2010-04-01 15:28:24 +00:00
|
|
|
/*
|
|
|
|
* This file is part of the Chelsio T4 Ethernet driver for Linux.
|
|
|
|
*
|
2014-06-20 04:37:15 +00:00
|
|
|
* Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
|
2010-04-01 15:28:24 +00:00
|
|
|
*
|
|
|
|
* This software is available to you under a choice of one of two
|
|
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
|
|
* General Public License (GPL) Version 2, available from the file
|
|
|
|
* COPYING in the main directory of this source tree, or the
|
|
|
|
* OpenIB.org BSD license below:
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or
|
|
|
|
* without modification, are permitted provided that the following
|
|
|
|
* conditions are met:
|
|
|
|
*
|
|
|
|
* - Redistributions of source code must retain the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer.
|
|
|
|
*
|
|
|
|
* - Redistributions in binary form must reproduce the above
|
|
|
|
* copyright notice, this list of conditions and the following
|
|
|
|
* disclaimer in the documentation and/or other materials
|
|
|
|
* provided with the distribution.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/skbuff.h>
|
|
|
|
#include <linux/netdevice.h>
|
|
|
|
#include <linux/etherdevice.h>
|
|
|
|
#include <linux/if_vlan.h>
|
|
|
|
#include <linux/ip.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/jiffies.h>
|
2011-05-22 20:47:17 +00:00
|
|
|
#include <linux/prefetch.h>
|
2011-05-27 20:14:23 +00:00
|
|
|
#include <linux/export.h>
|
2010-04-01 15:28:24 +00:00
|
|
|
#include <net/ipv6.h>
|
|
|
|
#include <net/tcp.h>
|
2015-02-04 10:02:52 +00:00
|
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
|
|
#include <net/busy_poll.h>
|
|
|
|
#endif /* CONFIG_NET_RX_BUSY_POLL */
|
2015-03-24 13:44:46 +00:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
#include <scsi/fc/fc_fcoe.h>
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
2010-04-01 15:28:24 +00:00
|
|
|
#include "cxgb4.h"
|
|
|
|
#include "t4_regs.h"
|
2015-01-05 11:00:43 +00:00
|
|
|
#include "t4_values.h"
|
2010-04-01 15:28:24 +00:00
|
|
|
#include "t4_msg.h"
|
|
|
|
#include "t4fw_api.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Rx buffer size. We use largish buffers if possible but settle for single
|
|
|
|
* pages under memory shortage.
|
|
|
|
*/
|
|
|
|
#if PAGE_SHIFT >= 16
|
|
|
|
# define FL_PG_ORDER 0
|
|
|
|
#else
|
|
|
|
# define FL_PG_ORDER (16 - PAGE_SHIFT)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* RX_PULL_LEN should be <= RX_COPY_THRES */
|
|
|
|
#define RX_COPY_THRES 256
|
|
|
|
#define RX_PULL_LEN 128
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Main body length for sk_buffs used for Rx Ethernet packets with fragments.
|
|
|
|
* Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
|
|
|
|
*/
|
|
|
|
#define RX_PKT_SKB_LEN 512
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Tx descriptors we clean up at a time. Should be modest as
|
|
|
|
* freeing skbs isn't cheap and it happens while holding locks. We just need
|
|
|
|
* to free packets faster than they arrive, we eventually catch up and keep
|
|
|
|
* the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
|
|
|
|
*/
|
|
|
|
#define MAX_TX_RECLAIM 16
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Rx buffers we replenish at a time. Again keep this modest,
|
|
|
|
* allocating buffers isn't cheap either.
|
|
|
|
*/
|
|
|
|
#define MAX_RX_REFILL 16U
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Period of the Rx queue check timer. This timer is infrequent as it has
|
|
|
|
* something to do only when the system experiences severe memory shortage.
|
|
|
|
*/
|
|
|
|
#define RX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Period of the Tx queue check timer.
|
|
|
|
*/
|
|
|
|
#define TX_QCHECK_PERIOD (HZ / 2)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max number of Tx descriptors to be reclaimed by the Tx timer.
|
|
|
|
*/
|
|
|
|
#define MAX_TIMER_TX_RECLAIM 100
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Timer index used when backing off due to memory shortage.
|
|
|
|
*/
|
|
|
|
#define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Suspend an Ethernet Tx queue with fewer available descriptors than this.
|
|
|
|
* This is the same as calc_tx_descs() for a TSO packet with
|
|
|
|
* nr_frags == MAX_SKB_FRAGS.
|
|
|
|
*/
|
|
|
|
#define ETHTXQ_STOP_THRES \
|
|
|
|
(1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Suspension threshold for non-Ethernet Tx queues. We require enough room
|
|
|
|
* for a full sized WR.
|
|
|
|
*/
|
|
|
|
#define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Max Tx descriptor space we allow for an Ethernet packet to be inlined
|
|
|
|
* into a WR.
|
|
|
|
*/
|
2015-04-14 20:32:30 +00:00
|
|
|
#define MAX_IMM_TX_PKT_LEN 256
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Max size of a WR sent through a control Tx queue.
|
|
|
|
*/
|
|
|
|
#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
|
|
|
|
|
|
|
|
struct tx_sw_desc { /* SW state per Tx descriptor */
|
|
|
|
struct sk_buff *skb;
|
|
|
|
struct ulptx_sgl *sgl;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct rx_sw_desc { /* SW state per Rx descriptor */
|
|
|
|
struct page *page;
|
|
|
|
dma_addr_t dma_addr;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
2012-09-26 02:39:38 +00:00
|
|
|
* Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
|
|
|
|
* buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
|
|
|
|
* We could easily support more but there doesn't seem to be much need for
|
|
|
|
* that ...
|
|
|
|
*/
|
|
|
|
#define FL_MTU_SMALL 1500
|
|
|
|
#define FL_MTU_LARGE 9000
|
|
|
|
|
|
|
|
static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
|
|
|
|
unsigned int mtu)
|
|
|
|
{
|
|
|
|
struct sge *s = &adapter->sge;
|
|
|
|
|
|
|
|
return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
|
|
|
|
#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
|
|
|
|
* these to specify the buffer size as an index into the SGE Free List Buffer
|
|
|
|
* Size register array. We also use bit 4, when the buffer has been unmapped
|
|
|
|
* for DMA, but this is of course never sent to the hardware and is only used
|
|
|
|
* to prevent double unmappings. All of the above requires that the Free List
|
|
|
|
* Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
|
|
|
|
* 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
|
|
|
|
* Free List Buffer alignment is 32 bytes, this works out for us ...
|
2010-04-01 15:28:24 +00:00
|
|
|
*/
|
|
|
|
enum {
|
2012-09-26 02:39:38 +00:00
|
|
|
RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
|
|
|
|
RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
|
|
|
|
RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* XXX We shouldn't depend on being able to use these indices.
|
|
|
|
* XXX Especially when some other Master PF has initialized the
|
|
|
|
* XXX adapter or we use the Firmware Configuration File. We
|
|
|
|
* XXX should really search through the Host Buffer Size register
|
|
|
|
* XXX array for the appropriately sized buffer indices.
|
|
|
|
*/
|
|
|
|
RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
|
|
|
|
RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
|
|
|
|
|
|
|
|
RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
|
|
|
|
RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
|
2010-04-01 15:28:24 +00:00
|
|
|
};
|
|
|
|
|
2014-09-25 18:53:55 +00:00
|
|
|
static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
|
|
|
|
#define MIN_NAPI_WORK 1
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
|
|
|
|
{
|
2012-09-26 02:39:38 +00:00
|
|
|
return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool is_buf_mapped(const struct rx_sw_desc *d)
|
|
|
|
{
|
|
|
|
return !(d->dma_addr & RX_UNMAPPED_BUF);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* txq_avail - return the number of available slots in a Tx queue
|
|
|
|
* @q: the Tx queue
|
|
|
|
*
|
|
|
|
* Returns the number of descriptors in a Tx queue available to write new
|
|
|
|
* packets.
|
|
|
|
*/
|
|
|
|
static inline unsigned int txq_avail(const struct sge_txq *q)
|
|
|
|
{
|
|
|
|
return q->size - 1 - q->in_use;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* fl_cap - return the capacity of a free-buffer list
|
|
|
|
* @fl: the FL
|
|
|
|
*
|
|
|
|
* Returns the capacity of a free-buffer list. The capacity is less than
|
|
|
|
* the size because one descriptor needs to be left unpopulated, otherwise
|
|
|
|
* HW will think the FL is empty.
|
|
|
|
*/
|
|
|
|
static inline unsigned int fl_cap(const struct sge_fl *fl)
|
|
|
|
{
|
|
|
|
return fl->size - 8; /* 1 descriptor = 8 buffers */
|
|
|
|
}
|
|
|
|
|
2015-04-14 20:32:31 +00:00
|
|
|
/**
|
|
|
|
* fl_starving - return whether a Free List is starving.
|
|
|
|
* @adapter: pointer to the adapter
|
|
|
|
* @fl: the Free List
|
|
|
|
*
|
|
|
|
* Tests specified Free List to see whether the number of buffers
|
|
|
|
* available to the hardware has falled below our "starvation"
|
|
|
|
* threshold.
|
|
|
|
*/
|
|
|
|
static inline bool fl_starving(const struct adapter *adapter,
|
|
|
|
const struct sge_fl *fl)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
2015-04-14 20:32:31 +00:00
|
|
|
const struct sge *s = &adapter->sge;
|
|
|
|
|
|
|
|
return fl->avail - fl->pend_cred <= s->fl_starve_thres;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int map_skb(struct device *dev, const struct sk_buff *skb,
|
|
|
|
dma_addr_t *addr)
|
|
|
|
{
|
|
|
|
const skb_frag_t *fp, *end;
|
|
|
|
const struct skb_shared_info *si;
|
|
|
|
|
|
|
|
*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(dev, *addr))
|
|
|
|
goto out_err;
|
|
|
|
|
|
|
|
si = skb_shinfo(skb);
|
|
|
|
end = &si->frags[si->nr_frags];
|
|
|
|
|
|
|
|
for (fp = si->frags; fp < end; fp++) {
|
2011-10-19 23:01:46 +00:00
|
|
|
*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
|
|
|
|
DMA_TO_DEVICE);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (dma_mapping_error(dev, *addr))
|
|
|
|
goto unwind;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
unwind:
|
|
|
|
while (fp-- > si->frags)
|
2011-10-18 21:00:24 +00:00
|
|
|
dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
out_err:
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
|
|
|
static void unmap_skb(struct device *dev, const struct sk_buff *skb,
|
|
|
|
const dma_addr_t *addr)
|
|
|
|
{
|
|
|
|
const skb_frag_t *fp, *end;
|
|
|
|
const struct skb_shared_info *si;
|
|
|
|
|
|
|
|
dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
|
|
|
|
|
|
|
|
si = skb_shinfo(skb);
|
|
|
|
end = &si->frags[si->nr_frags];
|
|
|
|
for (fp = si->frags; fp < end; fp++)
|
2011-10-18 21:00:24 +00:00
|
|
|
dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* deferred_unmap_destructor - unmap a packet when it is freed
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* This is the packet destructor used for Tx packets that need to remain
|
|
|
|
* mapped until they are freed rather than until their Tx descriptors are
|
|
|
|
* freed.
|
|
|
|
*/
|
|
|
|
static void deferred_unmap_destructor(struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
|
|
|
|
const struct ulptx_sgl *sgl, const struct sge_txq *q)
|
|
|
|
{
|
|
|
|
const struct ulptx_sge_pair *p;
|
|
|
|
unsigned int nfrags = skb_shinfo(skb)->nr_frags;
|
|
|
|
|
|
|
|
if (likely(skb_headlen(skb)))
|
|
|
|
dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
else {
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
nfrags--;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* the complexity below is because of the possibility of a wrap-around
|
|
|
|
* in the middle of an SGL
|
|
|
|
*/
|
|
|
|
for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
|
|
|
|
if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
|
|
|
|
unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
|
|
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
|
|
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
|
|
p++;
|
|
|
|
} else if ((u8 *)p == (u8 *)q->stat) {
|
|
|
|
p = (const struct ulptx_sge_pair *)q->desc;
|
|
|
|
goto unmap;
|
|
|
|
} else if ((u8 *)p + 8 == (u8 *)q->stat) {
|
|
|
|
const __be64 *addr = (const __be64 *)q->desc;
|
|
|
|
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr[0]),
|
|
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr[1]),
|
|
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
|
|
p = (const struct ulptx_sge_pair *)&addr[2];
|
|
|
|
} else {
|
|
|
|
const __be64 *addr = (const __be64 *)q->desc;
|
|
|
|
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
|
|
|
|
ntohl(p->len[0]), DMA_TO_DEVICE);
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr[0]),
|
|
|
|
ntohl(p->len[1]), DMA_TO_DEVICE);
|
|
|
|
p = (const struct ulptx_sge_pair *)&addr[1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (nfrags) {
|
|
|
|
__be64 addr;
|
|
|
|
|
|
|
|
if ((u8 *)p == (u8 *)q->stat)
|
|
|
|
p = (const struct ulptx_sge_pair *)q->desc;
|
|
|
|
addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
|
|
|
|
*(const __be64 *)q->desc;
|
|
|
|
dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* free_tx_desc - reclaims Tx descriptors and their buffers
|
|
|
|
* @adapter: the adapter
|
|
|
|
* @q: the Tx queue to reclaim descriptors from
|
|
|
|
* @n: the number of descriptors to reclaim
|
|
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
|
|
*
|
|
|
|
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
|
|
|
|
* Tx buffers. Called with the Tx queue lock held.
|
|
|
|
*/
|
|
|
|
static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
|
|
|
|
unsigned int n, bool unmap)
|
|
|
|
{
|
|
|
|
struct tx_sw_desc *d;
|
|
|
|
unsigned int cidx = q->cidx;
|
|
|
|
struct device *dev = adap->pdev_dev;
|
|
|
|
|
|
|
|
d = &q->sdesc[cidx];
|
|
|
|
while (n--) {
|
|
|
|
if (d->skb) { /* an SGL is present */
|
|
|
|
if (unmap)
|
|
|
|
unmap_sgl(dev, d->skb, d->sgl, q);
|
2014-03-15 23:29:49 +00:00
|
|
|
dev_consume_skb_any(d->skb);
|
2010-04-01 15:28:24 +00:00
|
|
|
d->skb = NULL;
|
|
|
|
}
|
|
|
|
++d;
|
|
|
|
if (++cidx == q->size) {
|
|
|
|
cidx = 0;
|
|
|
|
d = q->sdesc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
q->cidx = cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Return the number of reclaimable descriptors in a Tx queue.
|
|
|
|
*/
|
|
|
|
static inline int reclaimable(const struct sge_txq *q)
|
|
|
|
{
|
2015-12-08 04:39:13 +00:00
|
|
|
int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
|
2010-04-01 15:28:24 +00:00
|
|
|
hw_cidx -= q->cidx;
|
|
|
|
return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* reclaim_completed_tx - reclaims completed Tx descriptors
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the Tx queue to reclaim completed descriptors from
|
|
|
|
* @unmap: whether the buffers should be unmapped for DMA
|
|
|
|
*
|
|
|
|
* Reclaims Tx descriptors that the SGE has indicated it has processed,
|
|
|
|
* and frees the associated buffers if possible. Called with the Tx
|
|
|
|
* queue locked.
|
|
|
|
*/
|
|
|
|
static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
|
|
|
|
bool unmap)
|
|
|
|
{
|
|
|
|
int avail = reclaimable(q);
|
|
|
|
|
|
|
|
if (avail) {
|
|
|
|
/*
|
|
|
|
* Limit the amount of clean up work we do at a time to keep
|
|
|
|
* the Tx lock hold time O(1).
|
|
|
|
*/
|
|
|
|
if (avail > MAX_TX_RECLAIM)
|
|
|
|
avail = MAX_TX_RECLAIM;
|
|
|
|
|
|
|
|
free_tx_desc(adap, q, avail, unmap);
|
|
|
|
q->in_use -= avail;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
static inline int get_buf_size(struct adapter *adapter,
|
|
|
|
const struct rx_sw_desc *d)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adapter->sge;
|
|
|
|
unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
|
|
|
|
int buf_size;
|
|
|
|
|
|
|
|
switch (rx_buf_size_idx) {
|
|
|
|
case RX_SMALL_PG_BUF:
|
|
|
|
buf_size = PAGE_SIZE;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_LARGE_PG_BUF:
|
|
|
|
buf_size = PAGE_SIZE << s->fl_pg_order;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_SMALL_MTU_BUF:
|
|
|
|
buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case RX_LARGE_MTU_BUF:
|
|
|
|
buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
BUG_ON(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return buf_size;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* free_rx_bufs - free the Rx buffers on an SGE free list
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the SGE free list to free buffers from
|
|
|
|
* @n: how many buffers to free
|
|
|
|
*
|
|
|
|
* Release the next @n buffers on an SGE free-buffer Rx queue. The
|
|
|
|
* buffers must be made inaccessible to HW before calling this function.
|
|
|
|
*/
|
|
|
|
static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
|
|
|
|
{
|
|
|
|
while (n--) {
|
|
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
|
|
|
|
if (is_buf_mapped(d))
|
|
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
2012-09-26 02:39:38 +00:00
|
|
|
get_buf_size(adap, d),
|
|
|
|
PCI_DMA_FROMDEVICE);
|
2010-04-01 15:28:24 +00:00
|
|
|
put_page(d->page);
|
|
|
|
d->page = NULL;
|
|
|
|
if (++q->cidx == q->size)
|
|
|
|
q->cidx = 0;
|
|
|
|
q->avail--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* unmap_rx_buf - unmap the current Rx buffer on an SGE free list
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the SGE free list
|
|
|
|
*
|
|
|
|
* Unmap the current buffer on an SGE free-buffer Rx queue. The
|
|
|
|
* buffer must be made inaccessible to HW before calling this function.
|
|
|
|
*
|
|
|
|
* This is similar to @free_rx_bufs above but does not free the buffer.
|
|
|
|
* Do note that the FL still loses any further access to the buffer.
