sclk)) {
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
for (j = 1; j < sclk_table->count; j++) {
if (sclk_table->entries[j].clk == sclk &&
sclk_table->entries[j].cks_enable == 0) {
sclk += 5000;
break;
}
}
}
PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
(hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
virtual_voltage_id, &vddgfx),
"Error retrieving EVV voltage value!", continue);
/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -1);
/* the voltage should not be zero nor equal to leakage ID */
if (vddgfx != 0 && vddgfx != virtual_voltage_id) {
data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = virtual_voltage_id;
data->vddcgfx_leakage.count++;
}
}
} else {
/* in merged mode we have only vddc EVV leakages */
if (0 == tonga_get_sclk_for_voltage_evv(hwmgr,
pptable_info->vddc_lookup_table,
virtual_voltage_id, &sclk)) {
PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk
(hwmgr, VOLTAGE_TYPE_VDDC, sclk,
virtual_voltage_id, &vddc),
"Error retrieving EVV voltage value!", continue);
/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
if (vddc > 2000)
printk(KERN_ERR "[ powerplay ] Invalid VDDC value! \n");
/* the voltage should not be zero nor equal to leakage ID */
if (vddc != 0 && vddc != virtual_voltage_id) {
data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
data->vddc_leakage.count++;
}
}
}
}
return 0;
}
int tonga_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
/* enable SCLK dpm */
if (0 == data->sclk_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_DPM_Enable)),
"Failed to enable SCLK DPM during DPM Start Function!",
return -1);
}
/* enable MCLK dpm */
if (0 == data->mclk_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_Enable)),
"Failed to enable MCLK DPM during DPM Start Function!",
return -1);
PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_CPL_CNTL, 0x100005);/*Read */
udelay(10);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_CPL_CNTL, 0x500005);/* write */
}
return 0;
}
int tonga_start_dpm(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
/* enable general power management */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1);
/* enable sclk deep sleep */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1);
/* prepare for PCIE DPM */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start +
offsetof(SMU72_SoftRegisters, VoltageChangeTimeout), 0x1000);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_Voltage_Cntl_Enable)),
"Failed to enable voltage DPM during DPM Start Function!",
return -1);
if (0 != tonga_enable_sclk_mclk_dpm(hwmgr)) {
PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1);
}
/* enable PCIE dpm */
if (0 == data->pcie_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_PCIeDPM_Enable)),
"Failed to enable pcie DPM during DPM Start Function!",
return -1
);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition)) {
smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_EnableACDCGPIOInterrupt);
}
return 0;
}
int tonga_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
/* disable SCLK dpm */
if (0 == data->sclk_dpm_key_disabled) {
/* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
PP_ASSERT_WITH_CODE(
(0 == tonga_is_dpm_running(hwmgr)),
"Trying to Disable SCLK DPM when DPM is disabled",
return -1
);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_DPM_Disable)),
"Failed to disable SCLK DPM during DPM stop Function!",
return -1);
}
/* disable MCLK dpm */
if (0 == data->mclk_dpm_key_disabled) {
/* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
PP_ASSERT_WITH_CODE(
(0 == tonga_is_dpm_running(hwmgr)),
"Trying to Disable MCLK DPM when DPM is disabled",
return -1
);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_Disable)),
"Failed to Disable MCLK DPM during DPM stop Function!",
return -1);
}
return 0;
}
int tonga_stop_dpm(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 0);
/* disable sclk deep sleep*/
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 0);
/* disable PCIE dpm */
if (0 == data->pcie_dpm_key_disabled) {
/* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
PP_ASSERT_WITH_CODE(
(0 == tonga_is_dpm_running(hwmgr)),
"Trying to Disable PCIE DPM when DPM is disabled",
return -1
);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_PCIeDPM_Disable)),
"Failed to disable pcie DPM during DPM stop Function!",
return -1);
}
if (0 != tonga_disable_sclk_mclk_dpm(hwmgr))
PP_ASSERT_WITH_CODE(0, "Failed to disable Sclk DPM and Mclk DPM!", return -1);
/* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
PP_ASSERT_WITH_CODE(
(0 == tonga_is_dpm_running(hwmgr)),
"Trying to Disable Voltage CNTL when DPM is disabled",
return -1
);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_Voltage_Cntl_Disable)),
"Failed to disable voltage DPM during DPM stop Function!",
return -1);
return 0;
}
int tonga_enable_sclk_control(struct pp_hwmgr *hwmgr)
{
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0);
return 0;
}
/**
* Send a message to the SMC and return a parameter
*
* @param hwmgr: the address of the powerplay hardware manager.
* @param msg: the message to send.
* @param parameter: pointer to the received parameter
* @return The response that came from the SMC.
*/
PPSMC_Result tonga_send_msg_to_smc_return_parameter(
struct pp_hwmgr *hwmgr,
PPSMC_Msg msg,
uint32_t *parameter)
{
int result;
result = smum_send_msg_to_smc(hwmgr->smumgr, msg);
if ((0 == result) && parameter) {
*parameter = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
}
return result;
}
/**
* force DPM power State
*
* @param hwmgr: the address of the powerplay hardware manager.
* @param n : DPM level
* @return The response that came from the SMC.
*/
int tonga_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
uint32_t level_mask = 1 << n;
/* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
"Trying to force SCLK when DPM is disabled", return -1;);
if (0 == data->sclk_dpm_key_disabled)
return (0 == smum_send_msg_to_smc_with_parameter(
hwmgr->smumgr,
(PPSMC_Msg)(PPSMC_MSG_SCLKDPM_SetEnabledMask),
level_mask) ? 0 : 1);
return 0;
}
/**
* force DPM power State
*
* @param hwmgr: the address of the powerplay hardware manager.
* @param n : DPM level
* @return The response that came from the SMC.
*/
int tonga_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
uint32_t level_mask = 1 << n;
/* Checking if DPM is running. If we discover hang because of this, we should skip this message. */
PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
"Trying to Force MCLK when DPM is disabled", return -1;);
if (0 == data->mclk_dpm_key_disabled)
return (0 == smum_send_msg_to_smc_with_parameter(
hwmgr->smumgr,
(PPSMC_Msg)(PPSMC_MSG_MCLKDPM_SetEnabledMask),
level_mask) ? 0 : 1);
return 0;
}
/**
* force DPM power State
*
* @param hwmgr: the address of the powerplay hardware manager.
* @param n : DPM level
* @return The response that came from the SMC.
*/
int tonga_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
/* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
PP_ASSERT_WITH_CODE(0 == tonga_is_dpm_running(hwmgr),
"Trying to Force PCIE level when DPM is disabled", return -1;);
if (0 == data->pcie_dpm_key_disabled)
return (0 == smum_send_msg_to_smc_with_parameter(
hwmgr->smumgr,
(PPSMC_Msg)(PPSMC_MSG_PCIeDPM_ForceLevel),
n) ? 0 : 1);
return 0;
}
/**
* Set the initial state by calling SMC to switch to this state directly
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_set_boot_state(struct pp_hwmgr *hwmgr)
{
/*
* SMC only stores one state that SW will ask to switch too,
* so we switch the the just uploaded one
*/
return (0 == tonga_disable_sclk_mclk_dpm(hwmgr)) ? 0 : 1;
}
/**
* Get the location of various tables inside the FW image.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *tonga_smu = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint32_t tmp;
int result;
bool error = 0;
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, DpmTable),
&tmp, data->sram_end);
if (0 == result) {
data->dpm_table_start = tmp;
}
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, SoftRegisters),
&tmp, data->sram_end);
if (0 == result) {
data->soft_regs_start = tmp;
tonga_smu->ulSoftRegsStart = tmp;
}
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, mcRegisterTable),
&tmp, data->sram_end);
if (0 == result) {
data->mc_reg_table_start = tmp;
}
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, FanTable),
&tmp, data->sram_end);
if (0 == result) {
data->fan_table_start = tmp;
}
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
&tmp, data->sram_end);
if (0 == result) {
data->arb_table_start = tmp;
}
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, Version),
&tmp, data->sram_end);
if (0 == result) {
hwmgr->microcode_version_info.SMC = tmp;
}
error |= (0 != result);
return error ? 1 : 0;
}
/**
* Read clock related registers.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_read_clock_registers(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
data->clock_registers.vCG_SPLL_FUNC_CNTL =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
data->clock_registers.vDLL_CNTL =
cgs_read_register(hwmgr->device, mmDLL_CNTL);
data->clock_registers.vMCLK_PWRMGT_CNTL =
cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
data->clock_registers.vMPLL_AD_FUNC_CNTL =
cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
data->clock_registers.vMPLL_DQ_FUNC_CNTL =
cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
data->clock_registers.vMPLL_FUNC_CNTL =
cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
data->clock_registers.vMPLL_FUNC_CNTL_1 =
cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
data->clock_registers.vMPLL_FUNC_CNTL_2 =
cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
data->clock_registers.vMPLL_SS1 =
cgs_read_register(hwmgr->device, mmMPLL_SS1);
data->clock_registers.vMPLL_SS2 =
cgs_read_register(hwmgr->device, mmMPLL_SS2);
return 0;
}
/**
* Find out if memory is GDDR5.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_get_memory_type(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
uint32_t temp;
temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
MC_SEQ_MISC0_GDDR5_SHIFT));
return 0;
}
/**
* Enables Dynamic Power Management by SMC
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
{
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1);
return 0;
}
/**
* Initialize PowerGating States for different engines
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_init_power_gate_state(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
data->uvd_power_gated = 0;
data->vce_power_gated = 0;
data->samu_power_gated = 0;
data->acp_power_gated = 0;
data->pg_acp_init = 1;
return 0;
}
/**
* Checks if DPM is enabled
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_check_for_dpm_running(struct pp_hwmgr *hwmgr)
{
/*
* We return the status of Voltage Control instead of checking SCLK/MCLK DPM
* because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM,
* whereas voltage control is a fundemental change that will not be disabled
*/
return (0 == tonga_is_dpm_running(hwmgr) ? 0 : 1);
}
/**
* Checks if DPM is stopped
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_check_for_dpm_stopped(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
if (0 != tonga_is_dpm_running(hwmgr)) {
/* If HW Virtualization is enabled, dpm_table_start will not have a valid value */
if (!data->dpm_table_start) {
return 1;
}
}
return 0;
}
/**
* Remove repeated voltage values and create table with unique values.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param voltage_table the pointer to changing voltage table
* @return 1 in success
*/
static int tonga_trim_voltage_table(struct pp_hwmgr *hwmgr,
pp_atomctrl_voltage_table *voltage_table)
{
uint32_t table_size, i, j;
uint16_t vvalue;
bool bVoltageFound = 0;
pp_atomctrl_voltage_table *table;
PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return -1;);
table_size = sizeof(pp_atomctrl_voltage_table);
table = kzalloc(table_size, GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
memset(table, 0x00, table_size);
table->mask_low = voltage_table->mask_low;
table->phase_delay = voltage_table->phase_delay;
for (i = 0; i < voltage_table->count; i++) {
vvalue = voltage_table->entries[i].value;
bVoltageFound = 0;
for (j = 0; j < table->count; j++) {
if (vvalue == table->entries[j].value) {
bVoltageFound = 1;
break;
}
}
if (!bVoltageFound) {
table->entries[table->count].value = vvalue;
table->entries[table->count].smio_low =
voltage_table->entries[i].smio_low;
table->count++;
}
}
memcpy(table, voltage_table, sizeof(pp_atomctrl_voltage_table));
kfree(table);
return 0;
}
static int tonga_get_svi2_vdd_ci_voltage_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *voltage_dependency_table)
{
uint32_t i;
int result;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
pp_atomctrl_voltage_table *vddci_voltage_table = &(data->vddci_voltage_table);
PP_ASSERT_WITH_CODE((0 != voltage_dependency_table->count),
"Voltage Dependency Table empty.", return -1;);
vddci_voltage_table->mask_low = 0;
vddci_voltage_table->phase_delay = 0;
vddci_voltage_table->count = voltage_dependency_table->count;
for (i = 0; i < voltage_dependency_table->count; i++) {
vddci_voltage_table->entries[i].value =
voltage_dependency_table->entries[i].vddci;
vddci_voltage_table->entries[i].smio_low = 0;
}
result = tonga_trim_voltage_table(hwmgr, vddci_voltage_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to trim VDDCI table.", return result;);
return 0;
}
static int tonga_get_svi2_vdd_voltage_table(
struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *look_up_table,
pp_atomctrl_voltage_table *voltage_table)
{
uint8_t i = 0;
PP_ASSERT_WITH_CODE((0 != look_up_table->count),
"Voltage Lookup Table empty.", return -1;);
voltage_table->mask_low = 0;
voltage_table->phase_delay = 0;
voltage_table->count = look_up_table->count;
for (i = 0; i < voltage_table->count; i++) {
voltage_table->entries[i].value = look_up_table->entries[i].us_vdd;
voltage_table->entries[i].smio_low = 0;
}
return 0;
}
/*
* -------------------------------------------------------- Voltage Tables --------------------------------------------------------------------------
* If the voltage table would be bigger than what will fit into the state table on the SMC keep only the higher entries.
