linux/drivers/net/ethernet/sfc/siena.c

665 lines
19 KiB
C
Raw Normal View History

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2010 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/random.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "spi.h"
#include "regs.h"
#include "io.h"
#include "phy.h"
#include "workarounds.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
/* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
static void siena_init_wol(struct efx_nic *efx);
static void siena_push_irq_moderation(struct efx_channel *channel)
{
efx_dword_t timer_cmd;
if (channel->irq_moderation)
EFX_POPULATE_DWORD_2(timer_cmd,
FRF_CZ_TC_TIMER_MODE,
FFE_CZ_TIMER_MODE_INT_HLDOFF,
FRF_CZ_TC_TIMER_VAL,
channel->irq_moderation - 1);
else
EFX_POPULATE_DWORD_2(timer_cmd,
FRF_CZ_TC_TIMER_MODE,
FFE_CZ_TIMER_MODE_DIS,
FRF_CZ_TC_TIMER_VAL, 0);
efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
channel->channel);
}
static int siena_mdio_write(struct net_device *net_dev,
int prtad, int devad, u16 addr, u16 value)
{
struct efx_nic *efx = netdev_priv(net_dev);
uint32_t status;
int rc;
rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
addr, value, &status);
if (rc)
return rc;
if (status != MC_CMD_MDIO_STATUS_GOOD)
return -EIO;
return 0;
}
static int siena_mdio_read(struct net_device *net_dev,
int prtad, int devad, u16 addr)
{
struct efx_nic *efx = netdev_priv(net_dev);
uint16_t value;
uint32_t status;
int rc;
rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
addr, &value, &status);
if (rc)
return rc;
if (status != MC_CMD_MDIO_STATUS_GOOD)
return -EIO;
return (int)value;
}
/* This call is responsible for hooking in the MAC and PHY operations */
static int siena_probe_port(struct efx_nic *efx)
{
int rc;
/* Hook in PHY operations table */
efx->phy_op = &efx_mcdi_phy_ops;
/* Set up MDIO structure for PHY */
efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
efx->mdio.mdio_read = siena_mdio_read;
efx->mdio.mdio_write = siena_mdio_write;
/* Fill out MDIO structure, loopback modes, and initial link state */
rc = efx->phy_op->probe(efx);
if (rc != 0)
return rc;
/* Allocate buffer for stats */
rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
MC_CMD_MAC_NSTATS * sizeof(u64));
if (rc)
return rc;
netif_dbg(efx, probe, efx->net_dev,
"stats buffer at %llx (virt %p phys %llx)\n",
(u64)efx->stats_buffer.dma_addr,
efx->stats_buffer.addr,
(u64)virt_to_phys(efx->stats_buffer.addr));
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
return 0;
}
static void siena_remove_port(struct efx_nic *efx)
{
efx->phy_op->remove(efx);
efx_nic_free_buffer(efx, &efx->stats_buffer);
}
static const struct efx_nic_register_test siena_register_tests[] = {
{ FR_AZ_ADR_REGION,
EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
{ FR_CZ_USR_EV_CFG,
EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_CFG,
EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
{ FR_AZ_TX_CFG,
EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
{ FR_AZ_TX_RESERVED,
EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
{ FR_AZ_SRM_TX_DC_CFG,
EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_CFG,
EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_PF_WM,
EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_BZ_DP_CTRL,
EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_BZ_RX_RSS_TKEY,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
{ FR_CZ_RX_RSS_IPV6_REG1,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
{ FR_CZ_RX_RSS_IPV6_REG2,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
{ FR_CZ_RX_RSS_IPV6_REG3,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
};
static int siena_test_registers(struct efx_nic *efx)
{
return efx_nic_test_registers(efx, siena_register_tests,
ARRAY_SIZE(siena_register_tests));
}
/**************************************************************************
*
* Device reset
*
**************************************************************************
*/
static enum reset_type siena_map_reset_reason(enum reset_type reason)
{
return RESET_TYPE_ALL;
}
static int siena_map_reset_flags(u32 *flags)
{
enum {
SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
ETH_RESET_OFFLOAD | ETH_RESET_MAC |
ETH_RESET_PHY),
SIENA_RESET_MC = (SIENA_RESET_PORT |
ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
};
if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
*flags &= ~SIENA_RESET_MC;
return RESET_TYPE_WORLD;
}
if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
*flags &= ~SIENA_RESET_PORT;
return RESET_TYPE_ALL;
}
/* no invisible reset implemented */
return -EINVAL;
}
static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
{
int rc;
/* Recover from a failed assertion pre-reset */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
return rc;
if (method == RESET_TYPE_WORLD)
return efx_mcdi_reset_mc(efx);
else
return efx_mcdi_reset_port(efx);
}
static int siena_probe_nvconfig(struct efx_nic *efx)
{
u32 caps = 0;
int rc;
rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
efx->timer_quantum_ns =
(caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
3072 : 6144; /* 768 cycles */
return rc;
}
static int siena_probe_nic(struct efx_nic *efx)
{
struct siena_nic_data *nic_data;
bool already_attached = false;
efx_oword_t reg;
int rc;
/* Allocate storage for hardware specific data */
nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
if (efx_nic_fpga_ver(efx) != 0) {
netif_err(efx, probe, efx->net_dev,
"Siena FPGA not supported\n");
rc = -ENODEV;
goto fail1;
}
efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
efx->net_dev->dev_id = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
efx_mcdi_init(efx);
/* Recover from a failed assertion before probing */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
goto fail1;
/* Let the BMC know that the driver is now in charge of link and
* filter settings. We must do this before we reset the NIC */
rc = efx_mcdi_drv_attach(efx, true, &already_attached);
if (rc) {
netif_err(efx, probe, efx->net_dev,
"Unable to register driver with MCPU\n");
goto fail2;
}
if (already_attached)
/* Not a fatal error */
netif_err(efx, probe, efx->net_dev,
"Host already registered with MCPU\n");
/* Now we can reset the NIC */
rc = siena_reset_hw(efx, RESET_TYPE_ALL);
if (rc) {
netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
goto fail3;
}
siena_init_wol(efx);
/* Allocate memory for INT_KER */
rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
if (rc)
goto fail4;
BUG_ON(efx->irq_status.dma_addr & 0x0f);
netif_dbg(efx, probe, efx->net_dev,
"INT_KER at %llx (virt %p phys %llx)\n",
(unsigned long long)efx->irq_status.dma_addr,
efx->irq_status.addr,
(unsigned long long)virt_to_phys(efx->irq_status.addr));
/* Read in the non-volatile configuration */
rc = siena_probe_nvconfig(efx);
if (rc == -EINVAL) {
netif_err(efx, probe, efx->net_dev,
"NVRAM is invalid therefore using defaults\n");
efx->phy_type = PHY_TYPE_NONE;
efx->mdio.prtad = MDIO_PRTAD_NONE;
} else if (rc) {
goto fail5;
}
rc = efx_mcdi_mon_probe(efx);
if (rc)
goto fail5;
return 0;
fail5:
efx_nic_free_buffer(efx, &efx->irq_status);
fail4:
fail3:
efx_mcdi_drv_attach(efx, false, NULL);
fail2:
fail1:
kfree(efx->nic_data);
return rc;
}
/* This call performs hardware-specific global initialisation, such as
* defining the descriptor cache sizes and number of RSS channels.
* It does not set up any buffers, descriptor rings or event queues.
*/
static int siena_init_nic(struct efx_nic *efx)
{
efx_oword_t temp;
int rc;
/* Recover from a failed assertion post-reset */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
return rc;
/* Squash TX of packets of 16 bytes or less */
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
* descriptors (which is bad).
*/
efx_reado(efx, &temp, FR_AZ_TX_CFG);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
efx_writeo(efx, &temp, FR_AZ_TX_CFG);
efx_reado(efx, &temp, FR_AZ_RX_CFG);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
/* Enable hash insertion. This is broken for the 'Falcon' hash
* if IPv6 hashing is also enabled, so also select Toeplitz
* TCP/IPv4 and IPv4 hashes. */
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
efx_writeo(efx, &temp, FR_AZ_RX_CFG);
/* Set hash key for IPv4 */
memcpy(&temp, efx->rx_hash_key, sizeof(temp));
efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
/* Enable IPv6 RSS */
BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
memcpy(&temp, efx->rx_hash_key, sizeof(temp));
efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
/* Enable event logging */
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
if (rc)
return rc;
/* Set destination of both TX and RX Flush events */
EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
efx_nic_init_common(efx);
return 0;
}
static void siena_remove_nic(struct efx_nic *efx)
{
efx_mcdi_mon_remove(efx);
efx_nic_free_buffer(efx, &efx->irq_status);
siena_reset_hw(efx, RESET_TYPE_ALL);
/* Relinquish the device back to the BMC */
if (efx_nic_has_mc(efx))
efx_mcdi_drv_attach(efx, false, NULL);
/* Tear down the private nic state */
kfree(efx->nic_data);
efx->nic_data = NULL;
}
#define STATS_GENERATION_INVALID ((__force __le64)(-1))
static int siena_try_update_nic_stats(struct efx_nic *efx)
{
__le64 *dma_stats;
struct efx_mac_stats *mac_stats;
__le64 generation_start, generation_end;
mac_stats = &efx->mac_stats;
dma_stats = efx->stats_buffer.addr;
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
if (generation_end == STATS_GENERATION_INVALID)
return 0;
rmb();
#define MAC_STAT(M, D) \
mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D])
MAC_STAT(tx_bytes, TX_BYTES);
MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
mac_stats->tx_bad_bytes);
MAC_STAT(tx_packets, TX_PKTS);
MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
MAC_STAT(tx_pause, TX_PAUSE_PKTS);
MAC_STAT(tx_control, TX_CONTROL_PKTS);
MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