|
|
|
|
*/
|
|
|
|
static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
|
|
|
|
{
|
|
|
|
struct rx_sw_desc *d = &q->sdesc[q->cidx];
|
|
|
|
|
|
|
|
if (is_buf_mapped(d))
|
|
|
|
dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
|
2012-09-26 02:39:38 +00:00
|
|
|
get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
|
2010-04-01 15:28:24 +00:00
|
|
|
d->page = NULL;
|
|
|
|
if (++q->cidx == q->size)
|
|
|
|
q->cidx = 0;
|
|
|
|
q->avail--;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
|
|
|
|
{
|
|
|
|
if (q->pend_cred >= 8) {
|
2015-06-02 08:29:39 +00:00
|
|
|
u32 val = adap->params.arch.sge_fl_db;
|
|
|
|
|
2015-01-05 11:00:43 +00:00
|
|
|
if (is_t4(adap->params.chip))
|
2015-06-02 08:29:39 +00:00
|
|
|
val |= PIDX_V(q->pend_cred / 8);
|
2015-01-05 11:00:43 +00:00
|
|
|
else
|
2015-06-02 08:29:39 +00:00
|
|
|
val |= PIDX_T5_V(q->pend_cred / 8);
|
2015-05-11 23:13:43 +00:00
|
|
|
|
|
|
|
/* Make sure all memory writes to the Free List queue are
|
|
|
|
* committed before we tell the hardware about them.
|
|
|
|
*/
|
2010-04-01 15:28:24 +00:00
|
|
|
wmb();
|
2014-09-25 18:53:52 +00:00
|
|
|
|
2014-12-03 14:02:53 +00:00
|
|
|
/* If we don't have access to the new User Doorbell (T5+), use
|
|
|
|
* the old doorbell mechanism; otherwise use the new BAR2
|
|
|
|
* mechanism.
|
2014-09-25 18:53:52 +00:00
|
|
|
*/
|
2014-12-03 14:02:53 +00:00
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 11:00:43 +00:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
|
|
val | QID_V(q->cntxt_id));
|
2014-09-25 18:53:52 +00:00
|
|
|
} else {
|
2015-01-05 11:00:43 +00:00
|
|
|
writel(val | QID_V(q->bar2_qid),
|
2014-12-03 14:02:53 +00:00
|
|
|
q->bar2_addr + SGE_UDB_KDOORBELL);
|
2014-09-25 18:53:52 +00:00
|
|
|
|
|
|
|
/* This Write memory Barrier will force the write to
|
|
|
|
* the User Doorbell area to be flushed.
|
|
|
|
*/
|
|
|
|
wmb();
|
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
q->pend_cred &= 7;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
|
|
|
|
dma_addr_t mapping)
|
|
|
|
{
|
|
|
|
sd->page = pg;
|
|
|
|
sd->dma_addr = mapping; /* includes size low bits */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* refill_fl - refill an SGE Rx buffer ring
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the ring to refill
|
|
|
|
* @n: the number of new buffers to allocate
|
|
|
|
* @gfp: the gfp flags for the allocations
|
|
|
|
*
|
|
|
|
* (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
|
|
|
|
* allocated with the supplied gfp flags. The caller must assure that
|
|
|
|
* @n does not exceed the queue's capacity. If afterwards the queue is
|
|
|
|
* found critically low mark it as starving in the bitmap of starving FLs.
|
|
|
|
*
|
|
|
|
* Returns the number of buffers allocated.
|
|
|
|
*/
|
|
|
|
static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
|
|
|
|
gfp_t gfp)
|
|
|
|
{
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 15:28:24 +00:00
|
|
|
struct page *pg;
|
|
|
|
dma_addr_t mapping;
|
|
|
|
unsigned int cred = q->avail;
|
|
|
|
__be64 *d = &q->desc[q->pidx];
|
|
|
|
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
|
2015-04-14 20:32:32 +00:00
|
|
|
int node;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-05-27 17:00:23 +00:00
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
|
|
|
|
goto out;
|
|
|
|
#endif
|
|
|
|
|
2014-11-11 17:26:42 +00:00
|
|
|
gfp |= __GFP_NOWARN;
|
2015-04-14 20:32:32 +00:00
|
|
|
node = dev_to_node(adap->pdev_dev);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
if (s->fl_pg_order == 0)
|
|
|
|
goto alloc_small_pages;
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
/*
|
|
|
|
* Prefer large buffers
|
|
|
|
*/
|
|
|
|
while (n) {
|
2015-04-14 20:32:32 +00:00
|
|
|
pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (unlikely(!pg)) {
|
|
|
|
q->large_alloc_failed++;
|
|
|
|
break; /* fall back to single pages */
|
|
|
|
}
|
|
|
|
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0,
|
2012-09-26 02:39:38 +00:00
|
|
|
PAGE_SIZE << s->fl_pg_order,
|
2010-04-01 15:28:24 +00:00
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
2012-09-26 02:39:38 +00:00
|
|
|
__free_pages(pg, s->fl_pg_order);
|
2015-12-08 04:39:16 +00:00
|
|
|
q->mapping_err++;
|
2010-04-01 15:28:24 +00:00
|
|
|
goto out; /* do not try small pages for this error */
|
|
|
|
}
|
2012-09-26 02:39:38 +00:00
|
|
|
mapping |= RX_LARGE_PG_BUF;
|
2010-04-01 15:28:24 +00:00
|
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
|
|
sd++;
|
|
|
|
|
|
|
|
q->avail++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
|
|
q->pidx = 0;
|
|
|
|
sd = q->sdesc;
|
|
|
|
d = q->desc;
|
|
|
|
}
|
|
|
|
n--;
|
|
|
|
}
|
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
alloc_small_pages:
|
2010-04-01 15:28:24 +00:00
|
|
|
while (n--) {
|
2015-04-14 20:32:32 +00:00
|
|
|
pg = alloc_pages_node(node, gfp, 0);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (unlikely(!pg)) {
|
|
|
|
q->alloc_failed++;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
|
|
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
|
2011-11-22 10:57:41 +00:00
|
|
|
put_page(pg);
|
2015-12-08 04:39:16 +00:00
|
|
|
q->mapping_err++;
|
2010-04-01 15:28:24 +00:00
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
*d++ = cpu_to_be64(mapping);
|
|
|
|
|
|
|
|
set_rx_sw_desc(sd, pg, mapping);
|
|
|
|
sd++;
|
|
|
|
|
|
|
|
q->avail++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
|
|
q->pidx = 0;
|
|
|
|
sd = q->sdesc;
|
|
|
|
d = q->desc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out: cred = q->avail - cred;
|
|
|
|
q->pend_cred += cred;
|
|
|
|
ring_fl_db(adap, q);
|
|
|
|
|
2015-04-14 20:32:31 +00:00
|
|
|
if (unlikely(fl_starving(adap, q))) {
|
2010-04-01 15:28:24 +00:00
|
|
|
smp_wmb();
|
2015-12-08 04:39:16 +00:00
|
|
|
q->low++;
|
2010-08-23 17:20:58 +00:00
|
|
|
set_bit(q->cntxt_id - adap->sge.egr_start,
|
|
|
|
adap->sge.starving_fl);
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return cred;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
|
|
|
|
{
|
|
|
|
refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
|
|
|
|
GFP_ATOMIC);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* alloc_ring - allocate resources for an SGE descriptor ring
|
|
|
|
* @dev: the PCI device's core device
|
|
|
|
* @nelem: the number of descriptors
|
|
|
|
* @elem_size: the size of each descriptor
|
|
|
|
* @sw_size: the size of the SW state associated with each ring element
|
|
|
|
* @phys: the physical address of the allocated ring
|
|
|
|
* @metadata: address of the array holding the SW state for the ring
|
|
|
|
* @stat_size: extra space in HW ring for status information
|
2010-12-14 21:36:55 +00:00
|
|
|
* @node: preferred node for memory allocations
|
2010-04-01 15:28:24 +00:00
|
|
|
*
|
|
|
|
* Allocates resources for an SGE descriptor ring, such as Tx queues,
|
|
|
|
* free buffer lists, or response queues. Each SGE ring requires
|
|
|
|
* space for its HW descriptors plus, optionally, space for the SW state
|
|
|
|
* associated with each HW entry (the metadata). The function returns
|
|
|
|
* three values: the virtual address for the HW ring (the return value
|
|
|
|
* of the function), the bus address of the HW ring, and the address
|
|
|
|
* of the SW ring.
|
|
|
|
*/
|
|
|
|
static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
|
|
|
|
size_t sw_size, dma_addr_t *phys, void *metadata,
|
2010-12-14 21:36:55 +00:00
|
|
|
size_t stat_size, int node)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
|
|
|
size_t len = nelem * elem_size + stat_size;
|
|
|
|
void *s = NULL;
|
|
|
|
void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
|
|
|
|
|
|
|
|
if (!p)
|
|
|
|
return NULL;
|
|
|
|
if (sw_size) {
|
2010-12-14 21:36:55 +00:00
|
|
|
s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
if (!s) {
|
|
|
|
dma_free_coherent(dev, len, p, *phys);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (metadata)
|
|
|
|
*(void **)metadata = s;
|
|
|
|
memset(p, 0, len);
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sgl_len - calculates the size of an SGL of the given capacity
|
|
|
|
* @n: the number of SGL entries
|
|
|
|
*
|
|
|
|
* Calculates the number of flits needed for a scatter/gather list that
|
|
|
|
* can hold the given number of entries.
|
|
|
|
*/
|
|
|
|
static inline unsigned int sgl_len(unsigned int n)
|
|
|
|
{
|
2015-04-14 20:32:33 +00:00
|
|
|
/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
|
|
|
|
* addresses. The DSGL Work Request starts off with a 32-bit DSGL
|
|
|
|
* ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
|
|
|
|
* repeated sequences of { Length[i], Length[i+1], Address[i],
|
|
|
|
* Address[i+1] } (this ensures that all addresses are on 64-bit
|
|
|
|
* boundaries). If N is even, then Length[N+1] should be set to 0 and
|
|
|
|
* Address[N+1] is omitted.
|
|
|
|
*
|
|
|
|
* The following calculation incorporates all of the above. It's
|
|
|
|
* somewhat hard to follow but, briefly: the "+2" accounts for the
|
|
|
|
* first two flits which include the DSGL header, Length0 and
|
|
|
|
* Address0; the "(3*(n-1))/2" covers the main body of list entries (3
|
|
|
|
* flits for every pair of the remaining N) +1 if (n-1) is odd; and
|
|
|
|
* finally the "+((n-1)&1)" adds the one remaining flit needed if
|
|
|
|
* (n-1) is odd ...
|
|
|
|
*/
|
2010-04-01 15:28:24 +00:00
|
|
|
n--;
|
|
|
|
return (3 * n) / 2 + (n & 1) + 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* flits_to_desc - returns the num of Tx descriptors for the given flits
|
|
|
|
* @n: the number of flits
|
|
|
|
*
|
|
|
|
* Returns the number of Tx descriptors needed for the supplied number
|
|
|
|
* of flits.
|
|
|
|
*/
|
|
|
|
static inline unsigned int flits_to_desc(unsigned int n)
|
|
|
|
{
|
|
|
|
BUG_ON(n > SGE_MAX_WR_LEN / 8);
|
|
|
|
return DIV_ROUND_UP(n, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_eth_imm - can an Ethernet packet be sent as immediate data?
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns whether an Ethernet packet is small enough to fit as
|
2014-02-18 12:26:14 +00:00
|
|
|
* immediate data. Return value corresponds to headroom required.
|
2010-04-01 15:28:24 +00:00
|
|
|
*/
|
|
|
|
static inline int is_eth_imm(const struct sk_buff *skb)
|
|
|
|
{
|
2014-02-18 12:26:14 +00:00
|
|
|
int hdrlen = skb_shinfo(skb)->gso_size ?
|
|
|
|
sizeof(struct cpl_tx_pkt_lso_core) : 0;
|
|
|
|
|
|
|
|
hdrlen += sizeof(struct cpl_tx_pkt);
|
|
|
|
if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
|
|
|
|
return hdrlen;
|
|
|
|
return 0;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_flits - calculate the number of flits for a packet Tx WR
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of flits needed for a Tx WR for the given Ethernet
|
|
|
|
* packet, including the needed WR and CPL headers.
|
|
|
|
*/
|
|
|
|
static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int flits;
|
2014-02-18 12:26:14 +00:00
|
|
|
int hdrlen = is_eth_imm(skb);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-04-14 20:32:33 +00:00
|
|
|
/* If the skb is small enough, we can pump it out as a work request
|
|
|
|
* with only immediate data. In that case we just have to have the
|
|
|
|
* TX Packet header plus the skb data in the Work Request.
|
|
|
|
*/
|
|
|
|
|
2014-02-18 12:26:14 +00:00
|
|
|
if (hdrlen)
|
|
|
|
return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-04-14 20:32:33 +00:00
|
|
|
/* Otherwise, we're going to have to construct a Scatter gather list
|
|
|
|
* of the skb body and fragments. We also include the flits necessary
|
|
|
|
* for the TX Packet Work Request and CPL. We always have a firmware
|
|
|
|
* Write Header (incorporated as part of the cpl_tx_pkt_lso and
|
|
|
|
* cpl_tx_pkt structures), followed by either a TX Packet Write CPL
|
|
|
|
* message or, if we're doing a Large Send Offload, an LSO CPL message
|
|
|
|
* with an embedded TX Packet Write CPL message.
|
|
|
|
*/
|
2015-09-08 10:55:39 +00:00
|
|
|
flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (skb_shinfo(skb)->gso_size)
|
2015-04-14 20:32:33 +00:00
|
|
|
flits += (sizeof(struct fw_eth_tx_pkt_wr) +
|
|
|
|
sizeof(struct cpl_tx_pkt_lso_core) +
|
|
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
|
|
|
|
else
|
|
|
|
flits += (sizeof(struct fw_eth_tx_pkt_wr) +
|
|
|
|
sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
|
2010-04-01 15:28:24 +00:00
|
|
|
return flits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_descs - calculate the number of Tx descriptors for a packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of Tx descriptors needed for the given Ethernet
|
|
|
|
* packet, including the needed WR and CPL headers.
|
|
|
|
*/
|
|
|
|
static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return flits_to_desc(calc_tx_flits(skb));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* write_sgl - populate a scatter/gather list for a packet
|
|
|
|
* @skb: the packet
|
|
|
|
* @q: the Tx queue we are writing into
|
|
|
|
* @sgl: starting location for writing the SGL
|
|
|
|
* @end: points right after the end of the SGL
|
|
|
|
* @start: start offset into skb main-body data to include in the SGL
|
|
|
|
* @addr: the list of bus addresses for the SGL elements
|
|
|
|
*
|
|
|
|
* Generates a gather list for the buffers that make up a packet.
|
|
|
|
* The caller must provide adequate space for the SGL that will be written.
|
|
|
|
* The SGL includes all of the packet's page fragments and the data in its
|
|
|
|
* main body except for the first @start bytes. @sgl must be 16-byte
|
|
|
|
* aligned and within a Tx descriptor with available space. @end points
|
|
|
|
* right after the end of the SGL but does not account for any potential
|
|
|
|
* wrap around, i.e., @end > @sgl.
|
|
|
|
*/
|
|
|
|
static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
|
|
|
|
struct ulptx_sgl *sgl, u64 *end, unsigned int start,
|
|
|
|
const dma_addr_t *addr)
|
|
|
|
{
|
|
|
|
unsigned int i, len;
|
|
|
|
struct ulptx_sge_pair *to;
|
|
|
|
const struct skb_shared_info *si = skb_shinfo(skb);
|
|
|
|
unsigned int nfrags = si->nr_frags;
|
|
|
|
struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
|
|
|
|
|
|
|
|
len = skb_headlen(skb) - start;
|
|
|
|
if (likely(len)) {
|
|
|
|
sgl->len0 = htonl(len);
|
|
|
|
sgl->addr0 = cpu_to_be64(addr[0] + start);
|
|
|
|
nfrags++;
|
|
|
|
} else {
|
2011-10-18 21:00:24 +00:00
|
|
|
sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
|
2010-04-01 15:28:24 +00:00
|
|
|
sgl->addr0 = cpu_to_be64(addr[1]);
|
|
|
|
}
|
|
|
|
|
2015-01-09 05:38:16 +00:00
|
|
|
sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
|
|
|
|
ULPTX_NSGE_V(nfrags));
|
2010-04-01 15:28:24 +00:00
|
|
|
if (likely(--nfrags == 0))
|
|
|
|
return;
|
|
|
|
/*
|
|
|
|
* Most of the complexity below deals with the possibility we hit the
|
|
|
|
* end of the queue in the middle of writing the SGL. For this case
|
|
|
|
* only we create the SGL in a temporary buffer and then copy it.
|
|
|
|
*/
|
|
|
|
to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
|
|
|
|
|
|
|
|
for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
|
2011-10-18 21:00:24 +00:00
|
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
|
|
|
to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
|
2010-04-01 15:28:24 +00:00
|
|
|
to->addr[0] = cpu_to_be64(addr[i]);
|
|
|
|
to->addr[1] = cpu_to_be64(addr[++i]);
|
|
|
|
}
|
|
|
|
if (nfrags) {
|
2011-10-18 21:00:24 +00:00
|
|
|
to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
|
2010-04-01 15:28:24 +00:00
|
|
|
to->len[1] = cpu_to_be32(0);
|
|
|
|
to->addr[0] = cpu_to_be64(addr[i + 1]);
|
|
|
|
}
|
|
|
|
if (unlikely((u8 *)end > (u8 *)q->stat)) {
|
|
|
|
unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
|
|
|
|
|
|
|
|
if (likely(part0))
|
|
|
|
memcpy(sgl->sge, buf, part0);
|
|
|
|
part1 = (u8 *)end - (u8 *)q->stat;
|
|
|
|
memcpy(q->desc, (u8 *)buf + part0, part1);
|
|
|
|
end = (void *)q->desc + part1;
|
|
|
|
}
|
|
|
|
if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
|
2012-06-04 12:44:16 +00:00
|
|
|
*end = 0;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
2014-12-03 14:02:53 +00:00
|
|
|
/* This function copies 64 byte coalesced work request to
|
|
|
|
* memory mapped BAR2 space. For coalesced WR SGE fetches
|
|
|
|
* data from the FIFO instead of from Host.
|
2013-03-14 05:08:51 +00:00
|
|
|
*/
|
2014-12-03 14:02:53 +00:00
|
|
|
static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
|
2013-03-14 05:08:51 +00:00
|
|
|
{
|
2014-12-03 14:02:53 +00:00
|
|
|
int count = 8;
|
2013-03-14 05:08:51 +00:00
|
|
|
|
|
|
|
while (count) {
|
|
|
|
writeq(*src, dst);
|
|
|
|
src++;
|
|
|
|
dst++;
|
|
|
|
count--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
/**
|
|
|
|
* ring_tx_db - check and potentially ring a Tx queue's doorbell
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the Tx queue
|
|
|
|
* @n: number of new descriptors to give to HW
|
|
|
|
*
|
|
|
|
* Ring the doorbel for a Tx queue.
|
|
|
|
*/
|
|
|
|
static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
|
|
|
|
{
|
2015-05-11 23:13:43 +00:00
|
|
|
/* Make sure that all writes to the TX Descriptors are committed
|
|
|
|
* before we tell the hardware about them.