*/
static void tonga_trim_voltage_table_to_fit_state_table(
struct pp_hwmgr *hwmgr,
uint32_t max_voltage_steps,
pp_atomctrl_voltage_table *voltage_table)
{
unsigned int i, diff;
if (voltage_table->count <= max_voltage_steps) {
return;
}
diff = voltage_table->count - max_voltage_steps;
for (i = 0; i < max_voltage_steps; i++) {
voltage_table->entries[i] = voltage_table->entries[i + diff];
}
voltage_table->count = max_voltage_steps;
return;
}
/**
* Create Voltage Tables.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_construct_voltage_tables(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
int result;
/* MVDD has only GPIO voltage control */
if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve MVDD table.", return result;);
}
if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
/* GPIO voltage */
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve VDDCI table.", return result;);
} else if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
/* SVI2 voltage */
result = tonga_get_svi2_vdd_ci_voltage_table(hwmgr,
pptable_info->vdd_dep_on_mclk);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;);
}
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
/* VDDGFX has only SVI2 voltage control */
result = tonga_get_svi2_vdd_voltage_table(hwmgr,
pptable_info->vddgfx_lookup_table, &(data->vddgfx_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
}
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
/* VDDC has only SVI2 voltage control */
result = tonga_get_svi2_vdd_voltage_table(hwmgr,
pptable_info->vddc_lookup_table, &(data->vddc_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDC table from lookup table.", return result;);
}
PP_ASSERT_WITH_CODE(
(data->vddc_voltage_table.count <= (SMU72_MAX_LEVELS_VDDC)),
"Too many voltage values for VDDC. Trimming to fit state table.",
tonga_trim_voltage_table_to_fit_state_table(hwmgr,
SMU72_MAX_LEVELS_VDDC, &(data->vddc_voltage_table));
);
PP_ASSERT_WITH_CODE(
(data->vddgfx_voltage_table.count <= (SMU72_MAX_LEVELS_VDDGFX)),
"Too many voltage values for VDDGFX. Trimming to fit state table.",
tonga_trim_voltage_table_to_fit_state_table(hwmgr,
SMU72_MAX_LEVELS_VDDGFX, &(data->vddgfx_voltage_table));
);
PP_ASSERT_WITH_CODE(
(data->vddci_voltage_table.count <= (SMU72_MAX_LEVELS_VDDCI)),
"Too many voltage values for VDDCI. Trimming to fit state table.",
tonga_trim_voltage_table_to_fit_state_table(hwmgr,
SMU72_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table));
);
PP_ASSERT_WITH_CODE(
(data->mvdd_voltage_table.count <= (SMU72_MAX_LEVELS_MVDD)),
"Too many voltage values for MVDD. Trimming to fit state table.",
tonga_trim_voltage_table_to_fit_state_table(hwmgr,
SMU72_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table));
);
return 0;
}
/**
* Vddc table preparation for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
unsigned int count;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
table->VddcLevelCount = data->vddc_voltage_table.count;
for (count = 0; count < table->VddcLevelCount; count++) {
table->VddcTable[count] =
PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
}
CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
}
return 0;
}
/**
* VddGfx table preparation for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
unsigned int count;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
table->VddGfxTable[count] =
PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
}
CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
}
return 0;
}
/**
* Vddci table preparation for SMC.
*
* @param *hwmgr The address of the hardware manager.
* @param *table The SMC DPM table structure to be populated.
* @return 0
*/
static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
uint32_t count;
table->VddciLevelCount = data->vddci_voltage_table.count;
for (count = 0; count < table->VddciLevelCount; count++) {
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
table->VddciTable[count] =
PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
} else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
table->SmioTable1.Pattern[count].Voltage =
PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
table->SmioTable1.Pattern[count].Smio =
(uint8_t) count;
table->Smio[count] |=
data->vddci_voltage_table.entries[count].smio_low;
table->VddciTable[count] =
PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
}
}
table->SmioMask1 = data->vddci_voltage_table.mask_low;
CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
return 0;
}
/**
* Mvdd table preparation for SMC.
*
* @param *hwmgr The address of the hardware manager.
* @param *table The SMC DPM table structure to be populated.
* @return 0
*/
static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
uint32_t count;
if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
table->MvddLevelCount = data->mvdd_voltage_table.count;
for (count = 0; count < table->MvddLevelCount; count++) {
table->SmioTable2.Pattern[count].Voltage =
PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
table->SmioTable2.Pattern[count].Smio =
(uint8_t) count;
table->Smio[count] |=
data->mvdd_voltage_table.entries[count].smio_low;
}
table->SmioMask2 = data->vddci_voltage_table.mask_low;
CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
}
return 0;
}
/**
* Convert a voltage value in mv unit to VID number required by SMU firmware
*/
static uint8_t convert_to_vid(uint16_t vddc)
{
return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
}
/**
* Preparation of vddc and vddgfx CAC tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
uint32_t count;
uint8_t index;
int result = 0;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table = pptable_info->vddgfx_lookup_table;
struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table = pptable_info->vddc_lookup_table;
/* pTables is already swapped, so in order to use the value from it, we need to swap it back. */
uint32_t vddcLevelCount = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
uint32_t vddgfxLevelCount = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
for (count = 0; count < vddcLevelCount; count++) {
/* We are populating vddc CAC data to BapmVddc table in split and merged mode */
index = tonga_get_voltage_index(vddc_lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddcVidLoSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
table->BapmVddcVidHiSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
table->BapmVddcVidHiSidd2[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
}
if ((data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2)) {
/* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
for (count = 0; count < vddgfxLevelCount; count++) {
index = tonga_get_voltage_index(vddgfx_lookup_table,
data->vddgfx_voltage_table.entries[count].value);
table->BapmVddGfxVidLoSidd[count] =
convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_low);
table->BapmVddGfxVidHiSidd[count] =
convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid);
table->BapmVddGfxVidHiSidd2[count] =
convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
}
} else {
for (count = 0; count < vddcLevelCount; count++) {
index = tonga_get_voltage_index(vddc_lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddGfxVidLoSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
table->BapmVddGfxVidHiSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
table->BapmVddGfxVidHiSidd2[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
}
}
return result;
}
/**
* Preparation of voltage tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result;
result = tonga_populate_smc_vddc_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDC voltage table to SMC", return -1);
result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDCI voltage table to SMC", return -1);
result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDGFX voltage table to SMC", return -1);
result = tonga_populate_smc_mvdd_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate MVDD voltage table to SMC", return -1);
result = tonga_populate_cac_tables(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate CAC voltage tables to SMC", return -1);
return 0;
}
/**
* Populates the SMC VRConfig field in DPM table.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
uint16_t config;
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
/* Splitted mode */
config = VR_SVI2_PLANE_1;
table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_2;
table->VRConfig |= config;
} else {
printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should be both on SVI2 control in splitted mode! \n");
}
} else {
/* Merged mode */
config = VR_MERGED_WITH_VDDC;
table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
/* Set Vddc Voltage Controller */
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_1;
table->VRConfig |= config;
} else {
printk(KERN_ERR "[ powerplay ] VDDC should be on SVI2 control in merged mode! \n");
}
}
/* Set Vddci Voltage Controller */
if (TONGA_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) {
config = VR_SVI2_PLANE_2; /* only in merged mode */
table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
} else if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) {
config = VR_SMIO_PATTERN_1;
table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
}
/* Set Mvdd Voltage Controller */
if (TONGA_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
config = VR_SMIO_PATTERN_2;
table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
}
return 0;
}
static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
uint32_t i = 0;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
/* clock - voltage dependency table is empty table */
if (allowed_clock_voltage_table->count == 0)
return -1;
for (i = 0; i < allowed_clock_voltage_table->count; i++) {
/* find first sclk bigger than request */
if (allowed_clock_voltage_table->entries[i].clk >= clock) {
voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
allowed_clock_voltage_table->entries[i].vddgfx);
voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
allowed_clock_voltage_table->entries[i].vddc);
if (allowed_clock_voltage_table->entries[i].vddci) {
voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
allowed_clock_voltage_table->entries[i].vddci);
} else {
voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
allowed_clock_voltage_table->entries[i].vddc - data->vddc_vddci_delta);
}
if (allowed_clock_voltage_table->entries[i].mvdd) {
*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
}
voltage->Phases = 1;
return 0;
}
}
/* sclk is bigger than max sclk in the dependence table */
voltage->VddGfx = tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
allowed_clock_voltage_table->entries[i-1].vddgfx);
voltage->Vddc = tonga_get_voltage_index(pptable_info->vddc_lookup_table,
allowed_clock_voltage_table->entries[i-1].vddc);
if (allowed_clock_voltage_table->entries[i-1].vddci) {
voltage->Vddci = tonga_get_voltage_id(&data->vddci_voltage_table,
allowed_clock_voltage_table->entries[i-1].vddci);
}
if (allowed_clock_voltage_table->entries[i-1].mvdd) {
*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
}
return 0;
}
/**
* Call SMC to reset S0/S1 to S1 and Reset SMIO to initial value
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_reset_to_default(struct pp_hwmgr *hwmgr)
{
return (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults) == 0) ? 0 : 1;
}
int tonga_populate_memory_timing_parameters(
struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
uint32_t memory_clock,
struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
)
{
uint32_t dramTiming;
uint32_t dramTiming2;
uint32_t burstTime;
int result;
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
engine_clock, memory_clock);
PP_ASSERT_WITH_CODE(result == 0,
"Error calling VBIOS to set DRAM_TIMING.", return result);
dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
arb_regs->McArbBurstTime = (uint8_t)burstTime;
return 0;
}
/**
* Setup parameters for the MC ARB.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
* This function is to be called from the SetPowerState table.
*/
int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
int result = 0;
SMU72_Discrete_MCArbDramTimingTable arb_regs;
uint32_t i, j;
memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
result = tonga_populate_memory_timing_parameters
(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
data->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (0 != result) {
break;
}
}
}
if (0 == result) {
result = tonga_copy_bytes_to_smc(
hwmgr->smumgr,
data->arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU72_Discrete_MCArbDramTimingTable),
data->sram_end
);
}
return result;
}
static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct tonga_dpm_table *dpm_table = &data->dpm_table;
uint32_t i;
/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount =
(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity =
1;
table->LinkLevel[i].SPC =
(uint8_t)(data->pcie_spc_cap & 0xff);
table->LinkLevel[i].DownThreshold =
PP_HOST_TO_SMC_UL(5);
table->LinkLevel[i].UpThreshold =
PP_HOST_TO_SMC_UL(30);
}
data->smc_state_table.LinkLevelCount =
(uint8_t)dpm_table->pcie_speed_table.count;
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
tonga_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
return 0;
}
static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
table->UvdLevelCount = (uint8_t) (mm_table->count);
table->UvdBootLevel = 0;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
table->UvdLevel[count].MinVoltage.Vddc =
tonga_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->UvdLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->UvdLevel[count].MinVoltage.Vddci =
tonga_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - data->vddc_vddci_delta);
table->UvdLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].VclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Vclk clock", return result);
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].DclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Dclk clock", return result);
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
//CONVERT_FROM_HOST_TO_SMC_UL((uint32_t)table->UvdLevel[count].MinVoltage);
}
return result;
}
static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
table->VceLevelCount = (uint8_t) (mm_table->count);
table->VceBootLevel = 0;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency =
mm_table->entries[count].eclk;
table->VceLevel[count].MinVoltage.Vddc =
tonga_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->VceLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->VceLevel[count].MinVoltage.Vddci =
tonga_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - data->vddc_vddci_delta);
table->VceLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->VceLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for VCE engine clock", return result);
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
}
return result;
}
static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
table->AcpLevelCount = (uint8_t) (mm_table->count);
table->AcpBootLevel = 0;
for (count = 0; count < table->AcpLevelCount; count++) {
table->AcpLevel[count].Frequency =
pptable_info->mm_dep_table->entries[count].aclk;
table->AcpLevel[count].MinVoltage.Vddc =
tonga_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->AcpLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->AcpLevel[count].MinVoltage.Vddci =
tonga_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - data->vddc_vddci_delta);
table->AcpLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->AcpLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for engine clock", return result);
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
}
return result;
}
static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t) (mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].Frequency =
pptable_info->mm_dep_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage.Vddc =
tonga_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->SamuLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) ?
tonga_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->SamuLevel[count].MinVoltage.Vddci =
tonga_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - data->vddc_vddci_delta);
table->SamuLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
}
return result;
}
/**
* Populates the SMC MCLK structure using the provided memory clock
*
* @param hwmgr the address of the hardware manager
* @param memory_clock the memory clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int tonga_calculate_mclk_params(
struct pp_hwmgr *hwmgr,
uint32_t memory_clock,
SMU72_Discrete_MemoryLevel *mclk,
bool strobe_mode,
bool dllStateOn
)
{
const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
pp_atomctrl_memory_clock_param mpll_param;
int result;
result = atomctrl_get_memory_pll_dividers_si(hwmgr,
memory_clock, &mpll_param, strobe_mode);
PP_ASSERT_WITH_CODE(0 == result,
"Error retrieving Memory Clock Parameters from VBIOS.", return result);
/* MPLL_FUNC_CNTL setup*/
mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
/* MPLL_FUNC_CNTL_1 setup*/
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
/* MPLL_AD_FUNC_CNTL setup*/
mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
if (data->is_memory_GDDR5) {
/* MPLL_DQ_FUNC_CNTL setup*/
mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
/*
************************************
Fref = Reference Frequency
NF = Feedback divider ratio
NR = Reference divider ratio
Fnom = Nominal VCO output frequency = Fref * NF / NR
Fs = Spreading Rate
D = Percentage down-spread / 2
Fint = Reference input frequency to PFD = Fref / NR
NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
CLKS = NS - 1 = ISS_STEP_NUM[11:0]
NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
*************************************
*/
pp_atomctrl_internal_ss_info ss_info;
uint32_t freq_nom;
uint32_t tmp;
uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
/* for GDDR5 for all modes and DDR3 */
if (1 == mpll_param.qdr)
freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
else
freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
tmp = (freq_nom / reference_clock);
tmp = tmp * tmp;
if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
/* ss.Info.speed_spectrum_rate -- in unit of khz */
/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
/* = reference_clock * 5 / speed_spectrum_rate */
uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
/* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
uint32_t clkv =
(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
}
}
/* MCLK_PWRMGT_CNTL setup */
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
/* Save the result data to outpupt memory level structure */
mclk->MclkFrequency = memory_clock;
mclk->MpllFuncCntl = mpll_func_cntl;
mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
mclk->DllCntl = dll_cntl;
mclk->MpllSs1 = mpll_ss1;
mclk->MpllSs2 = mpll_ss2;
return 0;
}
static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
bool strobe_mode)
{
uint8_t mc_para_index;
if (strobe_mode) {
if (memory_clock < 12500) {
mc_para_index = 0x00;
} else if (memory_clock > 47500) {
mc_para_index = 0x0f;
} else {
mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
}
} else {
if (memory_clock < 65000) {
mc_para_index = 0x00;
} else if (memory_clock > 135000) {
mc_para_index = 0x0f;
} else {
mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
}
}
return mc_para_index;
}
static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
{
uint8_t mc_para_index;
if (memory_clock < 10000) {
mc_para_index = 0;
} else if (memory_clock >= 80000) {
mc_para_index = 0x0f;
} else {
mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
}
return mc_para_index;
}
static int tonga_populate_single_memory_level(
struct pp_hwmgr *hwmgr,
uint32_t memory_clock,
SMU72_Discrete_MemoryLevel *memory_level
)
{
uint32_t minMvdd = 0;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
int result = 0;
bool dllStateOn;
struct cgs_display_info info = {0};
if (NULL != pptable_info->vdd_dep_on_mclk) {
result = tonga_get_dependecy_volt_by_clk(hwmgr,
pptable_info->vdd_dep_on_mclk, memory_clock, &memory_level->MinVoltage, &minMvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
}
if (data->mvdd_control == TONGA_VOLTAGE_CONTROL_NONE) {
memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
} else {
memory_level->MinMvdd = minMvdd;
}
memory_level->EnabledForThrottle = 1;
memory_level->EnabledForActivity = 0;
memory_level->UpHyst = 0;
memory_level->DownHyst = 100;
memory_level->VoltageDownHyst = 0;
/* Indicates maximum activity level for this performance level.*/
memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
memory_level->StutterEnable = 0;
memory_level->StrobeEnable = 0;
memory_level->EdcReadEnable = 0;
memory_level->EdcWriteEnable = 0;
memory_level->RttEnable = 0;
/* default set to low watermark. Highest level will be set to high later.*/
memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
cgs_get_active_displays_info(hwmgr->device, &info);
data->display_timing.num_existing_displays = info.display_count;
if ((data->mclk_stutter_mode_threshold != 0) &&
(memory_clock <= data->mclk_stutter_mode_threshold) &&
(data->is_uvd_enabled == 0)
#if defined(LINUX)
&& (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
&& (data->display_timing.num_existing_displays <= 2)
&& (data->display_timing.num_existing_displays != 0)
#endif
)
memory_level->StutterEnable = 1;
/* decide strobe mode*/
memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) &&
(memory_clock <= data->mclk_strobe_mode_threshold);
/* decide EDC mode and memory clock ratio*/
if (data->is_memory_GDDR5) {
memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
memory_level->StrobeEnable);
if ((data->mclk_edc_enable_threshold != 0) &&
(memory_clock > data->mclk_edc_enable_threshold)) {
memory_level->EdcReadEnable = 1;
}
if ((data->mclk_edc_wr_enable_threshold != 0) &&
(memory_clock > data->mclk_edc_wr_enable_threshold)) {
memory_level->EdcWriteEnable = 1;
}
if (memory_level->StrobeEnable) {
if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
} else {
dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
}
} else {
dllStateOn = data->dll_defaule_on;
}
} else {
memory_level->StrobeRatio =
tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
}
result = tonga_calculate_mclk_params(hwmgr,
memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn);
if (0 == result) {
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
/* MCLK frequency in units of 10KHz*/
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
/* Indicates maximum activity level for this performance level.*/
CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
}
return result;
}
/**
* Populates the SMC MVDD structure using the provided memory clock.
