linux/drivers/of/address.c

642 lines
16 KiB
C
Raw Normal View History

#include <linux/device.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/pci_regs.h>
#include <linux/string.h>
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
of: Allow busses with #size-cells=0 It's quite legitimate for a DT node to specify #size-cells=0. One example is a node that's used to collect a number of non-memory-mapped devices. In that scenario, there may be multiple child nodes with the same name (type) thus necessitating the use of unit addresses in node names, and reg properties: / { regulators { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <0>; regulator@0 { compatible = "regulator-fixed"; reg = <0>; ... }; regulator@1 { compatible = "regulator-fixed"; reg = <1>; ... }; ... }; }; However, #size-cells=0 prevents translation of reg property values into the parent node's address space. In turn, this triggers the kernel to emit error messages during boot, such as: prom_parse: Bad cell count for /regulators/regulator@0 To prevent printing these error messages for legitimate DT content, a number of changes are made: 1) of_get_address()/of_get_pci_address() are modified only to validate the value of #address-cells, and not #size-cells. 2) of_can_translate_address() is added to indicate whether address translation is possible. 3) of_device_make_bus_id() is modified to name devices based on the translated address only where possible, and otherwise fall back to using the (first cell of the) raw untranslated address. 4) of_device_alloc() is modified to create memory resources for a device only if the address can be translated into the CPU's address space. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-07-25 23:34:37 +00:00
#define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
#define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
static struct of_bus *of_match_bus(struct device_node *np);
static int __of_address_to_resource(struct device_node *dev,
const __be32 *addrp, u64 size, unsigned int flags,
const char *name, struct resource *r);
/* Debug utility */
#ifdef DEBUG
static void of_dump_addr(const char *s, const __be32 *addr, int na)
{
printk(KERN_DEBUG "%s", s);
while (na--)
printk(" %08x", be32_to_cpu(*(addr++)));
printk("\n");
}
#else
static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
#endif
/* Callbacks for bus specific translators */
struct of_bus {
const char *name;
const char *addresses;
int (*match)(struct device_node *parent);
void (*count_cells)(struct device_node *child,
int *addrc, int *sizec);
u64 (*map)(u32 *addr, const __be32 *range,
int na, int ns, int pna);
int (*translate)(u32 *addr, u64 offset, int na);
unsigned int (*get_flags)(const __be32 *addr);
};
/*
* Default translator (generic bus)
*/
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dev);
if (sizec)
*sizec = of_n_size_cells(dev);
}
static u64 of_bus_default_map(u32 *addr, const __be32 *range,
int na, int ns, int pna)
{
u64 cp, s, da;
cp = of_read_number(range, na);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr, na);
pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
(unsigned long long)cp, (unsigned long long)s,
(unsigned long long)da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
static int of_bus_default_translate(u32 *addr, u64 offset, int na)
{
u64 a = of_read_number(addr, na);
memset(addr, 0, na * 4);
a += offset;
if (na > 1)
addr[na - 2] = cpu_to_be32(a >> 32);
addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
return 0;
}
static unsigned int of_bus_default_get_flags(const __be32 *addr)
{
return IORESOURCE_MEM;
}
#ifdef CONFIG_PCI
/*
* PCI bus specific translator
*/
static int of_bus_pci_match(struct device_node *np)
{
/* "vci" is for the /chaos bridge on 1st-gen PCI powermacs */
return !strcmp(np->type, "pci") || !strcmp(np->type, "vci");
}
static void of_bus_pci_count_cells(struct device_node *np,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 3;
if (sizec)
*sizec = 2;
}
static unsigned int of_bus_pci_get_flags(const __be32 *addr)
{
unsigned int flags = 0;
u32 w = be32_to_cpup(addr);
switch((w >> 24) & 0x03) {
case 0x01:
flags |= IORESOURCE_IO;
break;
case 0x02: /* 32 bits */
case 0x03: /* 64 bits */
flags |= IORESOURCE_MEM;
break;
}
if (w & 0x40000000)
flags |= IORESOURCE_PREFETCH;
return flags;
}
static u64 of_bus_pci_map(u32 *addr, const __be32 *range, int na, int ns,
int pna)
{
u64 cp, s, da;
unsigned int af, rf;
af = of_bus_pci_get_flags(addr);
rf = of_bus_pci_get_flags(range);
/* Check address type match */