|
|
|
|
*/
|
|
|
|
wmb();
|
2014-09-25 18:53:52 +00:00
|
|
|
|
2014-12-03 14:02:53 +00:00
|
|
|
/* If we don't have access to the new User Doorbell (T5+), use the old
|
|
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
|
|
*/
|
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 11:00:43 +00:00
|
|
|
u32 val = PIDX_V(n);
|
2014-09-25 18:53:52 +00:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
/* For T4 we need to participate in the Doorbell Recovery
|
|
|
|
* mechanism.
|
|
|
|
*/
|
|
|
|
spin_lock_irqsave(&q->db_lock, flags);
|
|
|
|
if (!q->db_disabled)
|
2015-01-05 11:00:43 +00:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
|
|
|
|
QID_V(q->cntxt_id) | val);
|
2014-09-25 18:53:52 +00:00
|
|
|
else
|
|
|
|
q->db_pidx_inc += n;
|
|
|
|
q->db_pidx = q->pidx;
|
|
|
|
spin_unlock_irqrestore(&q->db_lock, flags);
|
|
|
|
} else {
|
2015-01-05 11:00:43 +00:00
|
|
|
u32 val = PIDX_T5_V(n);
|
2014-09-25 18:53:52 +00:00
|
|
|
|
|
|
|
/* T4 and later chips share the same PIDX field offset within
|
|
|
|
* the doorbell, but T5 and later shrank the field in order to
|
|
|
|
* gain a bit for Doorbell Priority. The field was absurdly
|
|
|
|
* large in the first place (14 bits) so we just use the T5
|
|
|
|
* and later limits and warn if a Queue ID is too large.
|
|
|
|
*/
|
2015-01-05 11:00:43 +00:00
|
|
|
WARN_ON(val & DBPRIO_F);
|
2014-09-25 18:53:52 +00:00
|
|
|
|
2014-12-03 14:02:53 +00:00
|
|
|
/* If we're only writing a single TX Descriptor and we can use
|
|
|
|
* Inferred QID registers, we can use the Write Combining
|
|
|
|
* Gather Buffer; otherwise we use the simple doorbell.
|
2014-09-25 18:53:52 +00:00
|
|
|
*/
|
2014-12-03 14:02:53 +00:00
|
|
|
if (n == 1 && q->bar2_qid == 0) {
|
2014-09-25 18:53:52 +00:00
|
|
|
int index = (q->pidx
|
|
|
|
? (q->pidx - 1)
|
|
|
|
: (q->size - 1));
|
2014-12-03 14:02:53 +00:00
|
|
|
u64 *wr = (u64 *)&q->desc[index];
|
2014-09-25 18:53:52 +00:00
|
|
|
|
2014-12-03 14:02:53 +00:00
|
|
|
cxgb_pio_copy((u64 __iomem *)
|
|
|
|
(q->bar2_addr + SGE_UDB_WCDOORBELL),
|
|
|
|
wr);
|
2013-03-14 05:08:51 +00:00
|
|
|
} else {
|
2015-01-05 11:00:43 +00:00
|
|
|
writel(val | QID_V(q->bar2_qid),
|
2014-12-03 14:02:53 +00:00
|
|
|
q->bar2_addr + SGE_UDB_KDOORBELL);
|
2013-03-14 05:08:51 +00:00
|
|
|
}
|
2014-09-25 18:53:52 +00:00
|
|
|
|
|
|
|
/* This Write Memory Barrier will force the write to the User
|
|
|
|
* Doorbell area to be flushed. This is needed to prevent
|
|
|
|
* writes on different CPUs for the same queue from hitting
|
|
|
|
* the adapter out of order. This is required when some Work
|
|
|
|
* Requests take the Write Combine Gather Buffer path (user
|
|
|
|
* doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
|
|
|
|
* take the traditional path where we simply increment the
|
|
|
|
* PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
|
|
|
|
* hardware DMA read the actual Work Request.
|
|
|
|
*/
|
|
|
|
wmb();
|
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* inline_tx_skb - inline a packet's data into Tx descriptors
|
|
|
|
* @skb: the packet
|
|
|
|
* @q: the Tx queue where the packet will be inlined
|
|
|
|
* @pos: starting position in the Tx queue where to inline the packet
|
|
|
|
*
|
|
|
|
* Inline a packet's contents directly into Tx descriptors, starting at
|
|
|
|
* the given position within the Tx DMA ring.
|
|
|
|
* Most of the complexity of this operation is dealing with wrap arounds
|
|
|
|
* in the middle of the packet we want to inline.
|
|
|
|
*/
|
|
|
|
static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
|
|
|
|
void *pos)
|
|
|
|
{
|
|
|
|
u64 *p;
|
|
|
|
int left = (void *)q->stat - pos;
|
|
|
|
|
|
|
|
if (likely(skb->len <= left)) {
|
|
|
|
if (likely(!skb->data_len))
|
|
|
|
skb_copy_from_linear_data(skb, pos, skb->len);
|
|
|
|
else
|
|
|
|
skb_copy_bits(skb, 0, pos, skb->len);
|
|
|
|
pos += skb->len;
|
|
|
|
} else {
|
|
|
|
skb_copy_bits(skb, 0, pos, left);
|
|
|
|
skb_copy_bits(skb, left, q->desc, skb->len - left);
|
|
|
|
pos = (void *)q->desc + (skb->len - left);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 0-pad to multiple of 16 */
|
|
|
|
p = PTR_ALIGN(pos, 8);
|
|
|
|
if ((uintptr_t)p & 8)
|
|
|
|
*p = 0;
|
|
|
|
}
|
|
|
|
|
2015-12-08 04:39:15 +00:00
|
|
|
static void *inline_tx_skb_header(const struct sk_buff *skb,
|
|
|
|
const struct sge_txq *q, void *pos,
|
|
|
|
int length)
|
|
|
|
{
|
|
|
|
u64 *p;
|
|
|
|
int left = (void *)q->stat - pos;
|
|
|
|
|
|
|
|
if (likely(length <= left)) {
|
|
|
|
memcpy(pos, skb->data, length);
|
|
|
|
pos += length;
|
|
|
|
} else {
|
|
|
|
memcpy(pos, skb->data, left);
|
|
|
|
memcpy(q->desc, skb->data + left, length - left);
|
|
|
|
pos = (void *)q->desc + (length - left);
|
|
|
|
}
|
|
|
|
/* 0-pad to multiple of 16 */
|
|
|
|
p = PTR_ALIGN(pos, 8);
|
|
|
|
if ((uintptr_t)p & 8) {
|
|
|
|
*p = 0;
|
|
|
|
return p + 1;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
/*
|
|
|
|
* Figure out what HW csum a packet wants and return the appropriate control
|
|
|
|
* bits.
|
|
|
|
*/
|
2015-06-02 08:29:39 +00:00
|
|
|
static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
|
|
|
int csum_type;
|
|
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
|
|
|
|
|
|
if (iph->version == 4) {
|
|
|
|
if (iph->protocol == IPPROTO_TCP)
|
|
|
|
csum_type = TX_CSUM_TCPIP;
|
|
|
|
else if (iph->protocol == IPPROTO_UDP)
|
|
|
|
csum_type = TX_CSUM_UDPIP;
|
|
|
|
else {
|
|
|
|
nocsum: /*
|
|
|
|
* unknown protocol, disable HW csum
|
|
|
|
* and hope a bad packet is detected
|
|
|
|
*/
|
2015-05-11 23:13:43 +00:00
|
|
|
return TXPKT_L4CSUM_DIS_F;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* this doesn't work with extension headers
|
|
|
|
*/
|
|
|
|
const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
|
|
|
|
|
|
|
|
if (ip6h->nexthdr == IPPROTO_TCP)
|
|
|
|
csum_type = TX_CSUM_TCPIP6;
|
|
|
|
else if (ip6h->nexthdr == IPPROTO_UDP)
|
|
|
|
csum_type = TX_CSUM_UDPIP6;
|
|
|
|
else
|
|
|
|
goto nocsum;
|
|
|
|
}
|
|
|
|
|
2015-06-02 08:29:39 +00:00
|
|
|
if (likely(csum_type >= TX_CSUM_TCPIP)) {
|
|
|
|
u64 hdr_len = TXPKT_IPHDR_LEN_V(skb_network_header_len(skb));
|
|
|
|
int eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
|
|
|
|
if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
|
|
|
|
hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
|
|
|
|
else
|
|
|
|
hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
|
|
|
|
return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
|
|
|
|
} else {
|
2010-04-01 15:28:24 +00:00
|
|
|
int start = skb_transport_offset(skb);
|
|
|
|
|
2015-05-11 23:13:43 +00:00
|
|
|
return TXPKT_CSUM_TYPE_V(csum_type) |
|
|
|
|
TXPKT_CSUM_START_V(start) |
|
|
|
|
TXPKT_CSUM_LOC_V(start + skb->csum_offset);
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void eth_txq_stop(struct sge_eth_txq *q)
|
|
|
|
{
|
|
|
|
netif_tx_stop_queue(q->txq);
|
|
|
|
q->q.stops++;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void txq_advance(struct sge_txq *q, unsigned int n)
|
|
|
|
{
|
|
|
|
q->in_use += n;
|
|
|
|
q->pidx += n;
|
|
|
|
if (q->pidx >= q->size)
|
|
|
|
q->pidx -= q->size;
|
|
|
|
}
|
|
|
|
|
2015-03-24 13:44:46 +00:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
static inline int
|
|
|
|
cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
|
|
|
|
const struct port_info *pi, u64 *cntrl)
|
|
|
|
{
|
|
|
|
const struct cxgb_fcoe *fcoe = &pi->fcoe;
|
|
|
|
|
|
|
|
if (!(fcoe->flags & CXGB_FCOE_ENABLED))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (skb->protocol != htons(ETH_P_FCOE))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
skb->mac_len = sizeof(struct ethhdr);
|
|
|
|
|
|
|
|
skb_set_network_header(skb, skb->mac_len);
|
|
|
|
skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
|
|
|
|
|
|
|
|
if (!cxgb_fcoe_sof_eof_supported(adap, skb))
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
|
|
|
/* FC CRC offload */
|
2015-05-11 23:13:43 +00:00
|
|
|
*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
|
|
|
|
TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
|
|
|
|
TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
|
|
|
|
TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
|
|
|
|
TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
|
2015-03-24 13:44:46 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
/**
|
|
|
|
* t4_eth_xmit - add a packet to an Ethernet Tx queue
|
|
|
|
* @skb: the packet
|
|
|
|
* @dev: the egress net device
|
|
|
|
*
|
|
|
|
* Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
|
|
|
|
*/
|
|
|
|
netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
|
|
{
|
2015-07-17 20:12:33 +00:00
|
|
|
u32 wr_mid, ctrl0;
|
2010-04-01 15:28:24 +00:00
|
|
|
u64 cntrl, *end;
|
|
|
|
int qidx, credits;
|
|
|
|
unsigned int flits, ndesc;
|
|
|
|
struct adapter *adap;
|
|
|
|
struct sge_eth_txq *q;
|
|
|
|
const struct port_info *pi;
|
|
|
|
struct fw_eth_tx_pkt_wr *wr;
|
|
|
|
struct cpl_tx_pkt_core *cpl;
|
|
|
|
const struct skb_shared_info *ssi;
|
|
|
|
dma_addr_t addr[MAX_SKB_FRAGS + 1];
|
2014-02-18 12:26:14 +00:00
|
|
|
bool immediate = false;
|
2015-05-05 09:29:56 +00:00
|
|
|
int len, max_pkt_len;
|
2015-03-24 13:44:46 +00:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
int err;
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The chip min packet length is 10 octets but play safe and reject
|
|
|
|
* anything shorter than an Ethernet header.
|
|
|
|
*/
|
|
|
|
if (unlikely(skb->len < ETH_HLEN)) {
|
2014-03-15 23:29:49 +00:00
|
|
|
out_free: dev_kfree_skb_any(skb);
|
2010-04-01 15:28:24 +00:00
|
|
|
return NETDEV_TX_OK;
|
|
|
|
}
|
|
|
|
|
2015-05-05 09:29:56 +00:00
|
|
|
/* Discard the packet if the length is greater than mtu */
|
|
|
|
max_pkt_len = ETH_HLEN + dev->mtu;
|
2016-07-28 07:58:57 +00:00
|
|
|
if (skb_vlan_tagged(skb))
|
2015-05-05 09:29:56 +00:00
|
|
|
max_pkt_len += VLAN_HLEN;
|
|
|
|
if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
|
|
|
|
goto out_free;
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
pi = netdev_priv(dev);
|
|
|
|
adap = pi->adapter;
|
|
|
|
qidx = skb_get_queue_mapping(skb);
|
|
|
|
q = &adap->sge.ethtxq[qidx + pi->first_qset];
|
|
|
|
|
|
|
|
reclaim_completed_tx(adap, &q->q, true);
|
2015-05-11 23:13:43 +00:00
|
|
|
cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
|
2015-03-24 13:44:46 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
err = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
|
|
|
|
if (unlikely(err == -ENOTSUPP))
|
|
|
|
goto out_free;
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
flits = calc_tx_flits(skb);
|
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
|
|
|
|
if (unlikely(credits < 0)) {
|
|
|
|
eth_txq_stop(q);
|
|
|
|
dev_err(adap->pdev_dev,
|
|
|
|
"%s: Tx ring %u full while queue awake!\n",
|
|
|
|
dev->name, qidx);
|
|
|
|
return NETDEV_TX_BUSY;
|
|
|
|
}
|
|
|
|
|
2014-02-18 12:26:14 +00:00
|
|
|
if (is_eth_imm(skb))
|
|
|
|
immediate = true;
|
|
|
|
|
|
|
|
if (!immediate &&
|
2010-04-01 15:28:24 +00:00
|
|
|
unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
|
|
|
|
q->mapping_err++;
|
|
|
|
goto out_free;
|
|
|
|
}
|
|
|
|
|
2014-11-07 04:05:25 +00:00
|
|
|
wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
|
2010-04-01 15:28:24 +00:00
|
|
|
if (unlikely(credits < ETHTXQ_STOP_THRES)) {
|
|
|
|
eth_txq_stop(q);
|
2014-11-07 04:05:25 +00:00
|
|
|
wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
wr = (void *)&q->q.desc[q->q.pidx];
|
|
|
|
wr->equiq_to_len16 = htonl(wr_mid);
|
|
|
|
wr->r3 = cpu_to_be64(0);
|
|
|
|
end = (u64 *)wr + flits;
|
|
|
|
|
2014-02-18 12:26:14 +00:00
|
|
|
len = immediate ? skb->len : 0;
|
2010-04-01 15:28:24 +00:00
|
|
|
ssi = skb_shinfo(skb);
|
|
|
|
if (ssi->gso_size) {
|
2010-08-02 13:19:18 +00:00
|
|
|
struct cpl_tx_pkt_lso *lso = (void *)wr;
|
2010-04-01 15:28:24 +00:00
|
|
|
bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
|
|
|
|
int l3hdr_len = skb_network_header_len(skb);
|
|
|
|
int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
|
|
|
|
|
2014-02-18 12:26:14 +00:00
|
|
|
len += sizeof(*lso);
|
2014-11-07 04:05:25 +00:00
|
|
|
wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
|
|
|
|
FW_WR_IMMDLEN_V(len));
|
2015-05-11 23:13:43 +00:00
|
|
|
lso->c.lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
|
|
|
|
LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
|
|
|
|
LSO_IPV6_V(v6) |
|
|
|
|
LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
|
|
|
|
LSO_IPHDR_LEN_V(l3hdr_len / 4) |
|
|
|
|
LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
|
2010-08-02 13:19:18 +00:00
|
|
|
lso->c.ipid_ofst = htons(0);
|
|
|
|
lso->c.mss = htons(ssi->gso_size);
|
|
|
|
lso->c.seqno_offset = htonl(0);
|
2014-10-09 00:18:45 +00:00
|
|
|
if (is_t4(adap->params.chip))
|
|
|
|
lso->c.len = htonl(skb->len);
|
|
|
|
else
|
2015-05-11 23:13:43 +00:00
|
|
|
lso->c.len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
|
2010-04-01 15:28:24 +00:00
|
|
|
cpl = (void *)(lso + 1);
|
2015-06-02 08:29:39 +00:00
|
|
|
|
|
|
|
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
|
|
|
|
cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
|
|
|
|
else
|
|
|
|
cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
|
|
|
|
|
|
|
|
cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
|
|
|
|
TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
|
|
|
|
TXPKT_IPHDR_LEN_V(l3hdr_len);
|
2010-04-01 15:28:24 +00:00
|
|
|
q->tso++;
|
|
|
|
q->tx_cso += ssi->gso_segs;
|
|
|
|
} else {
|
2014-03-13 15:20:50 +00:00
|
|
|
len += sizeof(*cpl);
|
2014-11-07 04:05:25 +00:00
|
|
|
wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
|
|
|
|
FW_WR_IMMDLEN_V(len));
|
2010-04-01 15:28:24 +00:00
|
|
|
cpl = (void *)(wr + 1);
|
|
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
2015-06-02 08:29:39 +00:00
|
|
|
cntrl = hwcsum(adap->params.chip, skb) |
|
|
|
|
TXPKT_IPCSUM_DIS_F;
|
2010-04-01 15:28:24 +00:00
|
|
|
q->tx_cso++;
|
2015-03-24 13:44:46 +00:00
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
2015-01-13 16:13:44 +00:00
|
|
|
if (skb_vlan_tag_present(skb)) {
|
2010-04-01 15:28:24 +00:00
|
|
|
q->vlan_ins++;
|
2015-05-11 23:13:43 +00:00
|
|
|
cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
|
2015-03-24 13:44:46 +00:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
if (skb->protocol == htons(ETH_P_FCOE))
|
2015-05-11 23:13:43 +00:00
|
|
|
cntrl |= TXPKT_VLAN_V(
|
2015-03-24 13:44:46 +00:00
|
|
|
((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
2015-07-17 20:12:33 +00:00
|
|
|
ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
|
|
|
|
TXPKT_PF_V(adap->pf);
|
|
|
|
#ifdef CONFIG_CHELSIO_T4_DCB
|
|
|
|
if (is_t4(adap->params.chip))
|
|
|
|
ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
|
|
|
|
else
|
|
|
|
ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
|
|
|
|
#endif
|
|
|
|
cpl->ctrl0 = htonl(ctrl0);
|
2010-04-01 15:28:24 +00:00
|
|
|
cpl->pack = htons(0);
|
|
|
|
cpl->len = htons(skb->len);
|
|
|
|
cpl->ctrl1 = cpu_to_be64(cntrl);
|
|
|
|
|
2014-02-18 12:26:14 +00:00
|
|
|
if (immediate) {
|
2010-04-01 15:28:24 +00:00
|
|
|
inline_tx_skb(skb, &q->q, cpl + 1);
|
2014-03-15 23:29:49 +00:00
|
|
|
dev_consume_skb_any(skb);
|
2010-04-01 15:28:24 +00:00
|
|
|
} else {
|
|
|
|
int last_desc;
|
|
|
|
|
|
|
|
write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
|
|
|
|
addr);
|
|
|
|
skb_orphan(skb);
|
|
|
|
|
|
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
|
|
if (last_desc >= q->q.size)
|
|
|
|
last_desc -= q->q.size;
|
|
|
|
q->q.sdesc[last_desc].skb = skb;
|
|
|
|
q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
|
|
|
|
ring_tx_db(adap, &q->q, ndesc);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
|
|
|
|
* @q: the SGE control Tx queue
|
|
|
|
*
|
|
|
|
* This is a variant of reclaim_completed_tx() that is used for Tx queues
|
|
|
|
* that send only immediate data (presently just the control queues) and
|
|
|
|
* thus do not have any sk_buffs to release.