*
* @param hwmgr the address of the hardware manager
* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
* @param voltage the SMC VOLTAGE structure to be populated
*/
int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMIO_Pattern *smio_pattern)
{
const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i = 0;
if (TONGA_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
/* find mvdd value which clock is more than request */
for (i = 0; i < pptable_info->vdd_dep_on_mclk->count; i++) {
if (mclk <= pptable_info->vdd_dep_on_mclk->entries[i].clk) {
/* Always round to higher voltage. */
smio_pattern->Voltage = data->mvdd_voltage_table.entries[i].value;
break;
}
}
PP_ASSERT_WITH_CODE(i < pptable_info->vdd_dep_on_mclk->count,
"MVDD Voltage is outside the supported range.", return -1);
} else {
return -1;
}
return 0;
}
static int tonga_populate_smv_acpi_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
pp_atomctrl_clock_dividers_vi dividers;
SMIO_Pattern voltage_level;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
/* The ACPI state should not do DPM on DC (or ever).*/
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
table->ACPILevel.MinVoltage = data->smc_state_table.GraphicsLevel[0].MinVoltage;
/* assign zero for now*/
table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
/* get the engine clock dividers for this clock value*/
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
table->ACPILevel.SclkFrequency, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.", return result);
/* divider ID for required SCLK*/
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
/* For various features to be enabled/disabled while this level is active.*/
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
/* SCLK frequency in units of 10KHz*/
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
table->MemoryACPILevel.MinVoltage = data->smc_state_table.MemoryLevel[0].MinVoltage;
/* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
table->MemoryACPILevel.MinMvdd =
PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
else
table->MemoryACPILevel.MinMvdd = 0;
/* Force reset on DLL*/
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
/* Disable DLL in ACPIState*/
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
/* Enable DLL bypass signal*/
dll_cntl = PHM_SET_FIELD(dll_cntl,
DLL_CNTL, MRDCK0_BYPASS, 0);
dll_cntl = PHM_SET_FIELD(dll_cntl,
DLL_CNTL, MRDCK1_BYPASS, 0);
table->MemoryACPILevel.DllCntl =
PP_HOST_TO_SMC_UL(dll_cntl);
table->MemoryACPILevel.MclkPwrmgtCntl =
PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
table->MemoryACPILevel.MpllAdFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
table->MemoryACPILevel.MpllDqFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
table->MemoryACPILevel.MpllFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
table->MemoryACPILevel.MpllFuncCntl_1 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
table->MemoryACPILevel.MpllFuncCntl_2 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
table->MemoryACPILevel.MpllSs1 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
table->MemoryACPILevel.MpllSs2 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpHyst = 0;
table->MemoryACPILevel.DownHyst = 100;
table->MemoryACPILevel.VoltageDownHyst = 0;
/* Indicates maximum activity level for this performance level.*/
table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = 0;
table->MemoryACPILevel.StrobeEnable = 0;
table->MemoryACPILevel.EdcReadEnable = 0;
table->MemoryACPILevel.EdcWriteEnable = 0;
table->MemoryACPILevel.RttEnable = 0;
return result;
}
static int tonga_find_boot_level(struct tonga_single_dpm_table *table, uint32_t value, uint32_t *boot_level)
{
int result = 0;
uint32_t i;
for (i = 0; i < table->count; i++) {
if (value == table->dpm_levels[i].value) {
*boot_level = i;
result = 0;
}
}
return result;
}
static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
table->GraphicsBootLevel = 0; /* 0 == DPM[0] (low), etc. */
table->MemoryBootLevel = 0; /* 0 == DPM[0] (low), etc. */
/* find boot level from dpm table*/
result = tonga_find_boot_level(&(data->dpm_table.sclk_table),
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(data->smc_state_table.GraphicsBootLevel));
if (0 != result) {
data->smc_state_table.GraphicsBootLevel = 0;
printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
in dependency table. Using Graphics DPM level 0!");
result = 0;
}
result = tonga_find_boot_level(&(data->dpm_table.mclk_table),
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(data->smc_state_table.MemoryBootLevel));
if (0 != result) {
data->smc_state_table.MemoryBootLevel = 0;
printk(KERN_ERR "[ powerplay ] VBIOS did not find boot engine clock value \
in dependency table. Using Memory DPM level 0!");
result = 0;
}
table->BootVoltage.Vddc =
tonga_get_voltage_id(&(data->vddc_voltage_table),
data->vbios_boot_state.vddc_bootup_value);
table->BootVoltage.VddGfx =
tonga_get_voltage_id(&(data->vddgfx_voltage_table),
data->vbios_boot_state.vddgfx_bootup_value);
table->BootVoltage.Vddci =
tonga_get_voltage_id(&(data->vddci_voltage_table),
data->vbios_boot_state.vddci_bootup_value);
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
return result;
}
/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param engine_clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
{
const tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
pp_atomctrl_clock_dividers_vi dividers;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
uint32_t reference_clock;
uint32_t reference_divider;
uint32_t fbdiv;
int result;
/* get the engine clock dividers for this clock value*/
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.", return result);
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
reference_clock = atomctrl_get_reference_clock(hwmgr);
reference_divider = 1 + dividers.uc_pll_ref_div;
/* low 14 bits is fraction and high 12 bits is divider*/
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
/* SPLL_FUNC_CNTL setup*/
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
/* SPLL_FUNC_CNTL_3 setup*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
/* set to use fractional accumulation*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
pp_atomctrl_internal_ss_info ss_info;
uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
/*
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
* ss_info.speed_spectrum_rate -- in unit of khz
*/
/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
/* clkv = 2 * D * fbdiv / NS */
uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
cg_spll_spread_spectrum =
PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
cg_spll_spread_spectrum =
PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
cg_spll_spread_spectrum_2 =
PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
}
}
sclk->SclkFrequency = engine_clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
return 0;
}
/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param engine_clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU72_Discrete_GraphicsLevel *graphic_level)
{
int result;
uint32_t threshold;
uint32_t mvdd;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
/* populate graphics levels*/
result = tonga_get_dependecy_volt_by_clk(hwmgr,
pptable_info->vdd_dep_on_sclk, engine_clock,
&graphic_level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find VDDC voltage value for VDDC \
engine clock dependency table", return result);
/* SCLK frequency in units of 10KHz*/
graphic_level->SclkFrequency = engine_clock;
/* Indicates maximum activity level for this performance level. 50% for now*/
graphic_level->ActivityLevel = sclk_activity_level_threshold;
graphic_level->CcPwrDynRm = 0;
graphic_level->CcPwrDynRm1 = 0;
/* this level can be used if activity is high enough.*/
graphic_level->EnabledForActivity = 0;
/* this level can be used for throttling.*/
graphic_level->EnabledForThrottle = 1;
graphic_level->UpHyst = 0;
graphic_level->DownHyst = 0;
graphic_level->VoltageDownHyst = 0;
graphic_level->PowerThrottle = 0;
threshold = engine_clock * data->fast_watemark_threshold / 100;
/*
*get the DAL clock. do it in funture.
PECI_GetMinClockSettings(hwmgr->peci, &minClocks);
data->display_timing.min_clock_insr = minClocks.engineClockInSR;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
{
graphic_level->DeepSleepDivId = PhwTonga_GetSleepDividerIdFromClock(hwmgr, engine_clock, minClocks.engineClockInSR);
}
*/
/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
if (0 == result) {
/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
}
return result;
}
/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param hwmgr the address of the hardware manager
*/
static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
struct tonga_dpm_table *dpm_table = &data->dpm_table;
phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
int result = 0;
uint32_t level_array_adress = data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
SMU72_MAX_LEVELS_GRAPHICS; /* 64 -> long; 32 -> int*/
SMU72_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel;
uint32_t i, maxEntry;
uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0;
PECI_RegistryValue reg_value;
memset(levels, 0x00, level_array_size);
for (i = 0; i < dpm_table->sclk_table.count; i++) {
result = tonga_populate_single_graphic_level(hwmgr,
dpm_table->sclk_table.dpm_levels[i].value,
(uint16_t)data->activity_target[i],
&(data->smc_state_table.GraphicsLevel[i]));
if (0 != result)
return result;
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
if (i > 1)
data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
if (0 == i) {
reg_value = 0;
if (reg_value != 0)
data->smc_state_table.GraphicsLevel[0].UpHyst = (uint8_t)reg_value;
}
if (1 == i) {
reg_value = 0;
if (reg_value != 0)
data->smc_state_table.GraphicsLevel[1].UpHyst = (uint8_t)reg_value;
}
}
/* Only enable level 0 for now. */
data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
/* set highest level watermark to high */
if (dpm_table->sclk_table.count > 1)
data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
data->smc_state_table.GraphicsDpmLevelCount =
(uint8_t)dpm_table->sclk_table.count;
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
tonga_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
if (pcie_table != NULL) {
PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
"There must be 1 or more PCIE levels defined in PPTable.", return -1);
maxEntry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
for (i = 0; i < dpm_table->sclk_table.count; i++) {
data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
(uint8_t) ((i < maxEntry) ? i : maxEntry);
}
} else {
if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0!");
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1<<(highest_pcie_level_enabled+1))) != 0)) {
highest_pcie_level_enabled++;
}
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1<<lowest_pcie_level_enabled)) == 0)) {
lowest_pcie_level_enabled++;
}
while ((count < highest_pcie_level_enabled) &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
count++;
}
mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
/* set pcieDpmLevel to highest_pcie_level_enabled*/
for (i = 2; i < dpm_table->sclk_table.count; i++) {
data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
}
/* set pcieDpmLevel to lowest_pcie_level_enabled*/
data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
/* set pcieDpmLevel to mid_pcie_level_enabled*/
data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
}
/* level count will send to smc once at init smc table and never change*/
result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
if (0 != result)
return result;
return 0;
}
/**
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
*
* @param hwmgr the address of the hardware manager
*/
static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct tonga_dpm_table *dpm_table = &data->dpm_table;
int result;
/* populate MCLK dpm table to SMU7 */
uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
uint32_t level_array_size = sizeof(SMU72_Discrete_MemoryLevel) * SMU72_MAX_LEVELS_MEMORY;
SMU72_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel;
uint32_t i;
memset(levels, 0x00, level_array_size);
for (i = 0; i < dpm_table->mclk_table.count; i++) {
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
"can not populate memory level as memory clock is zero", return -1);
result = tonga_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
&(data->smc_state_table.MemoryLevel[i]));
if (0 != result) {
return result;
}
}
/* Only enable level 0 for now.*/
data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
/*
* in order to prevent MC activity from stutter mode to push DPM up.
* the UVD change complements this by putting the MCLK in a higher state
* by default such that we are not effected by up threshold or and MCLK DPM latency.
*/
data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel);
data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
/* set highest level watermark to high*/
data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
/* level count will send to smc once at init smc table and never change*/
result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end);
if (0 != result) {
return result;
}
return 0;
}
struct TONGA_DLL_SPEED_SETTING {
uint16_t Min; /* Minimum Data Rate*/
uint16_t Max; /* Maximum Data Rate*/
uint32_t dll_speed; /* The desired DLL_SPEED setting*/
};
static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
return 0;
}
/* ---------------------------------------- ULV related functions ----------------------------------------------------*/
static int tonga_reset_single_dpm_table(
struct pp_hwmgr *hwmgr,
struct tonga_single_dpm_table *dpm_table,
uint32_t count)
{
uint32_t i;
if (!(count <= MAX_REGULAR_DPM_NUMBER))
printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \
table entries to exceed max number! \n");
dpm_table->count = count;
for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) {
dpm_table->dpm_levels[i].enabled = 0;
}
return 0;
}
static void tonga_setup_pcie_table_entry(
struct tonga_single_dpm_table *dpm_table,
uint32_t index, uint32_t pcie_gen,
uint32_t pcie_lanes)
{
dpm_table->dpm_levels[index].value = pcie_gen;
dpm_table->dpm_levels[index].param1 = pcie_lanes;
dpm_table->dpm_levels[index].enabled = 1;
}
static int tonga_setup_default_pcie_tables(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
uint32_t i, maxEntry;
if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) {
data->pcie_gen_power_saving = data->pcie_gen_performance;
data->pcie_lane_power_saving = data->pcie_lane_performance;
} else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) {
data->pcie_gen_performance = data->pcie_gen_power_saving;
data->pcie_lane_performance = data->pcie_lane_power_saving;
}
tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU72_MAX_LEVELS_LINK);
if (pcie_table != NULL) {
/*
* maxEntry is used to make sure we reserve one PCIE level for boot level (fix for A+A PSPP issue).