MAC_STAT(tx_lt64, TX_LT64_PKTS);
MAC_STAT(tx_64, TX_64_PKTS);
MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
mac_stats->tx_collision = 0;
MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
mac_stats->tx_collision = (mac_stats->tx_single_collision +
mac_stats->tx_multiple_collision +
mac_stats->tx_excessive_collision +
mac_stats->tx_late_collision);
MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
MAC_STAT(rx_bytes, RX_BYTES);
MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
mac_stats->rx_bad_bytes);
MAC_STAT(rx_packets, RX_PKTS);
MAC_STAT(rx_good, RX_GOOD_PKTS);
MAC_STAT(rx_bad, RX_BAD_FCS_PKTS);
MAC_STAT(rx_pause, RX_PAUSE_PKTS);
MAC_STAT(rx_control, RX_CONTROL_PKTS);
MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
MAC_STAT(rx_64, RX_64_PKTS);
MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
mac_stats->rx_bad_lt64 = 0;
mac_stats->rx_bad_64_to_15xx = 0;
mac_stats->rx_bad_15xx_to_jumbo = 0;
MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
mac_stats->rx_missed = 0;
MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
mac_stats->rx_good_lt64 = 0;
efx->n_rx_nodesc_drop_cnt =
le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]);
#undef MAC_STAT
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end != generation_start)
return -EAGAIN;
return 0;
}
static void siena_update_nic_stats(struct efx_nic *efx)
{
int retry;
/* If we're unlucky enough to read statistics wduring the DMA, wait
* up to 10ms for it to finish (typically takes <500us) */
for (retry = 0; retry < 100; ++retry) {
if (siena_try_update_nic_stats(efx) == 0)
return;
udelay(100);
}
/* Use the old values instead */
}
static void siena_start_nic_stats(struct efx_nic *efx)
{
__le64 *dma_stats = efx->stats_buffer.addr;
dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
}
static void siena_stop_nic_stats(struct efx_nic *efx)
{
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
}
/**************************************************************************
*
* Wake on LAN
*
**************************************************************************
*/
static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
struct siena_nic_data *nic_data = efx->nic_data;
wol->supported = WAKE_MAGIC;
if (nic_data->wol_filter_id != -1)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int siena_set_wol(struct efx_nic *efx, u32 type)
{
struct siena_nic_data *nic_data = efx->nic_data;
int rc;
if (type & ~WAKE_MAGIC)
return -EINVAL;
if (type & WAKE_MAGIC) {
if (nic_data->wol_filter_id != -1)
efx_mcdi_wol_filter_remove(efx,
nic_data->wol_filter_id);
rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
&nic_data->wol_filter_id);
if (rc)
goto fail;
pci_wake_from_d3(efx->pci_dev, true);
} else {
rc = efx_mcdi_wol_filter_reset(efx);
nic_data->wol_filter_id = -1;
pci_wake_from_d3(efx->pci_dev, false);
if (rc)
goto fail;
}
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
__func__, type, rc);
return rc;
}
static void siena_init_wol(struct efx_nic *efx)
{
struct siena_nic_data *nic_data = efx->nic_data;
int rc;
rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
if (rc != 0) {
/* If it failed, attempt to get into a synchronised
* state with MC by resetting any set WoL filters */
efx_mcdi_wol_filter_reset(efx);
nic_data->wol_filter_id = -1;
} else if (nic_data->wol_filter_id != -1) {
pci_wake_from_d3(efx->pci_dev, true);
}
}
/**************************************************************************
*
* Revision-dependent attributes used by efx.c and nic.c
*
**************************************************************************
*/
const struct efx_nic_type siena_a0_nic_type = {
.probe = siena_probe_nic,
.remove = siena_remove_nic,
.init = siena_init_nic,
.fini = efx_port_dummy_op_void,
.monitor = NULL,
.map_reset_reason = siena_map_reset_reason,
.map_reset_flags = siena_map_reset_flags,
.reset = siena_reset_hw,
.probe_port = siena_probe_port,
.remove_port = siena_remove_port,
.prepare_flush = efx_port_dummy_op_void,
.update_stats = siena_update_nic_stats,
.start_stats = siena_start_nic_stats,
.stop_stats = siena_stop_nic_stats,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = siena_push_irq_moderation,
.reconfigure_mac = efx_mcdi_mac_reconfigure,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_phy_reconfigure,
.get_wol = siena_get_wol,
.set_wol = siena_set_wol,
.resume_wol = siena_init_wol,
.test_registers = siena_test_registers,
.test_nvram = efx_mcdi_nvram_test_all,
.revision = EFX_REV_SIENA_A0,
.mem_map_size = (FR_CZ_MC_TREG_SMEM +
FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
.rx_buffer_hash_size = 0x10,
.rx_buffer_padding = 0,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
* interrupt handler only supports 32
* channels */
.timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
.tx_dc_base = 0x88000,
.rx_dc_base = 0x68000,
.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXHASH | NETIF_F_NTUPLE),
};