|
|
|
|
*/
|
|
|
|
static inline void reclaim_completed_tx_imm(struct sge_txq *q)
|
|
|
|
{
|
2015-12-08 04:39:13 +00:00
|
|
|
int hw_cidx = ntohs(ACCESS_ONCE(q->stat->cidx));
|
2010-04-01 15:28:24 +00:00
|
|
|
int reclaim = hw_cidx - q->cidx;
|
|
|
|
|
|
|
|
if (reclaim < 0)
|
|
|
|
reclaim += q->size;
|
|
|
|
|
|
|
|
q->in_use -= reclaim;
|
|
|
|
q->cidx = hw_cidx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_imm - check whether a packet can be sent as immediate data
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns true if a packet can be sent as a WR with immediate data.
|
|
|
|
*/
|
|
|
|
static inline int is_imm(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->len <= MAX_CTRL_WR_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ctrlq_check_stop - check if a control queue is full and should stop
|
|
|
|
* @q: the queue
|
|
|
|
* @wr: most recent WR written to the queue
|
|
|
|
*
|
|
|
|
* Check if a control queue has become full and should be stopped.
|
|
|
|
* We clean up control queue descriptors very lazily, only when we are out.
|
|
|
|
* If the queue is still full after reclaiming any completed descriptors
|
|
|
|
* we suspend it and have the last WR wake it up.
|
|
|
|
*/
|
|
|
|
static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
|
|
|
|
{
|
|
|
|
reclaim_completed_tx_imm(&q->q);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
2014-11-07 04:05:25 +00:00
|
|
|
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
|
2010-04-01 15:28:24 +00:00
|
|
|
q->q.stops++;
|
|
|
|
q->full = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ctrl_xmit - send a packet through an SGE control Tx queue
|
|
|
|
* @q: the control queue
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Send a packet through an SGE control Tx queue. Packets sent through
|
|
|
|
* a control queue must fit entirely as immediate data.
|
|
|
|
*/
|
|
|
|
static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int ndesc;
|
|
|
|
struct fw_wr_hdr *wr;
|
|
|
|
|
|
|
|
if (unlikely(!is_imm(skb))) {
|
|
|
|
WARN_ON(1);
|
|
|
|
dev_kfree_skb(skb);
|
|
|
|
return NET_XMIT_DROP;
|
|
|
|
}
|
|
|
|
|
|
|
|
ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
|
|
|
|
if (unlikely(q->full)) {
|
|
|
|
skb->priority = ndesc; /* save for restart */
|
|
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_CN;
|
|
|
|
}
|
|
|
|
|
|
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
|
|
|
inline_tx_skb(skb, &q->q, wr);
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
|
|
|
|
ctrlq_check_stop(q, wr);
|
|
|
|
|
|
|
|
ring_tx_db(q->adap, &q->q, ndesc);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
|
|
|
kfree_skb(skb);
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restart_ctrlq - restart a suspended control queue
|
|
|
|
* @data: the control queue to restart
|
|
|
|
*
|
|
|
|
* Resumes transmission on a suspended Tx control queue.
|
|
|
|
*/
|
|
|
|
static void restart_ctrlq(unsigned long data)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
unsigned int written = 0;
|
|
|
|
struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
|
|
|
|
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
reclaim_completed_tx_imm(&q->q);
|
|
|
|
BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
|
|
|
|
|
|
|
|
while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
|
|
|
|
struct fw_wr_hdr *wr;
|
|
|
|
unsigned int ndesc = skb->priority; /* previously saved */
|
|
|
|
|
2015-08-12 11:25:07 +00:00
|
|
|
written += ndesc;
|
|
|
|
/* Write descriptors and free skbs outside the lock to limit
|
2010-04-01 15:28:24 +00:00
|
|
|
* wait times. q->full is still set so new skbs will be queued.
|
|
|
|
*/
|
2015-08-12 11:25:07 +00:00
|
|
|
wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
|
|
|
|
txq_advance(&q->q, ndesc);
|
2010-04-01 15:28:24 +00:00
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
|
|
|
inline_tx_skb(skb, &q->q, wr);
|
|
|
|
kfree_skb(skb);
|
|
|
|
|
|
|
|
if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
|
|
|
|
unsigned long old = q->q.stops;
|
|
|
|
|
|
|
|
ctrlq_check_stop(q, wr);
|
|
|
|
if (q->q.stops != old) { /* suspended anew */
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
goto ringdb;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (written > 16) {
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
written = 0;
|
|
|
|
}
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
q->full = 0;
|
|
|
|
ringdb: if (written)
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_mgmt_tx - send a management message
|
|
|
|
* @adap: the adapter
|
|
|
|
* @skb: the packet containing the management message
|
|
|
|
*
|
|
|
|
* Send a management message through control queue 0.
|
|
|
|
*/
|
|
|
|
int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
|
|
|
|
local_bh_enable();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_ofld_imm - check whether a packet can be sent as immediate data
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns true if a packet can be sent as an offload WR with immediate
|
|
|
|
* data. We currently use the same limit as for Ethernet packets.
|
|
|
|
*/
|
|
|
|
static inline int is_ofld_imm(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->len <= MAX_IMM_TX_PKT_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* calc_tx_flits_ofld - calculate # of flits for an offload packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the number of flits needed for the given offload packet.
|
|
|
|
* These packets are already fully constructed and no additional headers
|
|
|
|
* will be added.
|
|
|
|
*/
|
|
|
|
static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int flits, cnt;
|
|
|
|
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
return DIV_ROUND_UP(skb->len, 8);
|
|
|
|
|
|
|
|
flits = skb_transport_offset(skb) / 8U; /* headers */
|
|
|
|
cnt = skb_shinfo(skb)->nr_frags;
|
2013-06-03 22:11:16 +00:00
|
|
|
if (skb_tail_pointer(skb) != skb_transport_header(skb))
|
2010-04-01 15:28:24 +00:00
|
|
|
cnt++;
|
|
|
|
return flits + sgl_len(cnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
|
|
|
|
* @adap: the adapter
|
|
|
|
* @q: the queue to stop
|
|
|
|
*
|
|
|
|
* Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
|
|
|
|
* inability to map packets. A periodic timer attempts to restart
|
|
|
|
* queues so marked.
|
|
|
|
*/
|
|
|
|
static void txq_stop_maperr(struct sge_ofld_txq *q)
|
|
|
|
{
|
|
|
|
q->mapping_err++;
|
|
|
|
q->q.stops++;
|
2010-08-23 17:20:58 +00:00
|
|
|
set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
|
|
|
|
q->adap->sge.txq_maperr);
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ofldtxq_stop - stop an offload Tx queue that has become full
|
|
|
|
* @q: the queue to stop
|
|
|
|
* @skb: the packet causing the queue to become full
|
|
|
|
*
|
|
|
|
* Stops an offload Tx queue that has become full and modifies the packet
|
|
|
|
* being written to request a wakeup.
|
|
|
|
*/
|
|
|
|
static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
|
|
|
|
|
2014-11-07 04:05:25 +00:00
|
|
|
wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
|
2010-04-01 15:28:24 +00:00
|
|
|
q->q.stops++;
|
|
|
|
q->full = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2015-12-08 04:39:14 +00:00
|
|
|
* service_ofldq - service/restart a suspended offload queue
|
2010-04-01 15:28:24 +00:00
|
|
|
* @q: the offload queue
|
|
|
|
*
|
2015-12-08 04:39:14 +00:00
|
|
|
* Services an offload Tx queue by moving packets from its Pending Send
|
|
|
|
* Queue to the Hardware TX ring. The function starts and ends with the
|
|
|
|
* Send Queue locked, but drops the lock while putting the skb at the
|
|
|
|
* head of the Send Queue onto the Hardware TX Ring. Dropping the lock
|
|
|
|
* allows more skbs to be added to the Send Queue by other threads.
|
|
|
|
* The packet being processed at the head of the Pending Send Queue is
|
|
|
|
* left on the queue in case we experience DMA Mapping errors, etc.
|
|
|
|
* and need to give up and restart later.
|
|
|
|
*
|
|
|
|
* service_ofldq() can be thought of as a task which opportunistically
|
|
|
|
* uses other threads execution contexts. We use the Offload Queue
|
|
|
|
* boolean "service_ofldq_running" to make sure that only one instance
|
|
|
|
* is ever running at a time ...
|
2010-04-01 15:28:24 +00:00
|
|
|
*/
|
|
|
|
static void service_ofldq(struct sge_ofld_txq *q)
|
|
|
|
{
|
2015-12-08 04:39:15 +00:00
|
|
|
u64 *pos, *before, *end;
|
2010-04-01 15:28:24 +00:00
|
|
|
int credits;
|
|
|
|
struct sk_buff *skb;
|
2015-12-08 04:39:15 +00:00
|
|
|
struct sge_txq *txq;
|
|
|
|
unsigned int left;
|
2010-04-01 15:28:24 +00:00
|
|
|
unsigned int written = 0;
|
|
|
|
unsigned int flits, ndesc;
|
|
|
|
|
2015-12-08 04:39:14 +00:00
|
|
|
/* If another thread is currently in service_ofldq() processing the
|
|
|
|
* Pending Send Queue then there's nothing to do. Otherwise, flag
|
|
|
|
* that we're doing the work and continue. Examining/modifying
|
|
|
|
* the Offload Queue boolean "service_ofldq_running" must be done
|
|
|
|
* while holding the Pending Send Queue Lock.
|
|
|
|
*/
|
|
|
|
if (q->service_ofldq_running)
|
|
|
|
return;
|
|
|
|
q->service_ofldq_running = true;
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
|
2015-12-08 04:39:14 +00:00
|
|
|
/* We drop the lock while we're working with the skb at the
|
|
|
|
* head of the Pending Send Queue. This allows more skbs to
|
|
|
|
* be added to the Pending Send Queue while we're working on
|
|
|
|
* this one. We don't need to lock to guard the TX Ring
|
|
|
|
* updates because only one thread of execution is ever
|
|
|
|
* allowed into service_ofldq() at a time.
|
2010-04-01 15:28:24 +00:00
|
|
|
*/
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
|
|
|
|
reclaim_completed_tx(q->adap, &q->q, false);
|
|
|
|
|
|
|
|
flits = skb->priority; /* previously saved */
|
|
|
|
ndesc = flits_to_desc(flits);
|
|
|
|
credits = txq_avail(&q->q) - ndesc;
|
|
|
|
BUG_ON(credits < 0);
|
|
|
|
if (unlikely(credits < TXQ_STOP_THRES))
|
|
|
|
ofldtxq_stop(q, skb);
|
|
|
|
|
|
|
|
pos = (u64 *)&q->q.desc[q->q.pidx];
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
inline_tx_skb(skb, &q->q, pos);
|
|
|
|
else if (map_skb(q->adap->pdev_dev, skb,
|
|
|
|
(dma_addr_t *)skb->head)) {
|
|
|
|
txq_stop_maperr(q);
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
int last_desc, hdr_len = skb_transport_offset(skb);
|
|
|
|
|
2015-12-08 04:39:15 +00:00
|
|
|
/* The WR headers may not fit within one descriptor.
|
|
|
|
* So we need to deal with wrap-around here.
|
|
|
|
*/
|
|
|
|
before = (u64 *)pos;
|
|
|
|
end = (u64 *)pos + flits;
|
|
|
|
txq = &q->q;
|
|
|
|
pos = (void *)inline_tx_skb_header(skb, &q->q,
|
|
|
|
(void *)pos,
|
|
|
|
hdr_len);
|
|
|
|
if (before > (u64 *)pos) {
|
|
|
|
left = (u8 *)end - (u8 *)txq->stat;
|
|
|
|
end = (void *)txq->desc + left;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If current position is already at the end of the
|
|
|
|
* ofld queue, reset the current to point to
|
|
|
|
* start of the queue and update the end ptr as well.
|
|
|
|
*/
|
|
|
|
if (pos == (u64 *)txq->stat) {
|
|
|
|
left = (u8 *)end - (u8 *)txq->stat;
|
|
|
|
end = (void *)txq->desc + left;
|
|
|
|
pos = (void *)txq->desc;
|
|
|
|
}
|
|
|
|
|
|
|
|
write_sgl(skb, &q->q, (void *)pos,
|
|
|
|
end, hdr_len,
|
2010-04-01 15:28:24 +00:00
|
|
|
(dma_addr_t *)skb->head);
|
|
|
|
#ifdef CONFIG_NEED_DMA_MAP_STATE
|
|
|
|
skb->dev = q->adap->port[0];
|
|
|
|
skb->destructor = deferred_unmap_destructor;
|
|
|
|
#endif
|
|
|
|
last_desc = q->q.pidx + ndesc - 1;
|
|
|
|
if (last_desc >= q->q.size)
|
|
|
|
last_desc -= q->q.size;
|
|
|
|
q->q.sdesc[last_desc].skb = skb;
|
|
|
|
}
|
|
|
|
|
|
|
|
txq_advance(&q->q, ndesc);
|
|
|
|
written += ndesc;
|
|
|
|
if (unlikely(written > 32)) {
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
|
|
|
written = 0;
|
|
|
|
}
|
|
|
|
|
2015-12-08 04:39:14 +00:00
|
|
|
/* Reacquire the Pending Send Queue Lock so we can unlink the
|
|
|
|
* skb we've just successfully transferred to the TX Ring and
|
|
|
|
* loop for the next skb which may be at the head of the
|
|
|
|
* Pending Send Queue.
|
|
|
|
*/
|
2010-04-01 15:28:24 +00:00
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
__skb_unlink(skb, &q->sendq);
|
|
|
|
if (is_ofld_imm(skb))
|
|
|
|
kfree_skb(skb);
|
|
|
|
}
|
|
|
|
if (likely(written))
|
|
|
|
ring_tx_db(q->adap, &q->q, written);
|
2015-12-08 04:39:14 +00:00
|
|
|
|
|
|
|
/*Indicate that no thread is processing the Pending Send Queue
|
|
|
|
* currently.
|
|
|
|
*/
|
|
|
|
q->service_ofldq_running = false;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* ofld_xmit - send a packet through an offload queue
|
|
|
|
* @q: the Tx offload queue
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Send an offload packet through an SGE offload queue.
|
|
|
|
*/
|
|
|
|
static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
|
|
|
|
spin_lock(&q->sendq.lock);
|
2015-12-08 04:39:14 +00:00
|
|
|
|
|
|
|
/* Queue the new skb onto the Offload Queue's Pending Send Queue. If
|
|
|
|
* that results in this new skb being the only one on the queue, start
|
|
|
|
* servicing it. If there are other skbs already on the list, then
|
|
|
|
* either the queue is currently being processed or it's been stopped
|
|
|
|
* for some reason and it'll be restarted at a later time. Restart
|
|
|
|
* paths are triggered by events like experiencing a DMA Mapping Error
|
|
|
|
* or filling the Hardware TX Ring.
|
|
|
|
*/
|
2010-04-01 15:28:24 +00:00
|
|
|
__skb_queue_tail(&q->sendq, skb);
|
|
|
|
if (q->sendq.qlen == 1)
|
|
|
|
service_ofldq(q);
|
2015-12-08 04:39:14 +00:00
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restart_ofldq - restart a suspended offload queue
|
|
|
|
* @data: the offload queue to restart
|
|
|
|
*
|
|
|
|
* Resumes transmission on a suspended Tx offload queue.
|
|
|
|
*/
|
|
|
|
static void restart_ofldq(unsigned long data)
|
|
|
|
{
|
|
|
|
struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
|
|
|
|
|
|
|
|
spin_lock(&q->sendq.lock);
|
|
|
|
q->full = 0; /* the queue actually is completely empty now */
|
|
|
|
service_ofldq(q);
|
|
|
|
spin_unlock(&q->sendq.lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* skb_txq - return the Tx queue an offload packet should use
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns the Tx queue an offload packet should use as indicated by bits
|
|
|
|
* 1-15 in the packet's queue_mapping.
|
|
|
|
*/
|
|
|
|
static inline unsigned int skb_txq(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->queue_mapping >> 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_ctrl_pkt - return whether an offload packet is a control packet
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Returns whether an offload packet should use an OFLD or a CTRL
|
|
|
|
* Tx queue as indicated by bit 0 in the packet's queue_mapping.
|
|
|
|
*/
|
|
|
|
static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return skb->queue_mapping & 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
unsigned int idx = skb_txq(skb);
|
|
|
|
|
2014-02-18 12:26:11 +00:00
|
|
|
if (unlikely(is_ctrl_pkt(skb))) {
|
|
|
|
/* Single ctrl queue is a requirement for LE workaround path */
|
|
|
|
if (adap->tids.nsftids)
|
|
|
|
idx = 0;
|
2010-04-01 15:28:24 +00:00
|
|
|
return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
|
2014-02-18 12:26:11 +00:00
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_ofld_send - send an offload packet
|
|
|
|
* @adap: the adapter
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends an offload packet. We use the packet queue_mapping to select the
|
|
|
|
* appropriate Tx queue as follows: bit 0 indicates whether the packet
|
|
|
|
* should be sent as regular or control, bits 1-15 select the queue.
|
|
|
|
*/
|
|
|
|
int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
local_bh_disable();
|
|
|
|
ret = ofld_send(adap, skb);
|
|
|
|
local_bh_enable();
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_ofld_send - send an offload packet
|
|
|
|
* @dev: the net device
|
|
|
|
* @skb: the packet
|
|
|
|
*
|
|
|
|
* Sends an offload packet. This is an exported version of @t4_ofld_send,
|
|
|
|
* intended for ULDs.