* If PCIE table from PPTable have ULV entry + 8 entries, then ignore the last entry.
*/
maxEntry = (SMU72_MAX_LEVELS_LINK < pcie_table->count) ?
SMU72_MAX_LEVELS_LINK : pcie_table->count;
for (i = 1; i < maxEntry; i++) {
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i-1,
get_pcie_gen_support(data->pcie_gen_cap, pcie_table->entries[i].gen_speed),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
}
data->dpm_table.pcie_speed_table.count = maxEntry - 1;
} else {
/* Hardcode Pcie Table */
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
data->dpm_table.pcie_speed_table.count = 6;
}
/* Populate last level for boot PCIE level, but do not increment count. */
tonga_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
data->dpm_table.pcie_speed_table.count,
get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane));
return 0;
}
/*
* This function is to initalize all DPM state tables for SMU7 based on the dependency table.
* Dynamic state patching function will then trim these state tables to the allowed range based
* on the power policy or external client requests, such as UVD request, etc.
*/
static int tonga_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i;
phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_sclk_table =
pptable_info->vdd_dep_on_sclk;
phm_ppt_v1_clock_voltage_dependency_table *allowed_vdd_mclk_table =
pptable_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
"SCLK dependency table is missing. This table is mandatory", return -1);
PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
"SCLK dependency table has to have is missing. This table is mandatory", return -1);
PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
"MCLK dependency table is missing. This table is mandatory", return -1);
PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
"VMCLK dependency table has to have is missing. This table is mandatory", return -1);
/* clear the state table to reset everything to default */
memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU72_MAX_LEVELS_GRAPHICS);
tonga_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU72_MAX_LEVELS_MEMORY);
/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.VddcTable, SMU72_MAX_LEVELS_VDDC); */
/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_gfx_table, SMU72_MAX_LEVELS_VDDGFX);*/
/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.vdd_ci_table, SMU72_MAX_LEVELS_VDDCI);*/
/* tonga_reset_single_dpm_table(hwmgr, &tonga_hwmgr->dpm_table.mvdd_table, SMU72_MAX_LEVELS_MVDD);*/
PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
"SCLK dependency table is missing. This table is mandatory", return -1);
/* Initialize Sclk DPM table based on allow Sclk values*/
data->dpm_table.sclk_table.count = 0;
for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
allowed_vdd_sclk_table->entries[i].clk) {
data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
allowed_vdd_sclk_table->entries[i].clk;
data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
data->dpm_table.sclk_table.count++;
}
}
PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
"MCLK dependency table is missing. This table is mandatory", return -1);
/* Initialize Mclk DPM table based on allow Mclk values */
data->dpm_table.mclk_table.count = 0;
for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
allowed_vdd_mclk_table->entries[i].clk) {
data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
allowed_vdd_mclk_table->entries[i].clk;
data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
data->dpm_table.mclk_table.count++;
}
}
/* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddc;
/* tonga_hwmgr->dpm_table.VddcTable.dpm_levels[i].param1 = stdVoltageTable->entries[i].Leakage; */
/* param1 is for corresponding std voltage */
data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
}
data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
if (NULL != allowed_vdd_mclk_table) {
/* Initialize Vddci DPM table based on allow Mclk values */
for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].vddci;
data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1;
data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].mvdd;
data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
}
data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count;
data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
}
/* setup PCIE gen speed levels*/
tonga_setup_default_pcie_tables(hwmgr);
/* save a copy of the default DPM table*/
memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct tonga_dpm_table));
return 0;
}
int tonga_populate_smc_initial_state(struct pp_hwmgr *hwmgr,
const struct tonga_power_state *bootState)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
uint8_t count, level;
count = (uint8_t) (pptable_info->vdd_dep_on_sclk->count);
for (level = 0; level < count; level++) {
if (pptable_info->vdd_dep_on_sclk->entries[level].clk >=
bootState->performance_levels[0].engine_clock) {
data->smc_state_table.GraphicsBootLevel = level;
break;
}
}
count = (uint8_t) (pptable_info->vdd_dep_on_mclk->count);
for (level = 0; level < count; level++) {
if (pptable_info->vdd_dep_on_mclk->entries[level].clk >=
bootState->performance_levels[0].memory_clock) {
data->smc_state_table.MemoryBootLevel = level;
break;
}
}
return 0;
}
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data (PowerState)
* @return always 0
*/
int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
SMU72_Discrete_DpmTable *table = &(data->smc_state_table);
const phw_tonga_ulv_parm *ulv = &(data->ulv);
uint8_t i;
PECI_RegistryValue reg_value;
pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
result = tonga_setup_default_dpm_tables(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to setup default DPM tables!", return result;);
memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table));
if (TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control) {
tonga_populate_smc_voltage_tables(hwmgr, table);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition)) {
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StepVddc)) {
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
}
if (data->is_memory_GDDR5) {
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
}
i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
if (i == 1 || i == 0) {
table->SystemFlags |= PPSMC_SYSTEMFLAG_12CHANNEL;
}
if (ulv->ulv_supported && pptable_info->us_ulv_voltage_offset) {
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ULV state!", return result;);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter);
}
result = tonga_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Link Level!", return result;);
result = tonga_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Graphics Level!", return result;);
result = tonga_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Memory Level!", return result;);
result = tonga_populate_smv_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACPI Level!", return result;);
result = tonga_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize VCE Level!", return result;);
result = tonga_populate_smc_acp_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level!", return result;);
result = tonga_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result;);
/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
/* need to populate the ARB settings for the initial state. */
result = tonga_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to Write ARB settings for the initial state.", return result;);
result = tonga_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize UVD Level!", return result;);
result = tonga_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot Level!", return result;);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
result = tonga_populate_clock_stretcher_data_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate Clock Stretcher Data Table!", return result;);
}
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh =
pptable_info->cac_dtp_table->usTargetOperatingTemp *
TONGA_Q88_FORMAT_CONVERSION_UNIT;
table->TemperatureLimitLow =
(pptable_info->cac_dtp_table->usTargetOperatingTemp - 1) *
TONGA_Q88_FORMAT_CONVERSION_UNIT;
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
/*
* Cail reads current link status and reports it as cap (we cannot change this due to some previous issues we had)
* SMC drops the link status to lowest level after enabling DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
* but this time Cail reads current link status which was set to low by SMC and reports it as cap to powerplay
* To avoid it, we set PCIeBootLinkLevel to highest dpm level
*/
PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
"There must be 1 or more PCIE levels defined in PPTable.",
return -1);
table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
table->PCIeGenInterval = 1;
result = tonga_populate_vr_config(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate VRConfig setting!", return result);
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
reg_value = 0;
if ((0 == reg_value) &&
(0 == atomctrl_get_pp_assign_pin(hwmgr,
VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment))) {
table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
} else {
table->VRHotGpio = TONGA_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
}
/* ACDC Switch GPIO */
reg_value = 0;
if ((0 == reg_value) &&
(0 == atomctrl_get_pp_assign_pin(hwmgr,
PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment))) {
table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
} else {
table->AcDcGpio = TONGA_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
}
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition);
reg_value = 0;
if (1 == reg_value) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition);
}
reg_value = 0;
if ((0 == reg_value) &&
(0 == atomctrl_get_pp_assign_pin(hwmgr,
THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment))) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
table->ThermOutPolarity =
(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
(1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1:0;
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
/* if required, combine VRHot/PCC with thermal out GPIO*/
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot) &&
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CombinePCCWithThermalSignal)){
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
}
} else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = 17;
table->ThermOutPolarity = 1;
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
}
for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++) {
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
}
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
result = tonga_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU72_Discrete_DpmTable)-3 * sizeof(SMU72_PIDController),
data->sram_end);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload dpm data to SMC memory!", return result;);
return result;
}
/* Look up the voltaged based on DAL's requested level. and then send the requested VDDC voltage to SMC*/
static void tonga_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
{
return;
}
int tonga_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
{
PPSMC_Result result;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
/* Apply minimum voltage based on DAL's request level */
tonga_apply_dal_minimum_voltage_request(hwmgr);
if (0 == data->sclk_dpm_key_disabled) {
/* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
if (0 != tonga_is_dpm_running(hwmgr))
printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
result = smum_send_msg_to_smc_with_parameter(
hwmgr->smumgr,
(PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
PP_ASSERT_WITH_CODE((0 == result),
"Set Sclk Dpm enable Mask failed", return -1);
}
}
if (0 == data->mclk_dpm_key_disabled) {
/* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/
if (0 != tonga_is_dpm_running(hwmgr))
printk(KERN_ERR "[ powerplay ] Trying to set Enable Mask when DPM is disabled \n");
if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
result = smum_send_msg_to_smc_with_parameter(
hwmgr->smumgr,
(PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.mclk_dpm_enable_mask);
PP_ASSERT_WITH_CODE((0 == result),
"Set Mclk Dpm enable Mask failed", return -1);
}
}
return 0;
}
int tonga_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
uint32_t level, tmp;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
if (0 == data->pcie_dpm_key_disabled) {
/* PCIE */
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
level = 0;
tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
while (tmp >>= 1)
level++ ;
if (0 != level) {
PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
"force highest pcie dpm state failed!", return -1);
}
}
}
if (0 == data->sclk_dpm_key_disabled) {
/* SCLK */
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) {
level = 0;
tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
while (tmp >>= 1)
level++ ;
if (0 != level) {
PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
"force highest sclk dpm state failed!", return -1);
if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
Curr_Sclk_Index does not match the level \n");
}
}
}
if (0 == data->mclk_dpm_key_disabled) {
/* MCLK */
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
level = 0;
tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
while (tmp >>= 1)
level++ ;
if (0 != level) {
PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
"force highest mclk dpm state failed!", return -1);
if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
Curr_Mclk_Index does not match the level \n");
}
}
}
return 0;
}
/**
* Find the MC microcode version and store it in the HwMgr struct
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
{
cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
return 0;
}
/**
* Initialize Dynamic State Adjustment Rule Settings
*
* @param hwmgr the address of the powerplay hardware manager.