if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
return OF_BAD_ADDR;
/* Read address values, skipping high cell */
cp = of_read_number(range + 1, na - 1);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr + 1, na - 1);
pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
(unsigned long long)cp, (unsigned long long)s,
(unsigned long long)da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
static int of_bus_pci_translate(u32 *addr, u64 offset, int na)
{
return of_bus_default_translate(addr + 1, offset, na - 1);
}
const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
unsigned int *flags)
{
const __be32 *prop;
unsigned int psize;
struct device_node *parent;
struct of_bus *bus;
int onesize, i, na, ns;
/* Get parent & match bus type */
parent = of_get_parent(dev);
if (parent == NULL)
return NULL;
bus = of_match_bus(parent);
if (strcmp(bus->name, "pci")) {
of_node_put(parent);
return NULL;
}
bus->count_cells(dev, &na, &ns);
of_node_put(parent);
of: Allow busses with #size-cells=0 It's quite legitimate for a DT node to specify #size-cells=0. One example is a node that's used to collect a number of non-memory-mapped devices. In that scenario, there may be multiple child nodes with the same name (type) thus necessitating the use of unit addresses in node names, and reg properties: / { regulators { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <0>; regulator@0 { compatible = "regulator-fixed"; reg = <0>; ... }; regulator@1 { compatible = "regulator-fixed"; reg = <1>; ... }; ... }; }; However, #size-cells=0 prevents translation of reg property values into the parent node's address space. In turn, this triggers the kernel to emit error messages during boot, such as: prom_parse: Bad cell count for /regulators/regulator@0 To prevent printing these error messages for legitimate DT content, a number of changes are made: 1) of_get_address()/of_get_pci_address() are modified only to validate the value of #address-cells, and not #size-cells. 2) of_can_translate_address() is added to indicate whether address translation is possible. 3) of_device_make_bus_id() is modified to name devices based on the translated address only where possible, and otherwise fall back to using the (first cell of the) raw untranslated address. 4) of_device_alloc() is modified to create memory resources for a device only if the address can be translated into the CPU's address space. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-07-25 23:34:37 +00:00
if (!OF_CHECK_ADDR_COUNT(na))
return NULL;
/* Get "reg" or "assigned-addresses" property */
prop = of_get_property(dev, bus->addresses, &psize);
if (prop == NULL)
return NULL;
psize /= 4;
onesize = na + ns;
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
u32 val = be32_to_cpu(prop[0]);
if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
if (size)
*size = of_read_number(prop + na, ns);
if (flags)
*flags = bus->get_flags(prop);
return prop;
}
}
return NULL;
}
EXPORT_SYMBOL(of_get_pci_address);
int of_pci_address_to_resource(struct device_node *dev, int bar,
struct resource *r)
{
const __be32 *addrp;
u64 size;
unsigned int flags;
addrp = of_get_pci_address(dev, bar, &size, &flags);
if (addrp == NULL)
return -EINVAL;
return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
}
EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
#endif /* CONFIG_PCI */
/*
* ISA bus specific translator
*/
static int of_bus_isa_match(struct device_node *np)
{
return !strcmp(np->name, "isa");
}
static void of_bus_isa_count_cells(struct device_node *child,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
static u64 of_bus_isa_map(u32 *addr, const __be32 *range, int na, int ns,
int pna)
{
u64 cp, s, da;
/* Check address type match */
if ((addr[0] ^ range[0]) & cpu_to_be32(1))
return OF_BAD_ADDR;
/* Read address values, skipping high cell */
cp = of_read_number(range + 1, na - 1);
s = of_read_number(range + na + pna, ns);
da = of_read_number(addr + 1, na - 1);
pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
(unsigned long long)cp, (unsigned long long)s,
(unsigned long long)da);
if (da < cp || da >= (cp + s))
return OF_BAD_ADDR;
return da - cp;
}
static int of_bus_isa_translate(u32 *addr, u64 offset, int na)
{
return of_bus_default_translate(addr + 1, offset, na - 1);
}
static unsigned int of_bus_isa_get_flags(const __be32 *addr)
{
unsigned int flags = 0;
u32 w = be32_to_cpup(addr);
if (w & 1)
flags |= IORESOURCE_IO;
else
flags |= IORESOURCE_MEM;
return flags;
}
/*
* Array of bus specific translators