|
|
|
|
*/
|
|
|
|
int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
|
|
|
|
{
|
|
|
|
return t4_ofld_send(netdev2adap(dev), skb);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_ofld_send);
|
|
|
|
|
2011-10-19 23:01:46 +00:00
|
|
|
static inline void copy_frags(struct sk_buff *skb,
|
2010-04-01 15:28:24 +00:00
|
|
|
const struct pkt_gl *gl, unsigned int offset)
|
|
|
|
{
|
2011-10-19 23:01:46 +00:00
|
|
|
int i;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
/* usually there's just one frag */
|
2011-10-19 23:01:46 +00:00
|
|
|
__skb_fill_page_desc(skb, 0, gl->frags[0].page,
|
|
|
|
gl->frags[0].offset + offset,
|
|
|
|
gl->frags[0].size - offset);
|
|
|
|
skb_shinfo(skb)->nr_frags = gl->nfrags;
|
|
|
|
for (i = 1; i < gl->nfrags; i++)
|
|
|
|
__skb_fill_page_desc(skb, i, gl->frags[i].page,
|
|
|
|
gl->frags[i].offset,
|
|
|
|
gl->frags[i].size);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
/* get a reference to the last page, we don't own it */
|
2011-10-19 23:01:46 +00:00
|
|
|
get_page(gl->frags[gl->nfrags - 1].page);
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
|
|
|
|
* @gl: the gather list
|
|
|
|
* @skb_len: size of sk_buff main body if it carries fragments
|
|
|
|
* @pull_len: amount of data to move to the sk_buff's main body
|
|
|
|
*
|
|
|
|
* Builds an sk_buff from the given packet gather list. Returns the
|
|
|
|
* sk_buff or %NULL if sk_buff allocation failed.
|
|
|
|
*/
|
|
|
|
struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
|
|
|
|
unsigned int skb_len, unsigned int pull_len)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
|
|
|
|
* size, which is expected since buffers are at least PAGE_SIZEd.
|
|
|
|
* In this case packets up to RX_COPY_THRES have only one fragment.
|
|
|
|
*/
|
|
|
|
if (gl->tot_len <= RX_COPY_THRES) {
|
|
|
|
skb = dev_alloc_skb(gl->tot_len);
|
|
|
|
if (unlikely(!skb))
|
|
|
|
goto out;
|
|
|
|
__skb_put(skb, gl->tot_len);
|
|
|
|
skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
|
|
|
|
} else {
|
|
|
|
skb = dev_alloc_skb(skb_len);
|
|
|
|
if (unlikely(!skb))
|
|
|
|
goto out;
|
|
|
|
__skb_put(skb, pull_len);
|
|
|
|
skb_copy_to_linear_data(skb, gl->va, pull_len);
|
|
|
|
|
2011-10-19 23:01:46 +00:00
|
|
|
copy_frags(skb, gl, pull_len);
|
2010-04-01 15:28:24 +00:00
|
|
|
skb->len = gl->tot_len;
|
|
|
|
skb->data_len = skb->len - pull_len;
|
|
|
|
skb->truesize += skb->data_len;
|
|
|
|
}
|
|
|
|
out: return skb;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_pktgl_free - free a packet gather list
|
|
|
|
* @gl: the gather list
|
|
|
|
*
|
|
|
|
* Releases the pages of a packet gather list. We do not own the last
|
|
|
|
* page on the list and do not free it.
|
|
|
|
*/
|
2010-04-21 08:59:17 +00:00
|
|
|
static void t4_pktgl_free(const struct pkt_gl *gl)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
|
|
|
int n;
|
2011-10-19 23:01:46 +00:00
|
|
|
const struct page_frag *p;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
|
|
|
|
put_page(p->page);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process an MPS trace packet. Give it an unused protocol number so it won't
|
|
|
|
* be delivered to anyone and send it to the stack for capture.
|
|
|
|
*/
|
|
|
|
static noinline int handle_trace_pkt(struct adapter *adap,
|
|
|
|
const struct pkt_gl *gl)
|
|
|
|
{
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(gl);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2013-12-03 11:35:56 +00:00
|
|
|
if (is_t4(adap->params.chip))
|
2013-03-14 05:08:49 +00:00
|
|
|
__skb_pull(skb, sizeof(struct cpl_trace_pkt));
|
|
|
|
else
|
|
|
|
__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
skb_reset_mac_header(skb);
|
|
|
|
skb->protocol = htons(0xffff);
|
|
|
|
skb->dev = adap->port[0];
|
|
|
|
netif_receive_skb(skb);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-09-28 04:56:53 +00:00
|
|
|
/**
|
|
|
|
* cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
|
|
|
|
* @adap: the adapter
|
|
|
|
* @hwtstamps: time stamp structure to update
|
|
|
|
* @sgetstamp: 60bit iqe timestamp
|
|
|
|
*
|
|
|
|
* Every ingress queue entry has the 60-bit timestamp, convert that timestamp
|
|
|
|
* which is in Core Clock ticks into ktime_t and assign it
|
|
|
|
**/
|
|
|
|
static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
|
|
|
|
struct skb_shared_hwtstamps *hwtstamps,
|
|
|
|
u64 sgetstamp)
|
|
|
|
{
|
|
|
|
u64 ns;
|
|
|
|
u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
|
|
|
|
|
|
|
|
ns = div_u64(tmp, adap->params.vpd.cclk);
|
|
|
|
|
|
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
|
|
hwtstamps->hwtstamp = ns_to_ktime(ns);
|
|
|
|
}
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
|
|
|
|
const struct cpl_rx_pkt *pkt)
|
|
|
|
{
|
2012-09-26 02:39:38 +00:00
|
|
|
struct adapter *adapter = rxq->rspq.adap;
|
|
|
|
struct sge *s = &adapter->sge;
|
2015-09-28 04:56:53 +00:00
|
|
|
struct port_info *pi;
|
2010-04-01 15:28:24 +00:00
|
|
|
int ret;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
|
|
|
|
skb = napi_get_frags(&rxq->rspq.napi);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(gl);
|
|
|
|
rxq->stats.rx_drops++;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
copy_frags(skb, gl, s->pktshift);
|
|
|
|
skb->len = gl->tot_len - s->pktshift;
|
2010-04-01 15:28:24 +00:00
|
|
|
skb->data_len = skb->len;
|
|
|
|
skb->truesize += skb->data_len;
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
skb_record_rx_queue(skb, rxq->rspq.idx);
|
2015-09-28 04:56:53 +00:00
|
|
|
pi = netdev_priv(skb->dev);
|
|
|
|
if (pi->rxtstamp)
|
|
|
|
cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
|
|
|
|
gl->sgetstamp);
|
2010-04-27 23:22:42 +00:00
|
|
|
if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
|
2013-12-18 07:23:29 +00:00
|
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
|
|
PKT_HASH_TYPE_L3);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
2013-04-19 02:04:30 +00:00
|
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
2010-04-01 15:28:24 +00:00
|
|
|
rxq->stats.vlan_ex++;
|
|
|
|
}
|
|
|
|
ret = napi_gro_frags(&rxq->rspq.napi);
|
2010-10-21 11:29:56 +00:00
|
|
|
if (ret == GRO_HELD)
|
2010-04-01 15:28:24 +00:00
|
|
|
rxq->stats.lro_pkts++;
|
|
|
|
else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
|
|
|
|
rxq->stats.lro_merged++;
|
|
|
|
rxq->stats.pkts++;
|
|
|
|
rxq->stats.rx_cso++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_ethrx_handler - process an ingress ethernet packet
|
|
|
|
* @q: the response queue that received the packet
|
|
|
|
* @rsp: the response queue descriptor holding the RX_PKT message
|
|
|
|
* @si: the gather list of packet fragments
|
|
|
|
*
|
|
|
|
* Process an ingress ethernet packet and deliver it to the stack.
|
|
|
|
*/
|
|
|
|
int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
|
|
|
|
const struct pkt_gl *si)
|
|
|
|
{
|
|
|
|
bool csum_ok;
|
|
|
|
struct sk_buff *skb;
|
|
|
|
const struct cpl_rx_pkt *pkt;
|
|
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &q->adap->sge;
|
2013-12-03 11:35:56 +00:00
|
|
|
int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
|
2013-03-14 05:08:49 +00:00
|
|
|
CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
|
2015-03-24 13:44:46 +00:00
|
|
|
struct port_info *pi;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2013-03-14 05:08:49 +00:00
|
|
|
if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
|
2010-04-01 15:28:24 +00:00
|
|
|
return handle_trace_pkt(q->adap, si);
|
|
|
|
|
2010-04-27 23:22:42 +00:00
|
|
|
pkt = (const struct cpl_rx_pkt *)rsp;
|
2014-05-07 12:31:03 +00:00
|
|
|
csum_ok = pkt->csum_calc && !pkt->err_vec &&
|
|
|
|
(q->netdev->features & NETIF_F_RXCSUM);
|
2015-01-09 05:38:16 +00:00
|
|
|
if ((pkt->l2info & htonl(RXF_TCP_F)) &&
|
2015-02-04 10:02:52 +00:00
|
|
|
!(cxgb_poll_busy_polling(q)) &&
|
2010-04-01 15:28:24 +00:00
|
|
|
(q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
|
|
|
|
do_gro(rxq, si, pkt);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
|
|
|
|
if (unlikely(!skb)) {
|
|
|
|
t4_pktgl_free(si);
|
|
|
|
rxq->stats.rx_drops++;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
__skb_pull(skb, s->pktshift); /* remove ethernet header padding */
|
2010-04-01 15:28:24 +00:00
|
|
|
skb->protocol = eth_type_trans(skb, q->netdev);
|
|
|
|
skb_record_rx_queue(skb, q->idx);
|
2010-04-27 23:22:42 +00:00
|
|
|
if (skb->dev->features & NETIF_F_RXHASH)
|
2013-12-18 07:23:29 +00:00
|
|
|
skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
|
|
|
|
PKT_HASH_TYPE_L3);
|
2010-04-27 23:22:42 +00:00
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
rxq->stats.pkts++;
|
|
|
|
|
2015-09-28 04:56:53 +00:00
|
|
|
pi = netdev_priv(skb->dev);
|
|
|
|
if (pi->rxtstamp)
|
|
|
|
cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
|
|
|
|
si->sgetstamp);
|
2015-01-09 05:38:16 +00:00
|
|
|
if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
|
2010-08-02 13:19:17 +00:00
|
|
|
if (!pkt->ip_frag) {
|
2010-04-01 15:28:24 +00:00
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
2010-08-02 13:19:17 +00:00
|
|
|
rxq->stats.rx_cso++;
|
2015-01-09 05:38:16 +00:00
|
|
|
} else if (pkt->l2info & htonl(RXF_IP_F)) {
|
2010-04-01 15:28:24 +00:00
|
|
|
__sum16 c = (__force __sum16)pkt->csum;
|
|
|
|
skb->csum = csum_unfold(c);
|
|
|
|
skb->ip_summed = CHECKSUM_COMPLETE;
|
2010-08-02 13:19:17 +00:00
|
|
|
rxq->stats.rx_cso++;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
2015-03-24 13:44:46 +00:00
|
|
|
} else {
|
2010-09-02 20:07:41 +00:00
|
|
|
skb_checksum_none_assert(skb);
|
2015-03-24 13:44:46 +00:00
|
|
|
#ifdef CONFIG_CHELSIO_T4_FCOE
|
|
|
|
#define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
|
|
|
|
RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
|
|
|
|
|
|
|
|
if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
|
|
|
|
if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
|
|
|
|
(pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
|
|
|
|
if (!(pkt->err_vec & cpu_to_be16(RXERR_CSUM_F)))
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef CPL_RX_PKT_FLAGS
|
|
|
|
#endif /* CONFIG_CHELSIO_T4_FCOE */
|
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
if (unlikely(pkt->vlan_ex)) {
|
2013-04-19 02:04:30 +00:00
|
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
|
2010-04-01 15:28:24 +00:00
|
|
|
rxq->stats.vlan_ex++;
|
2010-10-21 11:29:56 +00:00
|
|
|
}
|
2015-02-04 10:02:52 +00:00
|
|
|
skb_mark_napi_id(skb, &q->napi);
|
2010-10-21 11:29:56 +00:00
|
|
|
netif_receive_skb(skb);
|
2010-04-01 15:28:24 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* restore_rx_bufs - put back a packet's Rx buffers
|
|
|
|
* @si: the packet gather list
|
|
|
|
* @q: the SGE free list
|
|
|
|
* @frags: number of FL buffers to restore
|
|
|
|
*
|
|
|
|
* Puts back on an FL the Rx buffers associated with @si. The buffers
|
|
|
|
* have already been unmapped and are left unmapped, we mark them so to
|
|
|
|
* prevent further unmapping attempts.
|
|
|
|
*
|
|
|
|
* This function undoes a series of @unmap_rx_buf calls when we find out
|
|
|
|
* that the current packet can't be processed right away afterall and we
|
|
|
|
* need to come back to it later. This is a very rare event and there's
|
|
|
|
* no effort to make this particularly efficient.
|
|
|
|
*/
|
|
|
|
static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
|
|
|
|
int frags)
|
|
|
|
{
|
|
|
|
struct rx_sw_desc *d;
|
|
|
|
|
|
|
|
while (frags--) {
|
|
|
|
if (q->cidx == 0)
|
|
|
|
q->cidx = q->size - 1;
|
|
|
|
else
|
|
|
|
q->cidx--;
|
|
|
|
d = &q->sdesc[q->cidx];
|
|
|
|
d->page = si->frags[frags].page;
|
|
|
|
d->dma_addr |= RX_UNMAPPED_BUF;
|
|
|
|
q->avail++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* is_new_response - check if a response is newly written
|
|
|
|
* @r: the response descriptor
|
|
|
|
* @q: the response queue
|
|
|
|
*
|
|
|
|
* Returns true if a response descriptor contains a yet unprocessed
|
|
|
|
* response.
|
|
|
|
*/
|
|
|
|
static inline bool is_new_response(const struct rsp_ctrl *r,
|
|
|
|
const struct sge_rspq *q)
|
|
|
|
{
|
2015-05-11 23:13:43 +00:00
|
|
|
return (r->type_gen >> RSPD_GEN_S) == q->gen;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* rspq_next - advance to the next entry in a response queue
|
|
|
|
* @q: the queue
|
|
|
|
*
|
|
|
|
* Updates the state of a response queue to advance it to the next entry.
|
|
|
|
*/
|
|
|
|
static inline void rspq_next(struct sge_rspq *q)
|
|
|
|
{
|
|
|
|
q->cur_desc = (void *)q->cur_desc + q->iqe_len;
|
|
|
|
if (unlikely(++q->cidx == q->size)) {
|
|
|
|
q->cidx = 0;
|
|
|
|
q->gen ^= 1;
|
|
|
|
q->cur_desc = q->desc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* process_responses - process responses from an SGE response queue
|
|
|
|
* @q: the ingress queue to process
|
|
|
|
* @budget: how many responses can be processed in this round
|
|
|
|
*
|
|
|
|
* Process responses from an SGE response queue up to the supplied budget.
|
|
|
|
* Responses include received packets as well as control messages from FW
|
|
|
|
* or HW.
|
|
|
|
*
|
|
|
|
* Additionally choose the interrupt holdoff time for the next interrupt
|
|
|
|
* on this queue. If the system is under memory shortage use a fairly
|
|
|
|
* long delay to help recovery.
|
|
|
|
*/
|
|
|
|
static int process_responses(struct sge_rspq *q, int budget)
|
|
|
|
{
|
|
|
|
int ret, rsp_type;
|
|
|
|
int budget_left = budget;
|
|
|
|
const struct rsp_ctrl *rc;
|
|
|
|
struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
|
2012-09-26 02:39:38 +00:00
|
|
|
struct adapter *adapter = q->adap;
|
|
|
|
struct sge *s = &adapter->sge;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
while (likely(budget_left)) {
|
|
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
2016-02-14 17:32:41 +00:00
|
|
|
if (!is_new_response(rc, q)) {
|
|
|
|
if (q->flush_handler)
|
|
|
|
q->flush_handler(q);
|
2010-04-01 15:28:24 +00:00
|
|
|
break;
|
2016-02-14 17:32:41 +00:00
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-04-09 01:49:29 +00:00
|
|
|
dma_rmb();
|
2015-05-11 23:13:43 +00:00
|
|
|
rsp_type = RSPD_TYPE_G(rc->type_gen);
|
|
|
|
if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
|
2011-10-19 23:01:46 +00:00
|
|
|
struct page_frag *fp;
|
2010-04-01 15:28:24 +00:00
|
|
|
struct pkt_gl si;
|
|
|
|
const struct rx_sw_desc *rsd;
|
|
|
|
u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
|
|
|
|
|
2015-05-11 23:13:43 +00:00
|
|
|
if (len & RSPD_NEWBUF_F) {
|
2010-04-01 15:28:24 +00:00
|
|
|
if (likely(q->offset > 0)) {
|
|
|
|
free_rx_bufs(q->adap, &rxq->fl, 1);
|
|
|
|
q->offset = 0;
|
|
|
|
}
|
2015-05-11 23:13:43 +00:00
|
|
|
len = RSPD_LEN_G(len);
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
si.tot_len = len;
|
|
|
|
|
|
|
|
/* gather packet fragments */
|
|
|
|
for (frags = 0, fp = si.frags; ; frags++, fp++) {
|
|
|
|
rsd = &rxq->fl.sdesc[rxq->fl.cidx];
|
2012-09-26 02:39:38 +00:00
|
|
|
bufsz = get_buf_size(adapter, rsd);
|
2010-04-01 15:28:24 +00:00
|
|
|
fp->page = rsd->page;
|
2011-10-19 23:01:46 +00:00
|
|
|
fp->offset = q->offset;
|
|
|
|
fp->size = min(bufsz, len);
|
|
|
|
len -= fp->size;
|
2010-04-01 15:28:24 +00:00
|
|
|
if (!len)
|
|
|
|
break;
|
|
|
|
unmap_rx_buf(q->adap, &rxq->fl);
|
|
|
|
}
|
|
|
|
|
2015-09-28 04:56:53 +00:00
|
|
|
si.sgetstamp = SGE_TIMESTAMP_G(
|
|
|
|
be64_to_cpu(rc->last_flit));
|
2010-04-01 15:28:24 +00:00
|
|
|
/*
|
|
|
|
* Last buffer remains mapped so explicitly make it
|
|
|
|
* coherent for CPU access.