*/
int tonga_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
{
uint32_t table_size;
struct phm_clock_voltage_dependency_table *table_clk_vlt;
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
hwmgr->dyn_state.mclk_sclk_ratio = 4;
hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */
hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */
/* initialize vddc_dep_on_dal_pwrl table */
table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL);
if (NULL == table_clk_vlt) {
printk(KERN_ERR "[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n");
return -ENOMEM;
} else {
table_clk_vlt->count = 4;
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
table_clk_vlt->entries[0].v = 0;
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
table_clk_vlt->entries[1].v = 720;
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
table_clk_vlt->entries[2].v = 810;
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
table_clk_vlt->entries[3].v = 900;
pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
}
return 0;
}
static int tonga_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
pptable_info->vdd_dep_on_sclk;
phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
pptable_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
"VDD dependency on SCLK table is missing. \
This table is mandatory", return -1);
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
"VDD dependency on SCLK table has to have is missing. \
This table is mandatory", return -1);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
"VDD dependency on MCLK table is missing. \
This table is mandatory", return -1);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
"VDD dependency on MCLK table has to have is missing. \
This table is mandatory", return -1);
data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
pptable_info->max_clock_voltage_on_ac.sclk =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
pptable_info->max_clock_voltage_on_ac.mclk =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
pptable_info->max_clock_voltage_on_ac.vddc =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
pptable_info->max_clock_voltage_on_ac.vddci =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
pptable_info->max_clock_voltage_on_ac.sclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
pptable_info->max_clock_voltage_on_ac.mclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
pptable_info->max_clock_voltage_on_ac.vddc;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
pptable_info->max_clock_voltage_on_ac.vddci;
return 0;
}
int tonga_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
int result = 1;
PP_ASSERT_WITH_CODE (0 == tonga_is_dpm_running(hwmgr),
"Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.",
return result);
if (0 == data->pcie_dpm_key_disabled) {
PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(
hwmgr->smumgr,
PPSMC_MSG_PCIeDPM_UnForceLevel)),
"unforce pcie level failed!",
return -1);
}
result = tonga_upload_dpm_level_enable_mask(hwmgr);
return result;
}
static uint32_t tonga_get_lowest_enable_level(
struct pp_hwmgr *hwmgr, uint32_t level_mask)
{
uint32_t level = 0;
while (0 == (level_mask & (1 << level)))
level++;
return level;
}
static int tonga_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
uint32_t level;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
if (0 == data->pcie_dpm_key_disabled) {
/* PCIE */
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) {
level = tonga_get_lowest_enable_level(hwmgr,
data->dpm_level_enable_mask.pcie_dpm_enable_mask);
PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_pcie(hwmgr, level)),
"force lowest pcie dpm state failed!", return -1);
}
}
if (0 == data->sclk_dpm_key_disabled) {
/* SCLK */
if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
level = tonga_get_lowest_enable_level(hwmgr,
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state(hwmgr, level)),
"force sclk dpm state failed!", return -1);
if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX) != level)
printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
Curr_Sclk_Index does not match the level \n");
}
}
if (0 == data->mclk_dpm_key_disabled) {
/* MCLK */
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) {
level = tonga_get_lowest_enable_level(hwmgr,
data->dpm_level_enable_mask.mclk_dpm_enable_mask);
PP_ASSERT_WITH_CODE((0 == tonga_dpm_force_state_mclk(hwmgr, level)),
"force lowest mclk dpm state failed!", return -1);
if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX) != level)
printk(KERN_ERR "[ powerplay ] Target_and_current_Profile_Index. \
Curr_Mclk_Index does not match the level \n");
}
}
return 0;
}
static int tonga_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr *hwmgr)
{
uint8_t entryId;
uint8_t voltageId;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
for (entryId = 0; entryId < sclk_table->count; ++entryId) {
voltageId = sclk_table->entries[entryId].vddInd;
sclk_table->entries[entryId].vddgfx =
pptable_info->vddgfx_lookup_table->entries[voltageId].us_vdd;
}
} else {
for (entryId = 0; entryId < sclk_table->count; ++entryId) {
voltageId = sclk_table->entries[entryId].vddInd;
sclk_table->entries[entryId].vddc =
pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
}
}
for (entryId = 0; entryId < mclk_table->count; ++entryId) {
voltageId = mclk_table->entries[entryId].vddInd;
mclk_table->entries[entryId].vddc =
pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
}
for (entryId = 0; entryId < mm_table->count; ++entryId) {
voltageId = mm_table->entries[entryId].vddcInd;
mm_table->entries[entryId].vddc =
pptable_info->vddc_lookup_table->entries[voltageId].us_vdd;
}
return 0;
}
static int tonga_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
{
uint8_t entryId;
phm_ppt_v1_voltage_lookup_record v_record;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
for (entryId = 0; entryId < sclk_table->count; ++entryId) {
if (sclk_table->entries[entryId].vdd_offset & (1 << 15))
v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
sclk_table->entries[entryId].vdd_offset - 0xFFFF;
else
v_record.us_vdd = sclk_table->entries[entryId].vddgfx +
sclk_table->entries[entryId].vdd_offset;
sclk_table->entries[entryId].vddc =
v_record.us_cac_low = v_record.us_cac_mid =
v_record.us_cac_high = v_record.us_vdd;
tonga_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
}
for (entryId = 0; entryId < mclk_table->count; ++entryId) {
if (mclk_table->entries[entryId].vdd_offset & (1 << 15))
v_record.us_vdd = mclk_table->entries[entryId].vddc +
mclk_table->entries[entryId].vdd_offset - 0xFFFF;
else
v_record.us_vdd = mclk_table->entries[entryId].vddc +
mclk_table->entries[entryId].vdd_offset;
mclk_table->entries[entryId].vddgfx = v_record.us_cac_low =
v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
}
}
return 0;
}
static int tonga_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
{
uint32_t entryId;
phm_ppt_v1_voltage_lookup_record v_record;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
for (entryId = 0; entryId < mm_table->count; entryId++) {
if (mm_table->entries[entryId].vddgfx_offset & (1 << 15))
v_record.us_vdd = mm_table->entries[entryId].vddc +
mm_table->entries[entryId].vddgfx_offset - 0xFFFF;
else
v_record.us_vdd = mm_table->entries[entryId].vddc +
mm_table->entries[entryId].vddgfx_offset;
/* Add the calculated VDDGFX to the VDDGFX lookup table */
mm_table->entries[entryId].vddgfx = v_record.us_cac_low =
v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
tonga_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
}
}
return 0;
}
/**
* Change virtual leakage voltage to actual value.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pointer to changing voltage
* @param pointer to leakage table
*/
static void tonga_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
uint16_t *voltage, phw_tonga_leakage_voltage *pLeakageTable)
{
uint32_t leakage_index;
/* search for leakage voltage ID 0xff01 ~ 0xff08 */
for (leakage_index = 0; leakage_index < pLeakageTable->count; leakage_index++) {
/* if this voltage matches a leakage voltage ID */
/* patch with actual leakage voltage */
if (pLeakageTable->leakage_id[leakage_index] == *voltage) {
*voltage = pLeakageTable->actual_voltage[leakage_index];
break;
}
}
if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
printk(KERN_ERR "[ powerplay ] Voltage value looks like a Leakage ID but it's not patched \n");
}
/**
* Patch voltage lookup table by EVV leakages.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pointer to voltage lookup table
* @param pointer to leakage table
* @return always 0
*/
static int tonga_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
phw_tonga_leakage_voltage *pLeakageTable)
{
uint32_t i;
for (i = 0; i < lookup_table->count; i++) {
tonga_patch_with_vdd_leakage(hwmgr,
&lookup_table->entries[i].us_vdd, pLeakageTable);
}
return 0;
}
static int tonga_patch_clock_voltage_lomits_with_vddc_leakage(struct pp_hwmgr *hwmgr,
phw_tonga_leakage_voltage *pLeakageTable, uint16_t *Vddc)
{
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddc, pLeakageTable);
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
pptable_info->max_clock_voltage_on_dc.vddc;
return 0;
}
static int tonga_patch_clock_voltage_limits_with_vddgfx_leakage(
struct pp_hwmgr *hwmgr, phw_tonga_leakage_voltage *pLeakageTable,
uint16_t *Vddgfx)
{
tonga_patch_with_vdd_leakage(hwmgr, (uint16_t *)Vddgfx, pLeakageTable);
return 0;
}
int tonga_sort_lookup_table(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table)
{
uint32_t table_size, i, j;
phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
table_size = lookup_table->count;
PP_ASSERT_WITH_CODE(0 != lookup_table->count,
"Lookup table is empty", return -1);
/* Sorting voltages */
for (i = 0; i < table_size - 1; i++) {
for (j = i + 1; j > 0; j--) {
if (lookup_table->entries[j].us_vdd < lookup_table->entries[j-1].us_vdd) {
tmp_voltage_lookup_record = lookup_table->entries[j-1];
lookup_table->entries[j-1] = lookup_table->entries[j];
lookup_table->entries[j] = tmp_voltage_lookup_record;
}
}
}
return 0;
}
static int tonga_complete_dependency_tables(struct pp_hwmgr *hwmgr)
{
int result = 0;
int tmp_result;
tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
if (data->vdd_gfx_control == TONGA_VOLTAGE_CONTROL_BY_SVID2) {
tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
pptable_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
if (tmp_result != 0)
result = tmp_result;
tmp_result = tonga_patch_clock_voltage_limits_with_vddgfx_leakage(hwmgr,
&(data->vddcgfx_leakage), &pptable_info->max_clock_voltage_on_dc.vddgfx);
if (tmp_result != 0)
result = tmp_result;
} else {
tmp_result = tonga_patch_lookup_table_with_leakage(hwmgr,
pptable_info->vddc_lookup_table, &(data->vddc_leakage));
if (tmp_result != 0)
result = tmp_result;
tmp_result = tonga_patch_clock_voltage_lomits_with_vddc_leakage(hwmgr,
&(data->vddc_leakage), &pptable_info->max_clock_voltage_on_dc.vddc);
if (tmp_result != 0)
result = tmp_result;
}
tmp_result = tonga_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
if (tmp_result != 0)
result = tmp_result;
tmp_result = tonga_calc_voltage_dependency_tables(hwmgr);
if (tmp_result != 0)
result = tmp_result;
tmp_result = tonga_calc_mm_voltage_dependency_table(hwmgr);
if (tmp_result != 0)
result = tmp_result;
tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddgfx_lookup_table);
if (tmp_result != 0)
result = tmp_result;
tmp_result = tonga_sort_lookup_table(hwmgr, pptable_info->vddc_lookup_table);
if (tmp_result != 0)
result = tmp_result;
return result;
}
int tonga_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
data->low_sclk_interrupt_threshold = 0;
return 0;
}
int tonga_setup_asic_task(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
tmp_result = tonga_read_clock_registers(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to read clock registers!", result = tmp_result);
tmp_result = tonga_get_memory_type(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to get memory type!", result = tmp_result);
tmp_result = tonga_enable_acpi_power_management(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable ACPI power management!", result = tmp_result);
tmp_result = tonga_init_power_gate_state(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to init power gate state!", result = tmp_result);
tmp_result = tonga_get_mc_microcode_version(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to get MC microcode version!", result = tmp_result);
tmp_result = tonga_init_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to init sclk threshold!", result = tmp_result);
return result;
}
/**
* Enable voltage control
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_enable_voltage_control(struct pp_hwmgr *hwmgr)
{
/* enable voltage control */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
return 0;
}
/**
* Checks if we want to support voltage control
*
* @param hwmgr the address of the powerplay hardware manager.
*/
bool cf_tonga_voltage_control(const struct pp_hwmgr *hwmgr)
{
const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
return(TONGA_VOLTAGE_CONTROL_NONE != data->voltage_control);
}
/*---------------------------MC----------------------------*/
uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
{
return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
}
bool tonga_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg)
{
bool result = 1;
switch (inReg) {
case mmMC_SEQ_RAS_TIMING:
*outReg = mmMC_SEQ_RAS_TIMING_LP;
break;
case mmMC_SEQ_DLL_STBY:
*outReg = mmMC_SEQ_DLL_STBY_LP;
break;
case mmMC_SEQ_G5PDX_CMD0:
*outReg = mmMC_SEQ_G5PDX_CMD0_LP;
break;
case mmMC_SEQ_G5PDX_CMD1:
*outReg = mmMC_SEQ_G5PDX_CMD1_LP;
break;
case mmMC_SEQ_G5PDX_CTRL:
*outReg = mmMC_SEQ_G5PDX_CTRL_LP;
break;
case mmMC_SEQ_CAS_TIMING:
*outReg = mmMC_SEQ_CAS_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING:
*outReg = mmMC_SEQ_MISC_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING2:
*outReg = mmMC_SEQ_MISC_TIMING2_LP;
break;
case mmMC_SEQ_PMG_DVS_CMD:
*outReg = mmMC_SEQ_PMG_DVS_CMD_LP;
break;
case mmMC_SEQ_PMG_DVS_CTL:
*outReg = mmMC_SEQ_PMG_DVS_CTL_LP;
break;
case mmMC_SEQ_RD_CTL_D0:
*outReg = mmMC_SEQ_RD_CTL_D0_LP;
break;
case mmMC_SEQ_RD_CTL_D1:
*outReg = mmMC_SEQ_RD_CTL_D1_LP;
break;
case mmMC_SEQ_WR_CTL_D0:
*outReg = mmMC_SEQ_WR_CTL_D0_LP;
break;
case mmMC_SEQ_WR_CTL_D1:
*outReg = mmMC_SEQ_WR_CTL_D1_LP;
break;
case mmMC_PMG_CMD_EMRS:
*outReg = mmMC_SEQ_PMG_CMD_EMRS_LP;
break;
case mmMC_PMG_CMD_MRS:
*outReg = mmMC_SEQ_PMG_CMD_MRS_LP;
break;
case mmMC_PMG_CMD_MRS1:
*outReg = mmMC_SEQ_PMG_CMD_MRS1_LP;
break;
case mmMC_SEQ_PMG_TIMING:
*outReg = mmMC_SEQ_PMG_TIMING_LP;
break;
case mmMC_PMG_CMD_MRS2:
*outReg = mmMC_SEQ_PMG_CMD_MRS2_LP;
break;
case mmMC_SEQ_WR_CTL_2:
*outReg = mmMC_SEQ_WR_CTL_2_LP;
break;
default:
result = 0;
break;
}
return result;
}
int tonga_set_s0_mc_reg_index(phw_tonga_mc_reg_table *table)
{
uint32_t i;
uint16_t address;
for (i = 0; i < table->last; i++) {
table->mc_reg_address[i].s0 =
tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
? address : table->mc_reg_address[i].s1;
}
return 0;
}
int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_tonga_mc_reg_table *ni_table)
{
uint8_t i, j;
PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -1);
PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
"Invalid VramInfo table.", return -1);
for (i = 0; i < table->last; i++) {
ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
}
ni_table->last = table->last;
for (i = 0; i < table->num_entries; i++) {
ni_table->mc_reg_table_entry[i].mclk_max =
table->mc_reg_table_entry[i].mclk_max;
for (j = 0; j < table->last; j++) {
ni_table->mc_reg_table_entry[i].mc_data[j] =
table->mc_reg_table_entry[i].mc_data[j];
}
}
ni_table->num_entries = table->num_entries;
return 0;
}
/**
* VBIOS omits some information to reduce size, we need to recover them here.
* 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
* Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
* 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0].
* 3. need to set these data for each clock range
*
* @param hwmgr the address of the powerplay hardware manager.
* @param table the address of MCRegTable
* @return always 0
*/
int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_tonga_mc_reg_table *table)
{
uint8_t i, j, k;
uint32_t temp_reg;
const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
for (i = 0, j = table->last; i < table->last; i++) {
PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -1);
switch (table->mc_reg_address[i].s1) {
/*
* mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0].
* Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0]
*/
case mmMC_SEQ_MISC1:
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
((temp_reg & 0xffff0000)) |
((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
}
j++;
PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -1);
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
if (!data->is_memory_GDDR5) {
table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
}
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -1);
if (!data->is_memory_GDDR5) {
table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -1);
}
break;
case mmMC_SEQ_RESERVE_M:
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -1);
break;
default:
break;
}
}
table->last = j;
return 0;
}
int tonga_set_valid_flag(phw_tonga_mc_reg_table *table)
{
uint8_t i, j;
for (i = 0; i < table->last; i++) {
for (j = 1; j < table->num_entries; j++) {
if (table->mc_reg_table_entry[j-1].mc_data[i] !=
table->mc_reg_table_entry[j].mc_data[i]) {
table->validflag |= (1<<i);
break;
}
}
}
return 0;
}
int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
{
int result;
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
pp_atomctrl_mc_reg_table *table;
phw_tonga_mc_reg_table *ni_table = &data->tonga_mc_reg_table;
uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
if (NULL == table)
return -1;
/* Program additional LP registers that are no longer programmed by VBIOS */
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
if (0 == result)
result = tonga_copy_vbios_smc_reg_table(table, ni_table);
if (0 == result) {
tonga_set_s0_mc_reg_index(ni_table);
result = tonga_set_mc_special_registers(hwmgr, ni_table);
}
if (0 == result)
tonga_set_valid_flag(ni_table);
kfree(table);
return result;
}
/*
* Copy one arb setting to another and then switch the active set.
* arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants.
*/
int tonga_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
uint32_t arbFreqSrc, uint32_t arbFreqDest)
{
uint32_t mc_arb_dram_timing;
uint32_t mc_arb_dram_timing2;
uint32_t burst_time;
uint32_t mc_cg_config;
switch (arbFreqSrc) {
case MC_CG_ARB_FREQ_F0:
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
break;
case MC_CG_ARB_FREQ_F1:
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
break;
default:
return -1;
}
switch (arbFreqDest) {
case MC_CG_ARB_FREQ_F0:
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
break;
case MC_CG_ARB_FREQ_F1:
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
break;
default:
return -1;
}
mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
mc_cg_config |= 0x0000000F;
cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest);
return 0;
}
/**
* Initial switch from ARB F0->F1
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
* This function is to be called from the SetPowerState table.