*/
static struct of_bus of_busses[] = {
#ifdef CONFIG_PCI
/* PCI */
{
.name = "pci",
.addresses = "assigned-addresses",
.match = of_bus_pci_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_pci_map,
.translate = of_bus_pci_translate,
.get_flags = of_bus_pci_get_flags,
},
#endif /* CONFIG_PCI */
/* ISA */
{
.name = "isa",
.addresses = "reg",
.match = of_bus_isa_match,
.count_cells = of_bus_isa_count_cells,
.map = of_bus_isa_map,
.translate = of_bus_isa_translate,
.get_flags = of_bus_isa_get_flags,
},
/* Default */
{
.name = "default",
.addresses = "reg",
.match = NULL,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.translate = of_bus_default_translate,
.get_flags = of_bus_default_get_flags,
},
};
static struct of_bus *of_match_bus(struct device_node *np)
{
int i;
for (i = 0; i < ARRAY_SIZE(of_busses); i++)
if (!of_busses[i].match || of_busses[i].match(np))
return &of_busses[i];
BUG();
return NULL;
}
static int of_translate_one(struct device_node *parent, struct of_bus *bus,
struct of_bus *pbus, u32 *addr,
int na, int ns, int pna, const char *rprop)
{
const __be32 *ranges;
unsigned int rlen;
int rone;
u64 offset = OF_BAD_ADDR;
/* Normally, an absence of a "ranges" property means we are
* crossing a non-translatable boundary, and thus the addresses
* below the current not cannot be converted to CPU physical ones.
* Unfortunately, while this is very clear in the spec, it's not
* what Apple understood, and they do have things like /uni-n or
* /ht nodes with no "ranges" property and a lot of perfectly
* useable mapped devices below them. Thus we treat the absence of
* "ranges" as equivalent to an empty "ranges" property which means
* a 1:1 translation at that level. It's up to the caller not to try
* to translate addresses that aren't supposed to be translated in
* the first place. --BenH.
*
* As far as we know, this damage only exists on Apple machines, so
* This code is only enabled on powerpc. --gcl
*/
ranges = of_get_property(parent, rprop, &rlen);
#if !defined(CONFIG_PPC)
if (ranges == NULL) {
pr_err("OF: no ranges; cannot translate\n");
return 1;
}
#endif /* !defined(CONFIG_PPC) */
if (ranges == NULL || rlen == 0) {
offset = of_read_number(addr, na);
memset(addr, 0, pna * 4);
pr_debug("OF: empty ranges; 1:1 translation\n");
goto finish;
}
pr_debug("OF: walking ranges...\n");
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
offset = bus->map(addr, ranges, na, ns, pna);
if (offset != OF_BAD_ADDR)
break;
}
if (offset == OF_BAD_ADDR) {
pr_debug("OF: not found !\n");
return 1;
}
memcpy(addr, ranges + na, 4 * pna);
finish:
of_dump_addr("OF: parent translation for:", addr, pna);
pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
/* Translate it into parent bus space */
return pbus->translate(addr, offset, pna);
}
/*
* Translate an address from the device-tree into a CPU physical address,
* this walks up the tree and applies the various bus mappings on the
* way.
*
* Note: We consider that crossing any level with #size-cells == 0 to mean
* that translation is impossible (that is we are not dealing with a value
* that can be mapped to a cpu physical address). This is not really specified
* that way, but this is traditionally the way IBM at least do things
*/
u64 __of_translate_address(struct device_node *dev, const __be32 *in_addr,
const char *rprop)
{
struct device_node *parent = NULL;
struct of_bus *bus, *pbus;
u32 addr[OF_MAX_ADDR_CELLS];
int na, ns, pna, pns;
u64 result = OF_BAD_ADDR;
pr_debug("OF: ** translation for device %s **\n", dev->full_name);
/* Increase refcount at current level */
of_node_get(dev);
/* Get parent & match bus type */
parent = of_get_parent(dev);
if (parent == NULL)
goto bail;
bus = of_match_bus(parent);
/* Cound address cells & copy address locally */
bus->count_cells(dev, &na, &ns);
if (!OF_CHECK_COUNTS(na, ns)) {
printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
dev->full_name);
goto bail;
}
memcpy(addr, in_addr, na * 4);
pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
bus->name, na, ns, parent->full_name);
of_dump_addr("OF: translating address:", addr, na);
/* Translate */
for (;;) {
/* Switch to parent bus */
of_node_put(dev);
dev = parent;
parent = of_get_parent(dev);
/* If root, we have finished */
if (parent == NULL) {
pr_debug("OF: reached root node\n");
result = of_read_number(addr, na);
break;
}
/* Get new parent bus and counts */
pbus = of_match_bus(parent);
pbus->count_cells(dev, &pna, &pns);
if (!OF_CHECK_COUNTS(pna, pns)) {
printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