|
|
|
|
*/
|
|
|
|
dma_sync_single_for_cpu(q->adap->pdev_dev,
|
|
|
|
get_buf_addr(rsd),
|
2011-10-19 23:01:46 +00:00
|
|
|
fp->size, DMA_FROM_DEVICE);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
si.va = page_address(si.frags[0].page) +
|
2011-10-19 23:01:46 +00:00
|
|
|
si.frags[0].offset;
|
2010-04-01 15:28:24 +00:00
|
|
|
prefetch(si.va);
|
|
|
|
|
|
|
|
si.nfrags = frags + 1;
|
|
|
|
ret = q->handler(q, q->cur_desc, &si);
|
|
|
|
if (likely(ret == 0))
|
2012-09-26 02:39:38 +00:00
|
|
|
q->offset += ALIGN(fp->size, s->fl_align);
|
2010-04-01 15:28:24 +00:00
|
|
|
else
|
|
|
|
restore_rx_bufs(&si, &rxq->fl, frags);
|
2015-05-11 23:13:43 +00:00
|
|
|
} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
|
2010-04-01 15:28:24 +00:00
|
|
|
ret = q->handler(q, q->cur_desc, NULL);
|
|
|
|
} else {
|
|
|
|
ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(ret)) {
|
|
|
|
/* couldn't process descriptor, back off for recovery */
|
2015-05-11 23:13:43 +00:00
|
|
|
q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
|
2010-04-01 15:28:24 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
rspq_next(q);
|
|
|
|
budget_left--;
|
|
|
|
}
|
|
|
|
|
2016-03-01 11:49:32 +00:00
|
|
|
if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
|
2010-04-01 15:28:24 +00:00
|
|
|
__refill_fl(q->adap, &rxq->fl);
|
|
|
|
return budget - budget_left;
|
|
|
|
}
|
|
|
|
|
2015-02-04 10:02:52 +00:00
|
|
|
#ifdef CONFIG_NET_RX_BUSY_POLL
|
|
|
|
int cxgb_busy_poll(struct napi_struct *napi)
|
|
|
|
{
|
|
|
|
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
|
|
|
|
unsigned int params, work_done;
|
|
|
|
u32 val;
|
|
|
|
|
|
|
|
if (!cxgb_poll_lock_poll(q))
|
|
|
|
return LL_FLUSH_BUSY;
|
|
|
|
|
|
|
|
work_done = process_responses(q, 4);
|
2015-05-11 23:13:43 +00:00
|
|
|
params = QINTR_TIMER_IDX_V(TIMERREG_COUNTER0_X) | QINTR_CNT_EN_V(1);
|
2015-02-04 10:02:52 +00:00
|
|
|
q->next_intr_params = params;
|
|
|
|
val = CIDXINC_V(work_done) | SEINTARM_V(params);
|
|
|
|
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
|
|
*/
|
|
|
|
if (unlikely(!q->bar2_addr))
|
|
|
|
t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
|
|
|
|
val | INGRESSQID_V((u32)q->cntxt_id));
|
|
|
|
else {
|
|
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
|
|
|
q->bar2_addr + SGE_UDB_GTS);
|
|
|
|
wmb();
|
|
|
|
}
|
|
|
|
|
|
|
|
cxgb_poll_unlock_poll(q);
|
|
|
|
return work_done;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_NET_RX_BUSY_POLL */
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
/**
|
|
|
|
* napi_rx_handler - the NAPI handler for Rx processing
|
|
|
|
* @napi: the napi instance
|
|
|
|
* @budget: how many packets we can process in this round
|
|
|
|
*
|
|
|
|
* Handler for new data events when using NAPI. This does not need any
|
|
|
|
* locking or protection from interrupts as data interrupts are off at
|
|
|
|
* this point and other adapter interrupts do not interfere (the latter
|
|
|
|
* in not a concern at all with MSI-X as non-data interrupts then have
|
|
|
|
* a separate handler).
|
|
|
|
*/
|
|
|
|
static int napi_rx_handler(struct napi_struct *napi, int budget)
|
|
|
|
{
|
|
|
|
unsigned int params;
|
|
|
|
struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
|
2015-02-04 10:02:52 +00:00
|
|
|
int work_done;
|
2014-09-25 18:53:52 +00:00
|
|
|
u32 val;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-02-04 10:02:52 +00:00
|
|
|
if (!cxgb_poll_lock_napi(q))
|
|
|
|
return budget;
|
|
|
|
|
|
|
|
work_done = process_responses(q, budget);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (likely(work_done < budget)) {
|
2014-09-25 18:53:55 +00:00
|
|
|
int timer_index;
|
|
|
|
|
2015-12-23 05:59:56 +00:00
|
|
|
napi_complete_done(napi, work_done);
|
2015-05-11 23:13:43 +00:00
|
|
|
timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
|
2014-09-25 18:53:55 +00:00
|
|
|
|
|
|
|
if (q->adaptive_rx) {
|
|
|
|
if (work_done > max(timer_pkt_quota[timer_index],
|
|
|
|
MIN_NAPI_WORK))
|
|
|
|
timer_index = (timer_index + 1);
|
|
|
|
else
|
|
|
|
timer_index = timer_index - 1;
|
|
|
|
|
|
|
|
timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
|
2015-05-11 23:13:43 +00:00
|
|
|
q->next_intr_params =
|
|
|
|
QINTR_TIMER_IDX_V(timer_index) |
|
|
|
|
QINTR_CNT_EN_V(0);
|
2014-09-25 18:53:55 +00:00
|
|
|
params = q->next_intr_params;
|
|
|
|
} else {
|
|
|
|
params = q->next_intr_params;
|
|
|
|
q->next_intr_params = q->intr_params;
|
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
} else
|
2015-05-11 23:13:43 +00:00
|
|
|
params = QINTR_TIMER_IDX_V(7);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-01-05 11:00:43 +00:00
|
|
|
val = CIDXINC_V(work_done) | SEINTARM_V(params);
|
2014-12-03 14:02:53 +00:00
|
|
|
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
|
|
*/
|
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 11:00:43 +00:00
|
|
|
t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
|
|
|
|
val | INGRESSQID_V((u32)q->cntxt_id));
|
2014-09-25 18:53:52 +00:00
|
|
|
} else {
|
2015-01-05 11:00:43 +00:00
|
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
2014-12-03 14:02:53 +00:00
|
|
|
q->bar2_addr + SGE_UDB_GTS);
|
2014-09-25 18:53:52 +00:00
|
|
|
wmb();
|
|
|
|
}
|
2015-02-04 10:02:52 +00:00
|
|
|
cxgb_poll_unlock_napi(q);
|
2010-04-01 15:28:24 +00:00
|
|
|
return work_done;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MSI-X interrupt handler for an SGE response queue.
|
|
|
|
*/
|
|
|
|
irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct sge_rspq *q = cookie;
|
|
|
|
|
|
|
|
napi_schedule(&q->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the indirect interrupt entries in the interrupt queue and kick off
|
|
|
|
* NAPI for each queue that has generated an entry.
|
|
|
|
*/
|
|
|
|
static unsigned int process_intrq(struct adapter *adap)
|
|
|
|
{
|
|
|
|
unsigned int credits;
|
|
|
|
const struct rsp_ctrl *rc;
|
|
|
|
struct sge_rspq *q = &adap->sge.intrq;
|
2014-09-25 18:53:52 +00:00
|
|
|
u32 val;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
spin_lock(&adap->sge.intrq_lock);
|
|
|
|
for (credits = 0; ; credits++) {
|
|
|
|
rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
|
|
|
|
if (!is_new_response(rc, q))
|
|
|
|
break;
|
|
|
|
|
2015-04-09 01:49:29 +00:00
|
|
|
dma_rmb();
|
2015-05-11 23:13:43 +00:00
|
|
|
if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
|
2010-04-01 15:28:24 +00:00
|
|
|
unsigned int qid = ntohl(rc->pldbuflen_qid);
|
|
|
|
|
2010-08-23 17:20:58 +00:00
|
|
|
qid -= adap->sge.ingr_start;
|
2010-04-01 15:28:24 +00:00
|
|
|
napi_schedule(&adap->sge.ingr_map[qid]->napi);
|
|
|
|
}
|
|
|
|
|
|
|
|
rspq_next(q);
|
|
|
|
}
|
|
|
|
|
2015-01-05 11:00:43 +00:00
|
|
|
val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
|
2014-12-03 14:02:53 +00:00
|
|
|
|
|
|
|
/* If we don't have access to the new User GTS (T5+), use the old
|
|
|
|
* doorbell mechanism; otherwise use the new BAR2 mechanism.
|
|
|
|
*/
|
|
|
|
if (unlikely(q->bar2_addr == NULL)) {
|
2015-01-05 11:00:43 +00:00
|
|
|
t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
|
|
|
|
val | INGRESSQID_V(q->cntxt_id));
|
2014-09-25 18:53:52 +00:00
|
|
|
} else {
|
2015-01-05 11:00:43 +00:00
|
|
|
writel(val | INGRESSQID_V(q->bar2_qid),
|
2014-12-03 14:02:53 +00:00
|
|
|
q->bar2_addr + SGE_UDB_GTS);
|
2014-09-25 18:53:52 +00:00
|
|
|
wmb();
|
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
spin_unlock(&adap->sge.intrq_lock);
|
|
|
|
return credits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The MSI interrupt handler, which handles data events from SGE response queues
|
|
|
|
* as well as error and other async events as they all use the same MSI vector.
|
|
|
|
*/
|
|
|
|
static irqreturn_t t4_intr_msi(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct adapter *adap = cookie;
|
|
|
|
|
2015-04-14 20:32:34 +00:00
|
|
|
if (adap->flags & MASTER_PF)
|
|
|
|
t4_slow_intr_handler(adap);
|
2010-04-01 15:28:24 +00:00
|
|
|
process_intrq(adap);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Interrupt handler for legacy INTx interrupts.
|
|
|
|
* Handles data events from SGE response queues as well as error and other
|
|
|
|
* async events as they all use the same interrupt line.
|
|
|
|
*/
|
|
|
|
static irqreturn_t t4_intr_intx(int irq, void *cookie)
|
|
|
|
{
|
|
|
|
struct adapter *adap = cookie;
|
|
|
|
|
2015-01-05 11:00:44 +00:00
|
|
|
t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
|
2015-04-14 20:32:34 +00:00
|
|
|
if (((adap->flags & MASTER_PF) && t4_slow_intr_handler(adap)) |
|
|
|
|
process_intrq(adap))
|
2010-04-01 15:28:24 +00:00
|
|
|
return IRQ_HANDLED;
|
|
|
|
return IRQ_NONE; /* probably shared interrupt */
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_intr_handler - select the top-level interrupt handler
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Selects the top-level interrupt handler based on the type of interrupts
|
|
|
|
* (MSI-X, MSI, or INTx).
|
|
|
|
*/
|
|
|
|
irq_handler_t t4_intr_handler(struct adapter *adap)
|
|
|
|
{
|
|
|
|
if (adap->flags & USING_MSIX)
|
|
|
|
return t4_sge_intr_msix;
|
|
|
|
if (adap->flags & USING_MSI)
|
|
|
|
return t4_intr_msi;
|
|
|
|
return t4_intr_intx;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sge_rx_timer_cb(unsigned long data)
|
|
|
|
{
|
|
|
|
unsigned long m;
|
2015-05-05 09:29:55 +00:00
|
|
|
unsigned int i;
|
2010-04-01 15:28:24 +00:00
|
|
|
struct adapter *adap = (struct adapter *)data;
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
2015-03-26 04:34:25 +00:00
|
|
|
for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
|
2010-04-01 15:28:24 +00:00
|
|
|
for (m = s->starving_fl[i]; m; m &= m - 1) {
|
|
|
|
struct sge_eth_rxq *rxq;
|
|
|
|
unsigned int id = __ffs(m) + i * BITS_PER_LONG;
|
|
|
|
struct sge_fl *fl = s->egr_map[id];
|
|
|
|
|
|
|
|
clear_bit(id, s->starving_fl);
|
2014-03-17 17:06:10 +00:00
|
|
|
smp_mb__after_atomic();
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-04-14 20:32:31 +00:00
|
|
|
if (fl_starving(adap, fl)) {
|
2010-04-01 15:28:24 +00:00
|
|
|
rxq = container_of(fl, struct sge_eth_rxq, fl);
|
|
|
|
if (napi_reschedule(&rxq->rspq.napi))
|
|
|
|
fl->starving++;
|
|
|
|
else
|
|
|
|
set_bit(id, s->starving_fl);
|
|
|
|
}
|
|
|
|
}
|
2015-05-05 09:29:55 +00:00
|
|
|
/* The remainder of the SGE RX Timer Callback routine is dedicated to
|
|
|
|
* global Master PF activities like checking for chip ingress stalls,
|
|
|
|
* etc.
|
|
|
|
*/
|
|
|
|
if (!(adap->flags & MASTER_PF))
|
|
|
|
goto done;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-05-05 09:29:55 +00:00
|
|
|
t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2015-05-05 09:29:55 +00:00
|
|
|
done:
|
2010-04-01 15:28:24 +00:00
|
|
|
mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void sge_tx_timer_cb(unsigned long data)
|
|
|
|
{
|
|
|
|
unsigned long m;
|
|
|
|
unsigned int i, budget;
|
|
|
|
struct adapter *adap = (struct adapter *)data;
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
2015-03-26 04:34:25 +00:00
|
|
|
for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
|
2010-04-01 15:28:24 +00:00
|
|
|
for (m = s->txq_maperr[i]; m; m &= m - 1) {
|
|
|
|
unsigned long id = __ffs(m) + i * BITS_PER_LONG;
|
|
|
|
struct sge_ofld_txq *txq = s->egr_map[id];
|
|
|
|
|
|
|
|
clear_bit(id, s->txq_maperr);
|
|
|
|
tasklet_schedule(&txq->qresume_tsk);
|
|
|
|
}
|
|
|
|
|
|
|
|
budget = MAX_TIMER_TX_RECLAIM;
|
|
|
|
i = s->ethtxq_rover;
|
|
|
|
do {
|
|
|
|
struct sge_eth_txq *q = &s->ethtxq[i];
|
|
|
|
|
|
|
|
if (q->q.in_use &&
|
|
|
|
time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
|
|
|
|
__netif_tx_trylock(q->txq)) {
|
|
|
|
int avail = reclaimable(&q->q);
|
|
|
|
|
|
|
|
if (avail) {
|
|
|
|
if (avail > budget)
|
|
|
|
avail = budget;
|
|
|
|
|
|
|
|
free_tx_desc(adap, &q->q, avail, true);
|
|
|
|
q->q.in_use -= avail;
|
|
|
|
budget -= avail;
|
|
|
|
}
|
|
|
|
__netif_tx_unlock(q->txq);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (++i >= s->ethqsets)
|
|
|
|
i = 0;
|
|
|
|
} while (budget && i != s->ethtxq_rover);
|
|
|
|
s->ethtxq_rover = i;
|
|
|
|
mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
|
|
|
|
}
|
|
|
|
|
2014-09-25 18:53:52 +00:00
|
|
|
/**
|
2014-12-03 14:02:53 +00:00
|
|
|
* bar2_address - return the BAR2 address for an SGE Queue's Registers
|
|
|
|
* @adapter: the adapter
|
|
|
|
* @qid: the SGE Queue ID
|
|
|
|
* @qtype: the SGE Queue Type (Egress or Ingress)
|
|
|
|
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
|
2014-09-25 18:53:52 +00:00
|
|
|
*
|
2014-12-03 14:02:53 +00:00
|
|
|
* Returns the BAR2 address for the SGE Queue Registers associated with
|
|
|
|
* @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
|
|
|
|
* returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
|
|
|
|
* Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
|
|
|
|
* Registers are supported (e.g. the Write Combining Doorbell Buffer).
|
|
|
|
*/
|
|
|
|
static void __iomem *bar2_address(struct adapter *adapter,
|
|
|
|
unsigned int qid,
|
|
|
|
enum t4_bar2_qtype qtype,
|
|
|
|
unsigned int *pbar2_qid)
|
|
|
|
{
|
|
|
|
u64 bar2_qoffset;
|
|
|
|
int ret;
|
2014-09-25 18:53:52 +00:00
|
|
|
|
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking updates from David Miller:
1) Add TX fast path in mac80211, from Johannes Berg.
2) Add TSO/GRO support to ibmveth, from Thomas Falcon
3) Move away from cached routes in ipv6, just like ipv4, from Martin
KaFai Lau.
4) Lots of new rhashtable tests, from Thomas Graf.
5) Run ingress qdisc lockless, from Alexei Starovoitov.
6) Allow servers to fetch TCP packet headers for SYN packets of new
connections, for fingerprinting. From Eric Dumazet.
7) Add mode parameter to pktgen, for testing receive. From Alexei
Starovoitov.
8) Cache access optimizations via simplifications of build_skb(), from
Alexander Duyck.
9) Move page frag allocator under mm/, also from Alexander.
10) Add xmit_more support to hv_netvsc, from KY Srinivasan.
11) Add a counter guard in case we try to perform endless reclassify
loops in the packet scheduler.
12) Extern flow dissector to be programmable and use it in new "Flower"
classifier. From Jiri Pirko.
13) AF_PACKET fanout rollover fixes, performance improvements, and new
statistics. From Willem de Bruijn.
14) Add netdev driver for GENEVE tunnels, from John W Linville.
15) Add ingress netfilter hooks and filtering, from Pablo Neira Ayuso.
16) Fix handling of epoll edge triggers in TCP, from Eric Dumazet.
17) Add an ECN retry fallback for the initial TCP handshake, from Daniel
Borkmann.
18) Add tail call support to BPF, from Alexei Starovoitov.
19) Add several pktgen helper scripts, from Jesper Dangaard Brouer.
20) Add zerocopy support to AF_UNIX, from Hannes Frederic Sowa.
21) Favor even port numbers for allocation to connect() requests, and
odd port numbers for bind(0), in an effort to help avoid
ip_local_port_range exhaustion. From Eric Dumazet.
22) Add Cavium ThunderX driver, from Sunil Goutham.
23) Allow bpf programs to access skb_iif and dev->ifindex SKB metadata,
from Alexei Starovoitov.
24) Add support for T6 chips in cxgb4vf driver, from Hariprasad Shenai.
25) Double TCP Small Queues default to 256K to accomodate situations
like the XEN driver and wireless aggregation. From Wei Liu.
26) Add more entropy inputs to flow dissector, from Tom Herbert.
27) Add CDG congestion control algorithm to TCP, from Kenneth Klette
Jonassen.
28) Convert ipset over to RCU locking, from Jozsef Kadlecsik.