*/
int tonga_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr)
{
return tonga_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}
/**
* Initialize the ARB DRAM timing table's index field.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
{
const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t tmp;
int result;
/*
* This is a read-modify-write on the first byte of the ARB table.
* The first byte in the SMU72_Discrete_MCArbDramTimingTable structure is the field 'current'.
* This solution is ugly, but we never write the whole table only individual fields in it.
* In reality this field should not be in that structure but in a soft register.
*/
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
data->arb_table_start, &tmp, data->sram_end);
if (0 != result)
return result;
tmp &= 0x00FFFFFF;
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
return tonga_write_smc_sram_dword(hwmgr->smumgr,
data->arb_table_start, tmp, data->sram_end);
}
int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU72_Discrete_MCRegisters *mc_reg_table)
{
const struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t i, j;
for (i = 0, j = 0; j < data->tonga_mc_reg_table.last; j++) {
if (data->tonga_mc_reg_table.validflag & 1<<j) {
PP_ASSERT_WITH_CODE(i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
"Index of mc_reg_table->address[] array out of boundary", return -1);
mc_reg_table->address[i].s0 =
PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s0);
mc_reg_table->address[i].s1 =
PP_HOST_TO_SMC_US(data->tonga_mc_reg_table.mc_reg_address[j].s1);
i++;
}
}
mc_reg_table->last = (uint8_t)i;
return 0;
}
/*convert register values from driver to SMC format */
void tonga_convert_mc_registers(
const phw_tonga_mc_reg_entry * pEntry,
SMU72_Discrete_MCRegisterSet *pData,
uint32_t numEntries, uint32_t validflag)
{
uint32_t i, j;
for (i = 0, j = 0; j < numEntries; j++) {
if (validflag & 1<<j) {
pData->value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]);
i++;
}
}
}
/* find the entry in the memory range table, then populate the value to SMC's tonga_mc_reg_table */
int tonga_convert_mc_reg_table_entry_to_smc(
struct pp_hwmgr *hwmgr,
const uint32_t memory_clock,
SMU72_Discrete_MCRegisterSet *mc_reg_table_data
)
{
const tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t i = 0;
for (i = 0; i < data->tonga_mc_reg_table.num_entries; i++) {
if (memory_clock <=
data->tonga_mc_reg_table.mc_reg_table_entry[i].mclk_max) {
break;
}
}
if ((i == data->tonga_mc_reg_table.num_entries) && (i > 0))
--i;
tonga_convert_mc_registers(&data->tonga_mc_reg_table.mc_reg_table_entry[i],
mc_reg_table_data, data->tonga_mc_reg_table.last, data->tonga_mc_reg_table.validflag);
return 0;
}
int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
SMU72_Discrete_MCRegisters *mc_reg_table)
{
int result = 0;
tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
int res;
uint32_t i;
for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
res = tonga_convert_mc_reg_table_entry_to_smc(
hwmgr,
data->dpm_table.mclk_table.dpm_levels[i].value,
&mc_reg_table->data[i]
);
if (0 != res)
result = res;
}
return result;
}
int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
{
int result;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
memset(&data->mc_reg_table, 0x00, sizeof(SMU72_Discrete_MCRegisters));
result = tonga_populate_mc_reg_address(hwmgr, &(data->mc_reg_table));
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize MCRegTable for the MC register addresses!", return result;);
result = tonga_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize MCRegTable for driver state!", return result;);
return tonga_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start,
(uint8_t *)&data->mc_reg_table, sizeof(SMU72_Discrete_MCRegisters), data->sram_end);
}
/**
* Programs static screed detection parameters
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
/* Set static screen threshold unit*/
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
data->static_screen_threshold_unit);
/* Set static screen threshold*/
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
data->static_screen_threshold);
return 0;
}
/**
* Setup display gap for glitch free memory clock switching.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_enable_display_gap(struct pp_hwmgr *hwmgr)
{
uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
display_gap = PHM_SET_FIELD(display_gap,
CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE);
display_gap = PHM_SET_FIELD(display_gap,
CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_DISPLAY_GAP_CNTL, display_gap);
return 0;
}
/**
* Programs activity state transition voting clients
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_program_voting_clients(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data = (tonga_hwmgr *)(hwmgr->backend);
/* Clear reset for voting clients before enabling DPM */
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
return 0;
}
int tonga_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
tmp_result = tonga_check_for_dpm_stopped(hwmgr);
if (cf_tonga_voltage_control(hwmgr)) {
tmp_result = tonga_enable_voltage_control(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable voltage control!", result = tmp_result);
tmp_result = tonga_construct_voltage_tables(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to contruct voltage tables!", result = tmp_result);
}
tmp_result = tonga_initialize_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize MC reg table!", result = tmp_result);
tmp_result = tonga_program_static_screen_threshold_parameters(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to program static screen threshold parameters!", result = tmp_result);
tmp_result = tonga_enable_display_gap(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable display gap!", result = tmp_result);
tmp_result = tonga_program_voting_clients(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to program voting clients!", result = tmp_result);
tmp_result = tonga_process_firmware_header(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to process firmware header!", result = tmp_result);
tmp_result = tonga_initial_switch_from_arb_f0_to_f1(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize switch from ArbF0 to F1!", result = tmp_result);
tmp_result = tonga_init_smc_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize SMC table!", result = tmp_result);
tmp_result = tonga_init_arb_table_index(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize ARB table index!", result = tmp_result);
tmp_result = tonga_populate_initial_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to populate initialize MC Reg table!", result = tmp_result);
tmp_result = tonga_notify_smc_display_change(hwmgr, false);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to notify no display!", result = tmp_result);
/* enable SCLK control */
tmp_result = tonga_enable_sclk_control(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable SCLK control!", result = tmp_result);
/* enable DPM */
tmp_result = tonga_start_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to start DPM!", result = tmp_result);
return result;
}
int tonga_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
tmp_result = tonga_check_for_dpm_running(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"SMC is still running!", return 0);
tmp_result = tonga_stop_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to stop DPM!", result = tmp_result);
tmp_result = tonga_reset_to_default(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to reset to default!", result = tmp_result);
return result;
}
int tonga_reset_asic_tasks(struct pp_hwmgr *hwmgr)
{
int result;
result = tonga_set_boot_state(hwmgr);
if (0 != result)
printk(KERN_ERR "[ powerplay ] Failed to reset asic via set boot state! \n");
return result;
}
int tonga_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) {
kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
}
if (NULL != hwmgr->backend) {
kfree(hwmgr->backend);
hwmgr->backend = NULL;
}
return 0;
}
/**
* Initializes the Volcanic Islands Hardware Manager
*
* @param hwmgr the address of the powerplay hardware manager.
* @return 1 if success; otherwise appropriate error code.
*/
int tonga_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
SMU72_Discrete_DpmTable *table = NULL;
tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
phw_tonga_ulv_parm *ulv;
PP_ASSERT_WITH_CODE((NULL != hwmgr),
"Invalid Parameter!", return -1;);
data->dll_defaule_on = 0;
data->sram_end = SMC_RAM_END;
data->activity_target[0] = PPTONGA_TARGETACTIVITY_DFLT;
data->activity_target[1] = PPTONGA_TARGETACTIVITY_DFLT;
data->activity_target[2] = PPTONGA_TARGETACTIVITY_DFLT;
data->activity_target[3] = PPTONGA_TARGETACTIVITY_DFLT;
data->activity_target[4] = PPTONGA_TARGETACTIVITY_DFLT;
data->activity_target[5] = PPTONGA_TARGETACTIVITY_DFLT;
data->activity_target[6] = PPTONGA_TARGETACTIVITY_DFLT;
data->activity_target[7] = PPTONGA_TARGETACTIVITY_DFLT;
data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
data->vddc_vddgfx_delta = VDDC_VDDGFX_DELTA;
data->mclk_activity_target = PPTONGA_MCLK_TARGETACTIVITY_DFLT;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableVoltageIsland);
data->sclk_dpm_key_disabled = 0;
data->mclk_dpm_key_disabled = 0;
data->pcie_dpm_key_disabled = 0;
data->pcc_monitor_enabled = 0;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UnTabledHardwareInterface);
data->gpio_debug = 0;
data->engine_clock_data = 0;
data->memory_clock_data = 0;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPatchPowerState);
/* need to set voltage control types before EVV patching*/
data->voltage_control = TONGA_VOLTAGE_CONTROL_NONE;
data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_NONE;
data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_NONE;
data->mvdd_control = TONGA_VOLTAGE_CONTROL_NONE;
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
data->voltage_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDGFX)) {
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
data->vdd_gfx_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
}
}
if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDGFX);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableMVDDControl)) {
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) {
data->mvdd_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
}
}
if (TONGA_VOLTAGE_CONTROL_NONE == data->mvdd_control) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableMVDDControl);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI)) {
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_GPIO;
else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
data->vdd_ci_control = TONGA_VOLTAGE_CONTROL_BY_SVID2;
}
if (TONGA_VOLTAGE_CONTROL_NONE == data->vdd_ci_control)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TablelessHardwareInterface);
if (pptable_info->cac_dtp_table->usClockStretchAmount != 0)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
/* Initializes DPM default values*/
tonga_initialize_dpm_defaults(hwmgr);
/* Get leakage voltage based on leakage ID.*/
PP_ASSERT_WITH_CODE((0 == tonga_get_evv_voltage(hwmgr)),
"Get EVV Voltage Failed. Abort Driver loading!", return -1);
tonga_complete_dependency_tables(hwmgr);
/* Parse pptable data read from VBIOS*/
tonga_set_private_var_based_on_pptale(hwmgr);
/* ULV Support*/
ulv = &(data->ulv);
ulv->ulv_supported = 0;
/* Initalize Dynamic State Adjustment Rule Settings*/
result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
if (result)
printk(KERN_ERR "[ powerplay ] tonga_initializa_dynamic_state_adjustment_rule_settings failed!\n");
data->uvd_enabled = 0;
table = &(data->smc_state_table);
/*
* if ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable,
* Peak Current Control feature is enabled and we should program PCC HW register
*/
if (0 == atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
uint32_t temp_reg = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
case 0:
temp_reg = PHM_SET_FIELD(temp_reg,
CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
break;
case 1:
temp_reg = PHM_SET_FIELD(temp_reg,
CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
break;
case 2:
temp_reg = PHM_SET_FIELD(temp_reg,
CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
break;
case 3:
temp_reg = PHM_SET_FIELD(temp_reg,
CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
break;
case 4:
temp_reg = PHM_SET_FIELD(temp_reg,
CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
break;
default:
printk(KERN_ERR "[ powerplay ] Failed to setup PCC HW register! \
Wrong GPIO assigned for VDDC_PCC_GPIO_PINID! \n");
break;
}
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCNB_PWRMGT_CNTL, temp_reg);
}
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableSMU7ThermalManagement);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMU7);
data->vddc_phase_shed_control = 0;
if (0 == result) {
struct cgs_system_info sys_info = {0};
data->is_tlu_enabled = 0;
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
TONGA_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
result = cgs_query_system_info(hwmgr->device, &sys_info);
if (result)
data->pcie_gen_cap = 0x30007;
else
data->pcie_gen_cap = (uint32_t)sys_info.value;
if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
data->pcie_spc_cap = 20;
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
result = cgs_query_system_info(hwmgr->device, &sys_info);
if (result)
data->pcie_lane_cap = 0x2f0000;
else
data->pcie_lane_cap = (uint32_t)sys_info.value;
} else {
/* Ignore return value in here, we are cleaning up a mess. */
tonga_hwmgr_backend_fini(hwmgr);
}
return result;
}
static int tonga_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = tonga_force_dpm_highest(hwmgr);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = tonga_force_dpm_lowest(hwmgr);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = tonga_unforce_dpm_levels(hwmgr);
if (ret)
return ret;
break;
default:
break;
}
hwmgr->dpm_level = level;
return ret;
}
static int tonga_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *prequest_ps,
const struct pp_power_state *pcurrent_ps)
{
struct tonga_power_state *tonga_ps =
cast_phw_tonga_power_state(&prequest_ps->hardware);
uint32_t sclk;
uint32_t mclk;
struct PP_Clocks minimum_clocks = {0};
bool disable_mclk_switching;
bool disable_mclk_switching_for_frame_lock;
struct cgs_display_info info = {0};
const struct phm_clock_and_voltage_limits *max_limits;
uint32_t i;
tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
int32_t count;
int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label);
PP_ASSERT_WITH_CODE(tonga_ps->performance_level_count == 2,
"VI should always have 2 performance levels",
);
max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
&(hwmgr->dyn_state.max_clock_voltage_on_dc);
if (PP_PowerSource_DC == hwmgr->power_source) {
for (i = 0; i < tonga_ps->performance_level_count; i++) {
if (tonga_ps->performance_levels[i].memory_clock > max_limits->mclk)
tonga_ps->performance_levels[i].memory_clock = max_limits->mclk;
if (tonga_ps->performance_levels[i].engine_clock > max_limits->sclk)
tonga_ps->performance_levels[i].engine_clock = max_limits->sclk;
}
}
tonga_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk;
tonga_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk;
tonga_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
cgs_get_active_displays_info(hwmgr->device, &info);
/*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
/* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
stable_pstate_sclk = (max_limits->sclk * 75) / 100;
for (count = pptable_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
if (stable_pstate_sclk >= pptable_info->vdd_dep_on_sclk->entries[count].clk) {
stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[count].clk;
break;
}
}
if (count < 0)
stable_pstate_sclk = pptable_info->vdd_dep_on_sclk->entries[0].clk;
stable_pstate_mclk = max_limits->mclk;
minimum_clocks.engineClock = stable_pstate_sclk;
minimum_clocks.memoryClock = stable_pstate_mclk;
}
if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
tonga_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock),
"Overdrive sclk exceeds limit",
hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock);
if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
tonga_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive;
}
if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock),
"Overdrive mclk exceeds limit",
hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock);
if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
tonga_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive;
}
disable_mclk_switching_for_frame_lock = phm_cap_enabled(
hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
disable_mclk_switching = (1 < info.display_count) ||
disable_mclk_switching_for_frame_lock;
sclk = tonga_ps->performance_levels[0].engine_clock;
mclk = tonga_ps->performance_levels[0].memory_clock;
if (disable_mclk_switching)
mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count - 1].memory_clock;
if (sclk < minimum_clocks.engineClock)
sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock;
if (mclk < minimum_clocks.memoryClock)
mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock;
tonga_ps->performance_levels[0].engine_clock = sclk;
tonga_ps->performance_levels[0].memory_clock = mclk;
tonga_ps->performance_levels[1].engine_clock =
(tonga_ps->performance_levels[1].engine_clock >= tonga_ps->performance_levels[0].engine_clock) ?