29) Track and act upon link status of ipv4 route nexthops, from Andy
Gospodarek.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1670 commits)
bridge: vlan: flush the dynamically learned entries on port vlan delete
bridge: multicast: add a comment to br_port_state_selection about blocking state
net: inet_diag: export IPV6_V6ONLY sockopt
stmmac: troubleshoot unexpected bits in des0 & des1
net: ipv4 sysctl option to ignore routes when nexthop link is down
net: track link-status of ipv4 nexthops
net: switchdev: ignore unsupported bridge flags
net: Cavium: Fix MAC address setting in shutdown state
drivers: net: xgene: fix for ACPI support without ACPI
ip: report the original address of ICMP messages
net/mlx5e: Prefetch skb data on RX
net/mlx5e: Pop cq outside mlx5e_get_cqe
net/mlx5e: Remove mlx5e_cq.sqrq back-pointer
net/mlx5e: Remove extra spaces
net/mlx5e: Avoid TX CQE generation if more xmit packets expected
net/mlx5e: Avoid redundant dev_kfree_skb() upon NOP completion
net/mlx5e: Remove re-assignment of wq type in mlx5e_enable_rq()
net/mlx5e: Use skb_shinfo(skb)->gso_segs rather than counting them
net/mlx5e: Static mapping of netdev priv resources to/from netdev TX queues
net/mlx4_en: Use HW counters for rx/tx bytes/packets in PF device
...
2015-06-24 23:49:49 +00:00
|
|
|
ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
|
2014-12-03 14:02:53 +00:00
|
|
|
&bar2_qoffset, pbar2_qid);
|
|
|
|
if (ret)
|
|
|
|
return NULL;
|
2014-09-25 18:53:52 +00:00
|
|
|
|
2014-12-03 14:02:53 +00:00
|
|
|
return adapter->bar2 + bar2_qoffset;
|
2014-09-25 18:53:52 +00:00
|
|
|
}
|
|
|
|
|
2015-05-05 09:29:52 +00:00
|
|
|
/* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
|
|
|
|
* @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
|
|
|
|
*/
|
2010-04-01 15:28:24 +00:00
|
|
|
int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
|
|
|
|
struct net_device *dev, int intr_idx,
|
2016-02-14 17:32:41 +00:00
|
|
|
struct sge_fl *fl, rspq_handler_t hnd,
|
|
|
|
rspq_flush_handler_t flush_hnd, int cong)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
|
|
|
int ret, flsz = 0;
|
|
|
|
struct fw_iq_cmd c;
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 15:28:24 +00:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Size needs to be multiple of 16, including status entry. */
|
|
|
|
iq->size = roundup(iq->size, 16);
|
|
|
|
|
|
|
|
iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
|
2015-12-23 05:59:55 +00:00
|
|
|
&iq->phys_addr, NULL, 0,
|
|
|
|
dev_to_node(adap->pdev_dev));
|
2010-04-01 15:28:24 +00:00
|
|
|
if (!iq->desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
2014-11-07 04:05:25 +00:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
|
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-27 17:00:24 +00:00
|
|
|
FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
|
2014-11-21 07:22:03 +00:00
|
|
|
c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
|
2010-04-01 15:28:24 +00:00
|
|
|
FW_LEN16(c));
|
2014-11-21 07:22:03 +00:00
|
|
|
c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
|
|
|
|
FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
|
2015-05-11 23:13:43 +00:00
|
|
|
FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
|
|
|
|
FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
|
2014-11-21 07:22:03 +00:00
|
|
|
FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
|
2010-04-01 15:28:24 +00:00
|
|
|
-intr_idx - 1));
|
2014-11-21 07:22:03 +00:00
|
|
|
c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
|
|
|
|
FW_IQ_CMD_IQGTSMODE_F |
|
|
|
|
FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
|
|
|
|
FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
|
2010-04-01 15:28:24 +00:00
|
|
|
c.iqsize = htons(iq->size);
|
|
|
|
c.iqaddr = cpu_to_be64(iq->phys_addr);
|
2015-05-05 09:29:52 +00:00
|
|
|
if (cong >= 0)
|
|
|
|
c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
if (fl) {
|
2015-06-02 08:29:39 +00:00
|
|
|
enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
|
|
|
|
|
2015-05-05 09:29:51 +00:00
|
|
|
/* Allocate the ring for the hardware free list (with space
|
|
|
|
* for its status page) along with the associated software
|
|
|
|
* descriptor ring. The free list size needs to be a multiple
|
|
|
|
* of the Egress Queue Unit and at least 2 Egress Units larger
|
|
|
|
* than the SGE's Egress Congrestion Threshold
|
|
|
|
* (fl_starve_thres - 1).
|
|
|
|
*/
|
|
|
|
if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
|
|
|
|
fl->size = s->fl_starve_thres - 1 + 2 * 8;
|
2010-04-01 15:28:24 +00:00
|
|
|
fl->size = roundup(fl->size, 8);
|
|
|
|
fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
|
|
|
|
sizeof(struct rx_sw_desc), &fl->addr,
|
2015-12-23 05:59:55 +00:00
|
|
|
&fl->sdesc, s->stat_len,
|
|
|
|
dev_to_node(adap->pdev_dev));
|
2010-04-01 15:28:24 +00:00
|
|
|
if (!fl->desc)
|
|
|
|
goto fl_nomem;
|
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
|
2015-05-05 09:29:52 +00:00
|
|
|
c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
|
|
|
|
FW_IQ_CMD_FL0FETCHRO_F |
|
|
|
|
FW_IQ_CMD_FL0DATARO_F |
|
|
|
|
FW_IQ_CMD_FL0PADEN_F);
|
|
|
|
if (cong >= 0)
|
|
|
|
c.iqns_to_fl0congen |=
|
|
|
|
htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
|
|
|
|
FW_IQ_CMD_FL0CONGCIF_F |
|
|
|
|
FW_IQ_CMD_FL0CONGEN_F);
|
2016-03-01 11:49:33 +00:00
|
|
|
/* In T6, for egress queue type FL there is internal overhead
|
|
|
|
* of 16B for header going into FLM module. Hence the maximum
|
|
|
|
* allowed burst size is 448 bytes. For T4/T5, the hardware
|
|
|
|
* doesn't coalesce fetch requests if more than 64 bytes of
|
|
|
|
* Free List pointers are provided, so we use a 128-byte Fetch
|
|
|
|
* Burst Minimum there (T6 implements coalescing so we can use
|
|
|
|
* the smaller 64-byte value there).
|
|
|
|
*/
|
2015-05-11 23:13:43 +00:00
|
|
|
c.fl0dcaen_to_fl0cidxfthresh =
|
2016-03-01 11:49:33 +00:00
|
|
|
htons(FW_IQ_CMD_FL0FBMIN_V(chip <= CHELSIO_T5 ?
|
|
|
|
FETCHBURSTMIN_128B_X :
|
|
|
|
FETCHBURSTMIN_64B_X) |
|
2015-06-02 08:29:39 +00:00
|
|
|
FW_IQ_CMD_FL0FBMAX_V((chip <= CHELSIO_T5) ?
|
|
|
|
FETCHBURSTMAX_512B_X :
|
|
|
|
FETCHBURSTMAX_256B_X));
|
2010-04-01 15:28:24 +00:00
|
|
|
c.fl0size = htons(flsz);
|
|
|
|
c.fl0addr = cpu_to_be64(fl->addr);
|
|
|
|
}
|
|
|
|
|
2015-05-27 17:00:24 +00:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (ret)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
|
|
|
|
iq->cur_desc = iq->desc;
|
|
|
|
iq->cidx = 0;
|
|
|
|
iq->gen = 1;
|
|
|
|
iq->next_intr_params = iq->intr_params;
|
|
|
|
iq->cntxt_id = ntohs(c.iqid);
|
|
|
|
iq->abs_id = ntohs(c.physiqid);
|
2014-12-03 14:02:53 +00:00
|
|
|
iq->bar2_addr = bar2_address(adap,
|
|
|
|
iq->cntxt_id,
|
|
|
|
T4_BAR2_QTYPE_INGRESS,
|
|
|
|
&iq->bar2_qid);
|
2010-04-01 15:28:24 +00:00
|
|
|
iq->size--; /* subtract status entry */
|
|
|
|
iq->netdev = dev;
|
|
|
|
iq->handler = hnd;
|
2016-02-14 17:32:41 +00:00
|
|
|
iq->flush_handler = flush_hnd;
|
|
|
|
|
|
|
|
memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
|
|
|
|
skb_queue_head_init(&iq->lro_mgr.lroq);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
/* set offset to -1 to distinguish ingress queues without FL */
|
|
|
|
iq->offset = fl ? 0 : -1;
|
|
|
|
|
2010-08-23 17:20:58 +00:00
|
|
|
adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
if (fl) {
|
2010-04-21 08:09:21 +00:00
|
|
|
fl->cntxt_id = ntohs(c.fl0id);
|
2010-04-01 15:28:24 +00:00
|
|
|
fl->avail = fl->pend_cred = 0;
|
|
|
|
fl->pidx = fl->cidx = 0;
|
|
|
|
fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
|
2010-08-23 17:20:58 +00:00
|
|
|
adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
|
2014-09-25 18:53:52 +00:00
|
|
|
|
2014-12-03 14:02:53 +00:00
|
|
|
/* Note, we must initialize the BAR2 Free List User Doorbell
|
|
|
|
* information before refilling the Free List!
|
2014-09-25 18:53:52 +00:00
|
|
|
*/
|
2014-12-03 14:02:53 +00:00
|
|
|
fl->bar2_addr = bar2_address(adap,
|
|
|
|
fl->cntxt_id,
|
|
|
|
T4_BAR2_QTYPE_EGRESS,
|
|
|
|
&fl->bar2_qid);
|
2010-04-01 15:28:24 +00:00
|
|
|
refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
|
|
|
|
}
|
2015-05-05 09:29:53 +00:00
|
|
|
|
|
|
|
/* For T5 and later we attempt to set up the Congestion Manager values
|
|
|
|
* of the new RX Ethernet Queue. This should really be handled by
|
|
|
|
* firmware because it's more complex than any host driver wants to
|
|
|
|
* get involved with and it's different per chip and this is almost
|
|
|
|
* certainly wrong. Firmware would be wrong as well, but it would be
|
|
|
|
* a lot easier to fix in one place ... For now we do something very
|
|
|
|
* simple (and hopefully less wrong).
|
|
|
|
*/
|
|
|
|
if (!is_t4(adap->params.chip) && cong >= 0) {
|
2015-12-23 17:17:18 +00:00
|
|
|
u32 param, val, ch_map = 0;
|
2015-05-05 09:29:53 +00:00
|
|
|
int i;
|
2015-12-23 17:17:18 +00:00
|
|
|
u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
|
2015-05-05 09:29:53 +00:00
|
|
|
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
|
|
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
|
|
|
|
FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
|
|
|
|
if (cong == 0) {
|
|
|
|
val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
|
|
|
|
} else {
|
|
|
|
val =
|
|
|
|
CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
if (cong & (1 << i))
|
2015-12-23 17:17:18 +00:00
|
|
|
ch_map |= 1 << (i << cng_ch_bits_log);
|
2015-05-05 09:29:53 +00:00
|
|
|
}
|
2015-12-23 17:17:18 +00:00
|
|
|
val |= CONMCTXT_CNGCHMAP_V(ch_map);
|
2015-05-05 09:29:53 +00:00
|
|
|
}
|
2015-05-27 17:00:24 +00:00
|
|
|
ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
|
2015-05-05 09:29:53 +00:00
|
|
|
¶m, &val);
|
|
|
|
if (ret)
|
|
|
|
dev_warn(adap->pdev_dev, "Failed to set Congestion"
|
|
|
|
" Manager Context for Ingress Queue %d: %d\n",
|
|
|
|
iq->cntxt_id, -ret);
|
|
|
|
}
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
fl_nomem:
|
|
|
|
ret = -ENOMEM;
|
|
|
|
err:
|
|
|
|
if (iq->desc) {
|
|
|
|
dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
|
|
|
|
iq->desc, iq->phys_addr);
|
|
|
|
iq->desc = NULL;
|
|
|
|
}
|
|
|
|
if (fl && fl->desc) {
|
|
|
|
kfree(fl->sdesc);
|
|
|
|
fl->sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
|
|
|
|
fl->desc, fl->addr);
|
|
|
|
fl->desc = NULL;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
|
|
|
|
{
|
2013-03-14 05:08:51 +00:00
|
|
|
q->cntxt_id = id;
|
2014-12-03 14:02:53 +00:00
|
|
|
q->bar2_addr = bar2_address(adap,
|
|
|
|
q->cntxt_id,
|
|
|
|
T4_BAR2_QTYPE_EGRESS,
|
|
|
|
&q->bar2_qid);
|
2010-04-01 15:28:24 +00:00
|
|
|
q->in_use = 0;
|
|
|
|
q->cidx = q->pidx = 0;
|
|
|
|
q->stops = q->restarts = 0;
|
|
|
|
q->stat = (void *)&q->desc[q->size];
|
2012-05-18 09:59:26 +00:00
|
|
|
spin_lock_init(&q->db_lock);
|
2010-08-23 17:20:58 +00:00
|
|
|
adap->sge.egr_map[id - adap->sge.egr_start] = q;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
|
|
|
|
struct net_device *dev, struct netdev_queue *netdevq,
|
|
|
|
unsigned int iqid)
|
|
|
|
{
|
|
|
|
int ret, nentries;
|
|
|
|
struct fw_eq_eth_cmd c;
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 15:28:24 +00:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 02:39:38 +00:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
|
|
|
|
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
|
2012-09-26 02:39:38 +00:00
|
|
|
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
|
2010-12-14 21:36:55 +00:00
|
|
|
netdev_queue_numa_node_read(netdevq));
|
2010-04-01 15:28:24 +00:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
2014-11-07 04:05:25 +00:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
|
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-27 17:00:24 +00:00
|
|
|
FW_EQ_ETH_CMD_PFN_V(adap->pf) |
|
2014-11-21 07:22:03 +00:00
|
|
|
FW_EQ_ETH_CMD_VFN_V(0));
|
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
|
|
|
|
FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
|
|
|
|
c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
|
|
|
|
FW_EQ_ETH_CMD_VIID_V(pi->viid));
|
2015-05-11 23:13:43 +00:00
|
|
|
c.fetchszm_to_iqid =
|
|
|
|
htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
|
|
FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
|
|
|
|
FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
|
|
|
|
c.dcaen_to_eqsize =
|
|
|
|
htonl(FW_EQ_ETH_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
|
|
|
|
FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
|
|
FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
|
|
FW_EQ_ETH_CMD_EQSIZE_V(nentries));
|
2010-04-01 15:28:24 +00:00
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2015-05-27 17:00:24 +00:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (ret) {
|
|
|
|
kfree(txq->q.sdesc);
|
|
|
|
txq->q.sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2014-11-21 07:22:03 +00:00
|
|
|
init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
|
2010-04-01 15:28:24 +00:00
|
|
|
txq->txq = netdevq;
|
|
|
|
txq->tso = txq->tx_cso = txq->vlan_ins = 0;
|
|
|
|
txq->mapping_err = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
|
|
|
|
struct net_device *dev, unsigned int iqid,
|
|
|
|
unsigned int cmplqid)
|
|
|
|
{
|
|
|
|
int ret, nentries;
|
|
|
|
struct fw_eq_ctrl_cmd c;
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 15:28:24 +00:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 02:39:38 +00:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
|
|
|
|
sizeof(struct tx_desc), 0, &txq->q.phys_addr,
|
2015-05-05 09:29:54 +00:00
|
|
|
NULL, 0, dev_to_node(adap->pdev_dev));
|
2010-04-01 15:28:24 +00:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2014-11-07 04:05:25 +00:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
|
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-27 17:00:24 +00:00
|
|
|
FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
|
2014-11-21 07:22:03 +00:00
|
|
|
FW_EQ_CTRL_CMD_VFN_V(0));
|
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
|
|
|
|
FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
|
|
|
|
c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
|
2010-04-01 15:28:24 +00:00
|
|
|
c.physeqid_pkd = htonl(0);
|
2015-05-11 23:13:43 +00:00
|
|
|
c.fetchszm_to_iqid =
|
|
|
|
htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
|
|
FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
|
|
|
|
FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
|
|
|
|
c.dcaen_to_eqsize =
|
|
|
|
htonl(FW_EQ_CTRL_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
|
|
|
|
FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
|
|
FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
|
|
FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
|
2010-04-01 15:28:24 +00:00
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2015-05-27 17:00:24 +00:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (ret) {
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2014-11-21 07:22:03 +00:00
|
|
|
init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
|
2010-04-01 15:28:24 +00:00
|
|
|
txq->adap = adap;
|
|
|
|
skb_queue_head_init(&txq->sendq);
|
|
|
|
tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
|
|
|
|
txq->full = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2016-09-17 02:42:39 +00:00
|
|
|
int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
|
|
|
|
unsigned int cmplqid)
|
|
|
|
{
|
|
|
|
u32 param, val;
|
|
|
|
|
|
|
|
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
|
|
|
|
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
|
|
|
|
FW_PARAMS_PARAM_YZ_V(eqid));
|
|
|
|
val = cmplqid;
|
|
|
|
return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
|
|
|
|
}
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
|
|
|
|
struct net_device *dev, unsigned int iqid)
|
|
|
|
{
|
|
|
|
int ret, nentries;
|
|
|
|
struct fw_eq_ofld_cmd c;
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 15:28:24 +00:00
|
|
|
struct port_info *pi = netdev_priv(dev);
|
|
|
|
|
|
|
|
/* Add status entries */
|
2012-09-26 02:39:38 +00:00
|
|
|
nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
|
|
|
|
sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
|
2012-09-26 02:39:38 +00:00
|
|
|
&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
|
2010-12-14 21:36:55 +00:00
|
|
|
NUMA_NO_NODE);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (!txq->q.desc)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
memset(&c, 0, sizeof(c));
|
2014-11-07 04:05:25 +00:00
|
|
|
c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
|
|
|
|
FW_CMD_WRITE_F | FW_CMD_EXEC_F |
|
2015-05-27 17:00:24 +00:00
|
|
|
FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
|
2014-11-21 07:22:03 +00:00
|
|
|
FW_EQ_OFLD_CMD_VFN_V(0));
|
|
|
|
c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
|
|
|
|
FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
|
2015-05-11 23:13:43 +00:00
|
|
|
c.fetchszm_to_iqid =
|
|
|
|
htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
|
|
|
|
FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
|
|
|
|
FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
|
|
|
|
c.dcaen_to_eqsize =
|
|
|
|
htonl(FW_EQ_OFLD_CMD_FBMIN_V(FETCHBURSTMIN_64B_X) |
|
|
|
|
FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
|
|
|
|
FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
|
|
|
|
FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
|
2010-04-01 15:28:24 +00:00
|
|
|
c.eqaddr = cpu_to_be64(txq->q.phys_addr);
|
|
|
|
|
2015-05-27 17:00:24 +00:00
|
|
|
ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
|
2010-04-01 15:28:24 +00:00
|
|
|
if (ret) {
|
|
|
|
kfree(txq->q.sdesc);
|
|
|
|
txq->q.sdesc = NULL;
|
|
|
|
dma_free_coherent(adap->pdev_dev,
|
|
|
|
nentries * sizeof(struct tx_desc),
|
|
|
|
txq->q.desc, txq->q.phys_addr);
|
|
|
|
txq->q.desc = NULL;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2014-11-21 07:22:03 +00:00
|
|
|
init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
|
2010-04-01 15:28:24 +00:00
|
|
|
txq->adap = adap;
|
|
|
|
skb_queue_head_init(&txq->sendq);
|
|
|
|
tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
|
|
|
|
txq->full = 0;
|
|
|
|
txq->mapping_err = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void free_txq(struct adapter *adap, struct sge_txq *q)
|
|
|
|
{
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
dma_free_coherent(adap->pdev_dev,
|
2012-09-26 02:39:38 +00:00
|
|
|
q->size * sizeof(struct tx_desc) + s->stat_len,
|
2010-04-01 15:28:24 +00:00
|
|
|
q->desc, q->phys_addr);
|
|
|
|
q->cntxt_id = 0;
|
|
|
|
q->sdesc = NULL;
|
|
|
|
q->desc = NULL;
|
|
|
|
}
|
|
|
|
|
2016-08-17 07:03:03 +00:00
|
|
|
void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
|
|
|
|
struct sge_fl *fl)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
2012-09-26 02:39:38 +00:00
|
|
|
struct sge *s = &adap->sge;
|
2010-04-01 15:28:24 +00:00
|
|
|
unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
|
|
|
|
|
2010-08-23 17:20:58 +00:00
|
|
|
adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
|
2015-05-27 17:00:24 +00:00
|
|
|
t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
|
2010-08-02 13:19:21 +00:00
|
|
|
rq->cntxt_id, fl_id, 0xffff);
|
2010-04-01 15:28:24 +00:00
|
|
|
dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
|
|
|
|
rq->desc, rq->phys_addr);
|
2015-02-04 10:02:52 +00:00
|
|
|
napi_hash_del(&rq->napi);
|
2010-04-01 15:28:24 +00:00
|
|
|
netif_napi_del(&rq->napi);
|
|
|
|
rq->netdev = NULL;
|
|
|
|
rq->cntxt_id = rq->abs_id = 0;
|
|
|
|
rq->desc = NULL;
|
|
|
|
|
|
|
|
if (fl) {
|
|
|
|
free_rx_bufs(adap, fl, fl->avail);
|
2012-09-26 02:39:38 +00:00
|
|
|
dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
|
2010-04-01 15:28:24 +00:00
|
|
|
fl->desc, fl->addr);
|
|
|
|
kfree(fl->sdesc);
|
|
|
|
fl->sdesc = NULL;
|
|
|
|
fl->cntxt_id = 0;
|
|
|
|
fl->desc = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-08-04 11:31:30 +00:00
|
|
|
/**
|
|
|
|
* t4_free_ofld_rxqs - free a block of consecutive Rx queues
|
|
|
|
* @adap: the adapter
|
|
|
|
* @n: number of queues
|
|
|
|
* @q: pointer to first queue
|
|
|
|
*
|
|
|
|
* Release the resources of a consecutive block of offload Rx queues.