tonga_ps->performance_levels[1].engine_clock :
tonga_ps->performance_levels[0].engine_clock;
if (disable_mclk_switching) {
if (mclk < tonga_ps->performance_levels[1].memory_clock)
mclk = tonga_ps->performance_levels[1].memory_clock;
tonga_ps->performance_levels[0].memory_clock = mclk;
tonga_ps->performance_levels[1].memory_clock = mclk;
} else {
if (tonga_ps->performance_levels[1].memory_clock < tonga_ps->performance_levels[0].memory_clock)
tonga_ps->performance_levels[1].memory_clock = tonga_ps->performance_levels[0].memory_clock;
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
for (i=0; i < tonga_ps->performance_level_count; i++) {
tonga_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
tonga_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
tonga_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
tonga_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
}
}
return 0;
}
int tonga_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct tonga_power_state);
}
static int tonga_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct tonga_power_state *tonga_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
if (low)
return tonga_ps->performance_levels[0].memory_clock;
else
return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
}
static int tonga_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct tonga_power_state *tonga_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
tonga_ps = cast_phw_tonga_power_state(&ps->hardware);
if (low)
return tonga_ps->performance_levels[0].engine_clock;
else
return tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
}
static uint16_t tonga_get_current_pcie_speed(
struct pp_hwmgr *hwmgr)
{
uint32_t speed_cntl = 0;
speed_cntl = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__PCIE,
ixPCIE_LC_SPEED_CNTL);
return((uint16_t)PHM_GET_FIELD(speed_cntl,
PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}
static int tonga_get_current_pcie_lane_number(
struct pp_hwmgr *hwmgr)
{
uint32_t link_width;
link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__PCIE,
PCIE_LC_LINK_WIDTH_CNTL,
LC_LINK_WIDTH_RD);
PP_ASSERT_WITH_CODE((7 >= link_width),
"Invalid PCIe lane width!", return 0);
return decode_pcie_lane_width(link_width);
}
static int tonga_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
struct tonga_power_state *ps = (struct tonga_power_state *)hw_ps;
ATOM_FIRMWARE_INFO_V2_2 *fw_info;
uint16_t size;
uint8_t frev, crev;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
/* First retrieve the Boot clocks and VDDC from the firmware info table.
* We assume here that fw_info is unchanged if this call fails.
*/
fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
hwmgr->device, index,
&size, &frev, &crev);
if (!fw_info)
/* During a test, there is no firmware info table. */
return 0;
/* Patch the state. */
data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock);
data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock);
data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage);
data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
data->vbios_boot_state.pcie_gen_bootup_value = tonga_get_current_pcie_speed(hwmgr);
data->vbios_boot_state.pcie_lane_bootup_value =
(uint16_t)tonga_get_current_pcie_lane_number(hwmgr);
/* set boot power state */
ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
return 0;
}
static int tonga_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
void *state, struct pp_power_state *power_state,
void *pp_table, uint32_t classification_flag)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
struct tonga_power_state *tonga_ps =
(struct tonga_power_state *)(&(power_state->hardware));
struct tonga_performance_level *performance_level;
ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
(ATOM_Tonga_SCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
(ATOM_Tonga_MCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
/* The following fields are not initialized here: id orderedList allStatesList */
power_state->classification.ui_label =
(le16_to_cpu(state_entry->usClassification) &
ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
power_state->classification.flags = classification_flag;
/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
power_state->classification.temporary_state = false;
power_state->classification.to_be_deleted = false;
power_state->validation.disallowOnDC =
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_DISALLOW_ON_DC));
power_state->pcie.lanes = 0;
power_state->display.disableFrameModulation = false;
power_state->display.limitRefreshrate = false;
power_state->display.enableVariBright =
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Tonga_ENABLE_VARIBRIGHT));
power_state->validation.supportedPowerLevels = 0;
power_state->uvd_clocks.VCLK = 0;
power_state->uvd_clocks.DCLK = 0;
power_state->temperatures.min = 0;
power_state->temperatures.max = 0;
performance_level = &(tonga_ps->performance_levels
[tonga_ps->performance_level_count++]);
PP_ASSERT_WITH_CODE(
(tonga_ps->performance_level_count < SMU72_MAX_LEVELS_GRAPHICS),
"Performance levels exceeds SMC limit!",
return -1);
PP_ASSERT_WITH_CODE(
(tonga_ps->performance_level_count <=
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
"Performance levels exceeds Driver limit!",
return -1);
/* Performance levels are arranged from low to high. */
performance_level->memory_clock =
le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexLow].ulMclk);
performance_level->engine_clock =
le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexLow].ulSclk);
performance_level->pcie_gen = get_pcie_gen_support(
data->pcie_gen_cap,
state_entry->ucPCIEGenLow);
performance_level->pcie_lane = get_pcie_lane_support(
data->pcie_lane_cap,
state_entry->ucPCIELaneHigh);
performance_level =
&(tonga_ps->performance_levels[tonga_ps->performance_level_count++]);
performance_level->memory_clock =
le32_to_cpu(mclk_dep_table->entries[state_entry->ucMemoryClockIndexHigh].ulMclk);
performance_level->engine_clock =
le32_to_cpu(sclk_dep_table->entries[state_entry->ucEngineClockIndexHigh].ulSclk);
performance_level->pcie_gen = get_pcie_gen_support(
data->pcie_gen_cap,
state_entry->ucPCIEGenHigh);
performance_level->pcie_lane = get_pcie_lane_support(
data->pcie_lane_cap,
state_entry->ucPCIELaneHigh);
return 0;
}
static int tonga_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry_index, struct pp_power_state *ps)
{
int result;
struct tonga_power_state *tonga_ps;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
table_info->vdd_dep_on_mclk;
ps->hardware.magic = PhwTonga_Magic;
tonga_ps = cast_phw_tonga_power_state(&(ps->hardware));
result = tonga_get_powerplay_table_entry(hwmgr, entry_index, ps,
tonga_get_pp_table_entry_callback_func);
/* This is the earliest time we have all the dependency table and the VBIOS boot state
* as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
* if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
*/
if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
if (dep_mclk_table->entries[0].clk !=
data->vbios_boot_state.mclk_bootup_value)
printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
"does not match VBIOS boot MCLK level");
if (dep_mclk_table->entries[0].vddci !=
data->vbios_boot_state.vddci_bootup_value)
printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
"does not match VBIOS boot VDDCI level");
}
/* set DC compatible flag if this state supports DC */
if (!ps->validation.disallowOnDC)
tonga_ps->dc_compatible = true;
if (ps->classification.flags & PP_StateClassificationFlag_ACPI)
data->acpi_pcie_gen = tonga_ps->performance_levels[0].pcie_gen;
else if (ps->classification.flags & PP_StateClassificationFlag_Boot) {
if (data->bacos.best_match == 0xffff) {
/* For V.I. use boot state as base BACO state */
data->bacos.best_match = PP_StateClassificationFlag_Boot;
data->bacos.performance_level = tonga_ps->performance_levels[0];
}
}
tonga_ps->uvd_clocks.VCLK = ps->uvd_clocks.VCLK;
tonga_ps->uvd_clocks.DCLK = ps->uvd_clocks.DCLK;
if (!result) {
uint32_t i;
switch (ps->classification.ui_label) {
case PP_StateUILabel_Performance:
data->use_pcie_performance_levels = true;
for (i = 0; i < tonga_ps->performance_level_count; i++) {
if (data->pcie_gen_performance.max <
tonga_ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.max =
tonga_ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_performance.min >
tonga_ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.min =
tonga_ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_performance.max <
tonga_ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.max =
tonga_ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_performance.min >
tonga_ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.min =
tonga_ps->performance_levels[i].pcie_lane;
}
break;
case PP_StateUILabel_Battery:
data->use_pcie_power_saving_levels = true;
for (i = 0; i < tonga_ps->performance_level_count; i++) {
if (data->pcie_gen_power_saving.max <
tonga_ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.max =
tonga_ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_power_saving.min >
tonga_ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.min =
tonga_ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_power_saving.max <
tonga_ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.max =
tonga_ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_power_saving.min >
tonga_ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.min =
tonga_ps->performance_levels[i].pcie_lane;
}
break;
default:
break;
}
}
return 0;
}
static void
tonga_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
{
uint32_t sclk, mclk, active_percent;
uint32_t offset;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency));
sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency));
mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100);
offset = data->soft_regs_start + offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
active_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
active_percent += 80;
active_percent >>= 8;
seq_printf(m, "\n [GPU load]: %u%%\n\n", active_percent > 100 ? 100 : active_percent);
}
static int tonga_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
struct tonga_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table);
uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
struct tonga_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table);
uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
struct PP_Clocks min_clocks = {0};
uint32_t i;
struct cgs_display_info info = {0};
data->need_update_smu7_dpm_table = 0;
for (i = 0; i < psclk_table->count; i++) {
if (sclk == psclk_table->dpm_levels[i].value)
break;
}
if (i >= psclk_table->count)
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
else {
/* TODO: Check SCLK in DAL's minimum clocks in case DeepSleep divider update is required.*/
if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR)
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
}
for (i=0; i < pmclk_table->count; i++) {
if (mclk == pmclk_table->dpm_levels[i].value)
break;
}
if (i >= pmclk_table->count)
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
cgs_get_active_displays_info(hwmgr->device, &info);
if (data->display_timing.num_existing_displays != info.display_count)
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
return 0;
}
static uint16_t tonga_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_ps)
{
uint32_t i;
uint32_t sclk, max_sclk = 0;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
struct tonga_dpm_table *pdpm_table = &data->dpm_table;
for (i = 0; i < hw_ps->performance_level_count; i++) {
sclk = hw_ps->performance_levels[i].engine_clock;
if (max_sclk < sclk)
max_sclk = sclk;
}
for (i = 0; i < pdpm_table->sclk_table.count; i++) {
if (pdpm_table->sclk_table.dpm_levels[i].value == max_sclk)
return (uint16_t) ((i >= pdpm_table->pcie_speed_table.count) ?