|
|
|
|
*/
|
|
|
|
void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
|
|
|
|
{
|
|
|
|
for ( ; n; n--, q++)
|
|
|
|
if (q->rspq.desc)
|
|
|
|
free_rspq_fl(adap, &q->rspq,
|
|
|
|
q->fl.size ? &q->fl : NULL);
|
|
|
|
}
|
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
/**
|
|
|
|
* t4_free_sge_resources - free SGE resources
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Frees resources used by the SGE queue sets.
|
|
|
|
*/
|
|
|
|
void t4_free_sge_resources(struct adapter *adap)
|
|
|
|
{
|
|
|
|
int i;
|
2016-04-11 05:37:58 +00:00
|
|
|
struct sge_eth_rxq *eq;
|
|
|
|
struct sge_eth_txq *etq;
|
|
|
|
|
|
|
|
/* stop all Rx queues in order to start them draining */
|
|
|
|
for (i = 0; i < adap->sge.ethqsets; i++) {
|
|
|
|
eq = &adap->sge.ethrxq[i];
|
|
|
|
if (eq->rspq.desc)
|
|
|
|
t4_iq_stop(adap, adap->mbox, adap->pf, 0,
|
|
|
|
FW_IQ_TYPE_FL_INT_CAP,
|
|
|
|
eq->rspq.cntxt_id,
|
|
|
|
eq->fl.size ? eq->fl.cntxt_id : 0xffff,
|
|
|
|
0xffff);
|
|
|
|
}
|
2010-04-01 15:28:24 +00:00
|
|
|
|
|
|
|
/* clean up Ethernet Tx/Rx queues */
|
2016-04-11 05:37:58 +00:00
|
|
|
for (i = 0; i < adap->sge.ethqsets; i++) {
|
|
|
|
eq = &adap->sge.ethrxq[i];
|
2010-04-01 15:28:24 +00:00
|
|
|
if (eq->rspq.desc)
|
2014-08-04 11:31:30 +00:00
|
|
|
free_rspq_fl(adap, &eq->rspq,
|
|
|
|
eq->fl.size ? &eq->fl : NULL);
|
2016-04-11 05:37:58 +00:00
|
|
|
|
|
|
|
etq = &adap->sge.ethtxq[i];
|
2010-04-01 15:28:24 +00:00
|
|
|
if (etq->q.desc) {
|
2015-05-27 17:00:24 +00:00
|
|
|
t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
|
2010-08-02 13:19:21 +00:00
|
|
|
etq->q.cntxt_id);
|
2016-04-26 14:40:24 +00:00
|
|
|
__netif_tx_lock_bh(etq->txq);
|
2010-04-01 15:28:24 +00:00
|
|
|
free_tx_desc(adap, &etq->q, etq->q.in_use, true);
|
2016-04-26 14:40:24 +00:00
|
|
|
__netif_tx_unlock_bh(etq->txq);
|
2010-04-01 15:28:24 +00:00
|
|
|
kfree(etq->q.sdesc);
|
|
|
|
free_txq(adap, &etq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* clean up offload Tx queues */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
|
|
|
|
struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
|
|
|
|
|
|
|
|
if (q->q.desc) {
|
|
|
|
tasklet_kill(&q->qresume_tsk);
|
2015-05-27 17:00:24 +00:00
|
|
|
t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
|
2010-08-02 13:19:21 +00:00
|
|
|
q->q.cntxt_id);
|
2010-04-01 15:28:24 +00:00
|
|
|
free_tx_desc(adap, &q->q, q->q.in_use, false);
|
|
|
|
kfree(q->q.sdesc);
|
|
|
|
__skb_queue_purge(&q->sendq);
|
|
|
|
free_txq(adap, &q->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* clean up control Tx queues */
|
|
|
|
for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
|
|
|
|
struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
|
|
|
|
|
|
|
|
if (cq->q.desc) {
|
|
|
|
tasklet_kill(&cq->qresume_tsk);
|
2015-05-27 17:00:24 +00:00
|
|
|
t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
|
2010-08-02 13:19:21 +00:00
|
|
|
cq->q.cntxt_id);
|
2010-04-01 15:28:24 +00:00
|
|
|
__skb_queue_purge(&cq->sendq);
|
|
|
|
free_txq(adap, &cq->q);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (adap->sge.fw_evtq.desc)
|
|
|
|
free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
|
|
|
|
|
|
|
|
if (adap->sge.intrq.desc)
|
|
|
|
free_rspq_fl(adap, &adap->sge.intrq, NULL);
|
|
|
|
|
|
|
|
/* clear the reverse egress queue map */
|
2015-03-26 04:34:25 +00:00
|
|
|
memset(adap->sge.egr_map, 0,
|
|
|
|
adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void t4_sge_start(struct adapter *adap)
|
|
|
|
{
|
|
|
|
adap->sge.ethtxq_rover = 0;
|
|
|
|
mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
|
|
|
|
mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* t4_sge_stop - disable SGE operation
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Stop tasklets and timers associated with the DMA engine. Note that
|
|
|
|
* this is effective only if measures have been taken to disable any HW
|
|
|
|
* events that may restart them.
|
|
|
|
*/
|
|
|
|
void t4_sge_stop(struct adapter *adap)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct sge *s = &adap->sge;
|
|
|
|
|
|
|
|
if (in_interrupt()) /* actions below require waiting */
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (s->rx_timer.function)
|
|
|
|
del_timer_sync(&s->rx_timer);
|
|
|
|
if (s->tx_timer.function)
|
|
|
|
del_timer_sync(&s->tx_timer);
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
|
|
|
|
struct sge_ofld_txq *q = &s->ofldtxq[i];
|
|
|
|
|
|
|
|
if (q->q.desc)
|
|
|
|
tasklet_kill(&q->qresume_tsk);
|
|
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
|
|
|
|
struct sge_ctrl_txq *cq = &s->ctrlq[i];
|
|
|
|
|
|
|
|
if (cq->q.desc)
|
|
|
|
tasklet_kill(&cq->qresume_tsk);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2015-01-13 09:49:25 +00:00
|
|
|
* t4_sge_init_soft - grab core SGE values needed by SGE code
|
2010-04-01 15:28:24 +00:00
|
|
|
* @adap: the adapter
|
|
|
|
*
|
2015-01-13 09:49:25 +00:00
|
|
|
* We need to grab the SGE operating parameters that we need to have
|
|
|
|
* in order to do our job and make sure we can live with them.
|
2010-04-01 15:28:24 +00:00
|
|
|
*/
|
2012-09-26 02:39:38 +00:00
|
|
|
|
|
|
|
static int t4_sge_init_soft(struct adapter *adap)
|
2010-04-01 15:28:24 +00:00
|
|
|
{
|
|
|
|
struct sge *s = &adap->sge;
|
2012-09-26 02:39:38 +00:00
|
|
|
u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
|
|
|
|
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
|
|
|
|
u32 ingress_rx_threshold;
|
2010-04-01 15:28:24 +00:00
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
/*
|
|
|
|
* Verify that CPL messages are going to the Ingress Queue for
|
|
|
|
* process_responses() and that only packet data is going to the
|
|
|
|
* Free Lists.
|
|
|
|
*/
|
2015-01-05 11:00:43 +00:00
|
|
|
if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
|
|
|
|
RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
|
2012-09-26 02:39:38 +00:00
|
|
|
dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Validate the Host Buffer Register Array indices that we want to
|
|
|
|
* use ...
|
|
|
|
*
|
|
|
|
* XXX Note that we should really read through the Host Buffer Size
|
|
|
|
* XXX register array and find the indices of the Buffer Sizes which
|
|
|
|
* XXX meet our needs!
|
|
|
|
*/
|
|
|
|
#define READ_FL_BUF(x) \
|
2015-01-05 11:00:43 +00:00
|
|
|
t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
|
2012-09-26 02:39:38 +00:00
|
|
|
|
|
|
|
fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
|
|
|
|
fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
|
|
|
|
fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
|
|
|
|
fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
|
|
|
|
|
2014-03-13 15:20:46 +00:00
|
|
|
/* We only bother using the Large Page logic if the Large Page Buffer
|
|
|
|
* is larger than our Page Size Buffer.
|
|
|
|
*/
|
|
|
|
if (fl_large_pg <= fl_small_pg)
|
|
|
|
fl_large_pg = 0;
|
|
|
|
|
2012-09-26 02:39:38 +00:00
|
|
|
#undef READ_FL_BUF
|
|
|
|
|
2014-03-13 15:20:46 +00:00
|
|
|
/* The Page Size Buffer must be exactly equal to our Page Size and the
|
|
|
|
* Large Page Size Buffer should be 0 (per above) or a power of 2.
|
|
|
|
*/
|
2012-09-26 02:39:38 +00:00
|
|
|
if (fl_small_pg != PAGE_SIZE ||
|
2014-03-13 15:20:46 +00:00
|
|
|
(fl_large_pg & (fl_large_pg-1)) != 0) {
|
2012-09-26 02:39:38 +00:00
|
|
|
dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
|
|
|
|
fl_small_pg, fl_large_pg);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
if (fl_large_pg)
|
|
|
|
s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
|
|
|
|
|
|
|
|
if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
|
|
|
|
fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
|
|
|
|
dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
|
|
|
|
fl_small_mtu, fl_large_mtu);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Retrieve our RX interrupt holdoff timer values and counter
|
|
|
|
* threshold values from the SGE parameters.
|
|
|
|
*/
|
2015-01-05 11:00:44 +00:00
|
|
|
timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
|
|
|
|
timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
|
|
|
|
timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
|
2012-09-26 02:39:38 +00:00
|
|
|
s->timer_val[0] = core_ticks_to_us(adap,
|
2015-01-05 11:00:44 +00:00
|
|
|
TIMERVALUE0_G(timer_value_0_and_1));
|
2012-09-26 02:39:38 +00:00
|
|
|
s->timer_val[1] = core_ticks_to_us(adap,
|
2015-01-05 11:00:44 +00:00
|
|
|
TIMERVALUE1_G(timer_value_0_and_1));
|
2012-09-26 02:39:38 +00:00
|
|
|
s->timer_val[2] = core_ticks_to_us(adap,
|
2015-01-05 11:00:44 +00:00
|
|
|
TIMERVALUE2_G(timer_value_2_and_3));
|
2012-09-26 02:39:38 +00:00
|
|
|
s->timer_val[3] = core_ticks_to_us(adap,
|
2015-01-05 11:00:44 +00:00
|
|
|
TIMERVALUE3_G(timer_value_2_and_3));
|
2012-09-26 02:39:38 +00:00
|
|
|
s->timer_val[4] = core_ticks_to_us(adap,
|
2015-01-05 11:00:44 +00:00
|
|
|
TIMERVALUE4_G(timer_value_4_and_5));
|
2012-09-26 02:39:38 +00:00
|
|
|
s->timer_val[5] = core_ticks_to_us(adap,
|
2015-01-05 11:00:44 +00:00
|
|
|
TIMERVALUE5_G(timer_value_4_and_5));
|
2012-09-26 02:39:38 +00:00
|
|
|
|
2015-01-05 11:00:43 +00:00
|
|
|
ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
|
|
|
|
s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
|
|
|
|
s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
|
|
|
|
s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
|
|
|
|
s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
|
2012-09-26 02:39:38 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-01-13 09:49:25 +00:00
|
|
|
/**
|
|
|
|
* t4_sge_init - initialize SGE
|
|
|
|
* @adap: the adapter
|
|
|
|
*
|
|
|
|
* Perform low-level SGE code initialization needed every time after a
|
|
|
|
* chip reset.
|
|
|
|
*/
|
2012-09-26 02:39:38 +00:00
|
|
|
int t4_sge_init(struct adapter *adap)
|
|
|
|
{
|
|
|
|
struct sge *s = &adap->sge;
|
2015-12-23 17:17:13 +00:00
|
|
|
u32 sge_control, sge_conm_ctrl;
|
2014-03-13 15:20:49 +00:00
|
|
|
int ret, egress_threshold;
|
2012-09-26 02:39:38 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Ingress Padding Boundary and Egress Status Page Size are set up by
|
|
|
|
* t4_fixup_host_params().
|
|
|
|
*/
|
2015-01-05 11:00:43 +00:00
|
|
|
sge_control = t4_read_reg(adap, SGE_CONTROL_A);
|
|
|
|
s->pktshift = PKTSHIFT_G(sge_control);
|
|
|
|
s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
|
2014-11-07 11:36:30 +00:00
|
|
|
|
2015-12-23 17:17:13 +00:00
|
|
|
s->fl_align = t4_fl_pkt_align(adap);
|
2015-01-13 09:49:25 +00:00
|
|
|
ret = t4_sge_init_soft(adap);
|
2012-09-26 02:39:38 +00:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A FL with <= fl_starve_thres buffers is starving and a periodic
|
|
|
|
* timer will attempt to refill it. This needs to be larger than the
|
|
|
|
* SGE's Egress Congestion Threshold. If it isn't, then we can get
|
|
|
|
* stuck waiting for new packets while the SGE is waiting for us to
|
|
|
|
* give it more Free List entries. (Note that the SGE's Egress
|
2014-03-13 15:20:49 +00:00
|
|
|
* Congestion Threshold is in units of 2 Free List pointers.) For T4,
|
|
|
|
* there was only a single field to control this. For T5 there's the
|
|
|
|
* original field which now only applies to Unpacked Mode Free List
|
|
|
|
* buffers and a new field which only applies to Packed Mode Free List
|
|
|
|
* buffers.
|
2012-09-26 02:39:38 +00:00
|
|
|
*/
|
2015-01-05 11:00:43 +00:00
|
|
|
sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
|
2015-12-23 17:17:14 +00:00
|
|
|
switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
|
|
|
|
case CHELSIO_T4:
|
2015-01-05 11:00:43 +00:00
|
|
|
egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
|
2015-12-23 17:17:14 +00:00
|
|
|
break;
|
|
|
|
case CHELSIO_T5:
|
2015-01-05 11:00:43 +00:00
|
|
|
egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
|
2015-12-23 17:17:14 +00:00
|
|
|
break;
|
|
|
|
case CHELSIO_T6:
|
|
|
|
egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
|
|
|
|
CHELSIO_CHIP_VERSION(adap->params.chip));
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2014-03-13 15:20:49 +00:00
|
|
|
s->fl_starve_thres = 2*egress_threshold + 1;
|
2012-09-26 02:39:38 +00:00
|
|
|
|
2015-05-05 09:29:55 +00:00
|
|
|
t4_idma_monitor_init(adap, &s->idma_monitor);
|
|
|
|
|
2015-05-11 23:13:43 +00:00
|
|
|
/* Set up timers used for recuring callbacks to process RX and TX
|
|
|
|
* administrative tasks.
|
|
|
|
*/
|
2010-04-01 15:28:24 +00:00
|
|
|
setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
|
|
|
|
setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
|
2015-05-05 09:29:55 +00:00
|
|
|
|
2010-04-01 15:28:24 +00:00
|
|
|
spin_lock_init(&s->intrq_lock);
|
2012-09-26 02:39:38 +00:00
|
|
|
|
|
|
|
return 0;
|
2010-04-01 15:28:24 +00:00
|
|
|
}
|