pdpm_table->pcie_speed_table.dpm_levels[pdpm_table->pcie_speed_table.count-1].value :
pdpm_table->pcie_speed_table.dpm_levels[i].value);
}
return 0;
}
static int tonga_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_nps);
uint16_t current_link_speed;
if (data->force_pcie_gen == PP_PCIEGenInvalid)
current_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_cps);
else
current_link_speed = data->force_pcie_gen;
data->force_pcie_gen = PP_PCIEGenInvalid;
data->pspp_notify_required = false;
if (target_link_speed > current_link_speed) {
switch(target_link_speed) {
case PP_PCIEGen3:
if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
break;
data->force_pcie_gen = PP_PCIEGen2;
if (current_link_speed == PP_PCIEGen2)
break;
case PP_PCIEGen2:
if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
break;
default:
data->force_pcie_gen = tonga_get_current_pcie_speed(hwmgr);
break;
}
} else {
if (target_link_speed < current_link_speed)
data->pspp_notify_required = true;
}
return 0;
}
static int tonga_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
if (0 == data->need_update_smu7_dpm_table)
return 0;
if ((0 == data->sclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
PP_ASSERT_WITH_CODE(
true == tonga_is_dpm_running(hwmgr),
"Trying to freeze SCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(
0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_FreezeLevel),
"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
return -1);
}
if ((0 == data->mclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
DPMTABLE_OD_UPDATE_MCLK)) {
PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
"Trying to freeze MCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(
0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_FreezeLevel),
"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
return -1);
}
return 0;
}
static int tonga_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input)
{
int result = 0;
const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t sclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].engine_clock;
uint32_t mclk = tonga_ps->performance_levels[tonga_ps->performance_level_count-1].memory_clock;
struct tonga_dpm_table *pdpm_table = &data->dpm_table;
struct tonga_dpm_table *pgolden_dpm_table = &data->golden_dpm_table;
uint32_t dpm_count, clock_percent;
uint32_t i;
if (0 == data->need_update_smu7_dpm_table)
return 0;
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
/* Need to do calculation based on the golden DPM table
* as the Heatmap GPU Clock axis is also based on the default values
*/
PP_ASSERT_WITH_CODE(
(pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0),
"Divide by 0!",
return -1);
dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2;
for (i = dpm_count; i > 1; i--) {
if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) {
clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) /
pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
pdpm_table->sclk_table.dpm_levels[i].value =
pgolden_dpm_table->sclk_table.dpm_levels[i].value +
(pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
} else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) {
clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) /
pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value;
pdpm_table->sclk_table.dpm_levels[i].value =
pgolden_dpm_table->sclk_table.dpm_levels[i].value -
(pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100;
} else
pdpm_table->sclk_table.dpm_levels[i].value =
pgolden_dpm_table->sclk_table.dpm_levels[i].value;
}
}
}
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
PP_ASSERT_WITH_CODE(
(pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0),
"Divide by 0!",
return -1);
dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2;
for (i = dpm_count; i > 1; i--) {
if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) {
clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) /
pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
pdpm_table->mclk_table.dpm_levels[i].value =
pgolden_dpm_table->mclk_table.dpm_levels[i].value +
(pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
} else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) {
clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) /
pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value;
pdpm_table->mclk_table.dpm_levels[i].value =
pgolden_dpm_table->mclk_table.dpm_levels[i].value -
(pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100;
} else
pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value;
}
}
}
if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
result = tonga_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
return result);
}
if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
/*populate MCLK dpm table to SMU7 */
result = tonga_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
return result);
}
return result;
}
static int tonga_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
struct tonga_single_dpm_table * pdpm_table,
uint32_t low_limit, uint32_t high_limit)
{
uint32_t i;
for (i = 0; i < pdpm_table->count; i++) {
if ((pdpm_table->dpm_levels[i].value < low_limit) ||
(pdpm_table->dpm_levels[i].value > high_limit))
pdpm_table->dpm_levels[i].enabled = false;
else
pdpm_table->dpm_levels[i].enabled = true;
}
return 0;
}
static int tonga_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct tonga_power_state *hw_state)
{
int result = 0;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t high_limit_count;
PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1),
"power state did not have any performance level",
return -1);
high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1;
tonga_trim_single_dpm_states(hwmgr,
&(data->dpm_table.sclk_table),
hw_state->performance_levels[0].engine_clock,
hw_state->performance_levels[high_limit_count].engine_clock);
tonga_trim_single_dpm_states(hwmgr,
&(data->dpm_table.mclk_table),
hw_state->performance_levels[0].memory_clock,
hw_state->performance_levels[high_limit_count].memory_clock);
return result;
}
static int tonga_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input)
{
int result;
const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
result = tonga_trim_dpm_states(hwmgr, tonga_ps);
if (0 != result)
return result;
data->dpm_level_enable_mask.sclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
data->dpm_level_enable_mask.mclk_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
if (data->uvd_enabled)
data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
data->dpm_level_enable_mask.pcie_dpm_enable_mask = tonga_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
return 0;
}
int tonga_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
(PPSMC_Msg)PPSMC_MSG_VCEDPM_Enable :
(PPSMC_Msg)PPSMC_MSG_VCEDPM_Disable);
}
int tonga_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
(PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
(PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
}
int tonga_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *ptable_information = (struct phm_ppt_v1_information *)(hwmgr->pptable);
if (!bgate) {
data->smc_state_table.UvdBootLevel = (uint8_t) (ptable_information->mm_dep_table->count - 1);
mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0x00FFFFFF;
mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_UVDDPM_SetEnabledMask,
(uint32_t)(1 << data->smc_state_table.UvdBootLevel));
}
return tonga_enable_disable_uvd_dpm(hwmgr, !bgate);
}
int tonga_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
const struct tonga_power_state *tonga_nps = cast_const_phw_tonga_power_state(states->pnew_state);
const struct tonga_power_state *tonga_cps = cast_const_phw_tonga_power_state(states->pcurrent_state);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
if (tonga_nps->vce_clocks.EVCLK > 0 && (tonga_cps == NULL || tonga_cps->vce_clocks.EVCLK == 0)) {
data->smc_state_table.VceBootLevel = (uint8_t) (pptable_info->mm_dep_table->count - 1);
mm_boot_level_offset = data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFF00FFFF;
mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(uint32_t)(1 << data->smc_state_table.VceBootLevel));
tonga_enable_disable_vce_dpm(hwmgr, true);
} else if (tonga_nps->vce_clocks.EVCLK == 0 && tonga_cps != NULL && tonga_cps->vce_clocks.EVCLK > 0)
tonga_enable_disable_vce_dpm(hwmgr, false);
return 0;
}
static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t address;
int32_t result;
if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
return 0;
memset(&data->mc_reg_table, 0, sizeof(SMU72_Discrete_MCRegisters));
result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table));
if(result != 0)
return result;
address = data->mc_reg_table_start + (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
return tonga_copy_bytes_to_smc(hwmgr->smumgr, address,
(uint8_t *)&data->mc_reg_table.data[0],
sizeof(SMU72_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
data->sram_end);
}
static int tonga_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
return tonga_program_memory_timing_parameters(hwmgr);
return 0;
}
static int tonga_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
if (0 == data->need_update_smu7_dpm_table)
return 0;
if ((0 == data->sclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
PP_ASSERT_WITH_CODE(true == tonga_is_dpm_running(hwmgr),
"Trying to Unfreeze SCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(
0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_UnfreezeLevel),
"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
return -1);
}
if ((0 == data->mclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
PP_ASSERT_WITH_CODE(
true == tonga_is_dpm_running(hwmgr),
"Trying to Unfreeze MCLK DPM when DPM is disabled",
);
PP_ASSERT_WITH_CODE(
0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_UnfreezeLevel),
"Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
return -1);
}
data->need_update_smu7_dpm_table = 0;
return 0;
}
static int tonga_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input;
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
const struct tonga_power_state *tonga_ps = cast_const_phw_tonga_power_state(states->pnew_state);
uint16_t target_link_speed = tonga_get_maximum_link_speed(hwmgr, tonga_ps);
uint8_t request;
if (data->pspp_notify_required ||
data->pcie_performance_request) {
if (target_link_speed == PP_PCIEGen3)
request = PCIE_PERF_REQ_GEN3;
else if (target_link_speed == PP_PCIEGen2)
request = PCIE_PERF_REQ_GEN2;
else
request = PCIE_PERF_REQ_GEN1;
if(request == PCIE_PERF_REQ_GEN1 && tonga_get_current_pcie_speed(hwmgr) > 0) {
data->pcie_performance_request = false;
return 0;
}
if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) {
if (PP_PCIEGen2 == target_link_speed)
printk("PSPP request to switch to Gen2 from Gen3 Failed!");
else
printk("PSPP request to switch to Gen1 from Gen2 Failed!");
}
}
data->pcie_performance_request = false;
return 0;
}
static int tonga_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
{
int tmp_result, result = 0;
tmp_result = tonga_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
tmp_result = tonga_request_link_speed_change_before_state_change(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result);
}
tmp_result = tonga_freeze_sclk_mclk_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
tmp_result = tonga_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result);
tmp_result = tonga_generate_dpm_level_enable_mask(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result);
tmp_result = tonga_update_vce_dpm(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result);
tmp_result = tonga_update_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result);
tmp_result = tonga_update_and_upload_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result);
tmp_result = tonga_program_memory_timing_parameters_conditionally(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result);
tmp_result = tonga_unfreeze_sclk_mclk_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result);
tmp_result = tonga_upload_dpm_level_enable_mask(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) {
tmp_result = tonga_notify_link_speed_change_after_state_change(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result);
}
return result;
}
/**
* Set maximum target operating fan output PWM
*
* @param pHwMgr: the address of the powerplay hardware manager.
* @param usMaxFanPwm: max operating fan PWM in percents
* @return The response that came from the SMC.
*/
static int tonga_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
{
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
if (phm_is_hw_access_blocked(hwmgr))
return 0;
return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -EINVAL);
}
int tonga_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
{
uint32_t num_active_displays = 0;
struct cgs_display_info info = {0};
info.mode_info = NULL;
cgs_get_active_displays_info(hwmgr->device, &info);
num_active_displays = info.display_count;
if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
tonga_notify_smc_display_change(hwmgr, false);
else
tonga_notify_smc_display_change(hwmgr, true);
return 0;
}
/**
* Programs the display gap
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always OK
*/
int tonga_program_display_gap(struct pp_hwmgr *hwmgr)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
uint32_t num_active_displays = 0;
uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
uint32_t display_gap2;
uint32_t pre_vbi_time_in_us;
uint32_t frame_time_in_us;
uint32_t ref_clock;
uint32_t refresh_rate = 0;
struct cgs_display_info info = {0};
struct cgs_mode_info mode_info;
info.mode_info = &mode_info;
cgs_get_active_displays_info(hwmgr->device, &info);
num_active_displays = info.display_count;
display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
ref_clock = mode_info.ref_clock;
refresh_rate = mode_info.refresh_rate;
if(0 == refresh_rate)
refresh_rate = 60;
frame_time_in_us = 1000000 / refresh_rate;
pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, PreVBlankGap), 0x64);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU72_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
if (num_active_displays == 1)
tonga_notify_smc_display_change(hwmgr, true);
return 0;
}
int tonga_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
tonga_program_display_gap(hwmgr);
/* to do PhwTonga_CacUpdateDisplayConfiguration(pHwMgr); */
return 0;
}
/**
* Set maximum target operating fan output RPM
*
* @param pHwMgr: the address of the powerplay hardware manager.
* @param usMaxFanRpm: max operating fan RPM value.
* @return The response that came from the SMC.
*/
static int tonga_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
{
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm;
if (phm_is_hw_access_blocked(hwmgr))
return 0;
return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -EINVAL);
}
uint32_t tonga_get_xclk(struct pp_hwmgr *hwmgr)
{
uint32_t reference_clock;
uint32_t tc;
uint32_t divide;
ATOM_FIRMWARE_INFO *fw_info;
uint16_t size;
uint8_t frev, crev;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
if (tc)
return TCLK;
fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index,
&size, &frev, &crev);
if (!fw_info)
return 0;
reference_clock = le16_to_cpu(fw_info->usMinPixelClockPLL_Output);
divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
if (0 != divide)
return reference_clock / 4;
return reference_clock;
}
int tonga_dpm_set_interrupt_state(void *private_data,
unsigned src_id, unsigned type,
int enabled)
{
uint32_t cg_thermal_int;
struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
if (hwmgr == NULL)
return -EINVAL;
switch (type) {
case AMD_THERMAL_IRQ_LOW_TO_HIGH:
if (enabled) {
cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
} else {
cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
}
break;
case AMD_THERMAL_IRQ_HIGH_TO_LOW:
if (enabled) {
cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
} else {
cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
}
break;
default:
break;
}
return 0;
}
int tonga_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
const void *thermal_interrupt_info)
{
int result;
const struct pp_interrupt_registration_info *info =
(const struct pp_interrupt_registration_info *)thermal_interrupt_info;
if (info == NULL)
return -EINVAL;
result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
tonga_dpm_set_interrupt_state,
info->call_back, info->context);
if (result)
return -EINVAL;
result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
tonga_dpm_set_interrupt_state,
info->call_back, info->context);
if (result)
return -EINVAL;
return 0;
}
bool tonga_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
struct tonga_hwmgr *data = (struct tonga_hwmgr *)(hwmgr->backend);
bool is_update_required = false;
struct cgs_display_info info = {0,0,NULL};
cgs_get_active_displays_info(hwmgr->device, &info);
if (data->display_timing.num_existing_displays != info.display_count)
is_update_required = true;
/* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
if(min_clocks.engineClockInSR != data->display_timing.minClockInSR)
is_update_required = true;
*/
return is_update_required;
}
static inline bool tonga_are_power_levels_equal(const struct tonga_performance_level *pl1,
const struct tonga_performance_level *pl2)
{
return ((pl1->memory_clock == pl2->memory_clock) &&
(pl1->engine_clock == pl2->engine_clock) &&
(pl1->pcie_gen == pl2->pcie_gen) &&
(pl1->pcie_lane == pl2->pcie_lane));
}
int tonga_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
{
const struct tonga_power_state *psa = cast_const_phw_tonga_power_state(pstate1);
const struct tonga_power_state *psb = cast_const_phw_tonga_power_state(pstate2);
int i;
if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
return -EINVAL;
/* If the two states don't even have the same number of performance levels they cannot be the same state. */
if (psa->performance_level_count != psb->performance_level_count) {
*equal = false;
return 0;
}
for (i = 0; i < psa->performance_level_count; i++) {
if (!tonga_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
/* If we have found even one performance level pair that is different the states are different. */
*equal = false;
return 0;
}
}
/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
*equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK));
*equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK));
*equal &= (psa->sclk_threshold == psb->sclk_threshold);
*equal &= (psa->acp_clk == psb->acp_clk);
return 0;
}
static int tonga_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
if (mode) {
/* stop auto-manage */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl))
tonga_fan_ctrl_stop_smc_fan_control(hwmgr);
tonga_fan_ctrl_set_static_mode(hwmgr, mode);
} else
/* restart auto-manage */
tonga_fan_ctrl_reset_fan_speed_to_default(hwmgr);
return 0;
}
static int tonga_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
if (hwmgr->fan_ctrl_is_in_default_mode)
return hwmgr->fan_ctrl_default_mode;
else
return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_FDO_CTRL2, FDO_PWM_MODE);
}
static const struct pp_hwmgr_func tonga_hwmgr_funcs = {
.backend_init = &tonga_hwmgr_backend_init,
.backend_fini = &tonga_hwmgr_backend_fini,
.asic_setup = &tonga_setup_asic_task,
.dynamic_state_management_enable = &tonga_enable_dpm_tasks,
.apply_state_adjust_rules = tonga_apply_state_adjust_rules,
.force_dpm_level = &tonga_force_dpm_level,
.power_state_set = tonga_set_power_state_tasks,
.get_power_state_size = tonga_get_power_state_size,
.get_mclk = tonga_dpm_get_mclk,
.get_sclk = tonga_dpm_get_sclk,
.patch_boot_state = tonga_dpm_patch_boot_state,
.get_pp_table_entry = tonga_get_pp_table_entry,
.get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
.print_current_perforce_level = tonga_print_current_perforce_level,
.powerdown_uvd = tonga_phm_powerdown_uvd,
.powergate_uvd = tonga_phm_powergate_uvd,
.powergate_vce = tonga_phm_powergate_vce,
.disable_clock_power_gating = tonga_phm_disable_clock_power_gating,
.notify_smc_display_config_after_ps_adjustment = tonga_notify_smc_display_config_after_ps_adjustment,
.display_config_changed = tonga_display_configuration_changed_task,
.set_max_fan_pwm_output = tonga_set_max_fan_pwm_output,
.set_max_fan_rpm_output = tonga_set_max_fan_rpm_output,
.get_temperature = tonga_thermal_get_temperature,
.stop_thermal_controller = tonga_thermal_stop_thermal_controller,
.get_fan_speed_info = tonga_fan_ctrl_get_fan_speed_info,
.get_fan_speed_percent = tonga_fan_ctrl_get_fan_speed_percent,
.set_fan_speed_percent = tonga_fan_ctrl_set_fan_speed_percent,
.reset_fan_speed_to_default = tonga_fan_ctrl_reset_fan_speed_to_default,
.get_fan_speed_rpm = tonga_fan_ctrl_get_fan_speed_rpm,
.set_fan_speed_rpm = tonga_fan_ctrl_set_fan_speed_rpm,
.uninitialize_thermal_controller = tonga_thermal_ctrl_uninitialize_thermal_controller,
.register_internal_thermal_interrupt = tonga_register_internal_thermal_interrupt,
.check_smc_update_required_for_display_configuration = tonga_check_smc_update_required_for_display_configuration,
.check_states_equal = tonga_check_states_equal,
.set_fan_control_mode = tonga_set_fan_control_mode,
.get_fan_control_mode = tonga_get_fan_control_mode,
};
int tonga_hwmgr_init(struct pp_hwmgr *hwmgr)
{
tonga_hwmgr *data;
data = kzalloc (sizeof(tonga_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
memset(data, 0x00, sizeof(tonga_hwmgr));
hwmgr->backend = data;
hwmgr->hwmgr_func = &tonga_hwmgr_funcs;
hwmgr->pptable_func = &tonga_pptable_funcs;
pp_tonga_thermal_initialize(hwmgr);
return 0;
}