dev->full_name);
break;
}
pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
pbus->name, pna, pns, parent->full_name);
/* Apply bus translation */
if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
break;
/* Complete the move up one level */
na = pna;
ns = pns;
bus = pbus;
of_dump_addr("OF: one level translation:", addr, na);
}
bail:
of_node_put(parent);
of_node_put(dev);
return result;
}
u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
{
return __of_translate_address(dev, in_addr, "ranges");
}
EXPORT_SYMBOL(of_translate_address);
u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
{
return __of_translate_address(dev, in_addr, "dma-ranges");
}
EXPORT_SYMBOL(of_translate_dma_address);
of: Allow busses with #size-cells=0 It's quite legitimate for a DT node to specify #size-cells=0. One example is a node that's used to collect a number of non-memory-mapped devices. In that scenario, there may be multiple child nodes with the same name (type) thus necessitating the use of unit addresses in node names, and reg properties: / { regulators { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <0>; regulator@0 { compatible = "regulator-fixed"; reg = <0>; ... }; regulator@1 { compatible = "regulator-fixed"; reg = <1>; ... }; ... }; }; However, #size-cells=0 prevents translation of reg property values into the parent node's address space. In turn, this triggers the kernel to emit error messages during boot, such as: prom_parse: Bad cell count for /regulators/regulator@0 To prevent printing these error messages for legitimate DT content, a number of changes are made: 1) of_get_address()/of_get_pci_address() are modified only to validate the value of #address-cells, and not #size-cells. 2) of_can_translate_address() is added to indicate whether address translation is possible. 3) of_device_make_bus_id() is modified to name devices based on the translated address only where possible, and otherwise fall back to using the (first cell of the) raw untranslated address. 4) of_device_alloc() is modified to create memory resources for a device only if the address can be translated into the CPU's address space. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-07-25 23:34:37 +00:00
bool of_can_translate_address(struct device_node *dev)
{
struct device_node *parent;
struct of_bus *bus;
int na, ns;
parent = of_get_parent(dev);
if (parent == NULL)
return false;
bus = of_match_bus(parent);
bus->count_cells(dev, &na, &ns);
of_node_put(parent);
return OF_CHECK_COUNTS(na, ns);
}
EXPORT_SYMBOL(of_can_translate_address);
const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
unsigned int *flags)
{
const __be32 *prop;
unsigned int psize;
struct device_node *parent;
struct of_bus *bus;
int onesize, i, na, ns;
/* Get parent & match bus type */
parent = of_get_parent(dev);
if (parent == NULL)
return NULL;
bus = of_match_bus(parent);
bus->count_cells(dev, &na, &ns);
of_node_put(parent);
of: Allow busses with #size-cells=0 It's quite legitimate for a DT node to specify #size-cells=0. One example is a node that's used to collect a number of non-memory-mapped devices. In that scenario, there may be multiple child nodes with the same name (type) thus necessitating the use of unit addresses in node names, and reg properties: / { regulators { compatible = "simple-bus"; #address-cells = <1>; #size-cells = <0>; regulator@0 { compatible = "regulator-fixed"; reg = <0>; ... }; regulator@1 { compatible = "regulator-fixed"; reg = <1>; ... }; ... }; }; However, #size-cells=0 prevents translation of reg property values into the parent node's address space. In turn, this triggers the kernel to emit error messages during boot, such as: prom_parse: Bad cell count for /regulators/regulator@0 To prevent printing these error messages for legitimate DT content, a number of changes are made: 1) of_get_address()/of_get_pci_address() are modified only to validate the value of #address-cells, and not #size-cells. 2) of_can_translate_address() is added to indicate whether address translation is possible. 3) of_device_make_bus_id() is modified to name devices based on the translated address only where possible, and otherwise fall back to using the (first cell of the) raw untranslated address. 4) of_device_alloc() is modified to create memory resources for a device only if the address can be translated into the CPU's address space. Signed-off-by: Stephen Warren <swarren@nvidia.com> Signed-off-by: Rob Herring <rob.herring@calxeda.com>
2012-07-25 23:34:37 +00:00
if (!OF_CHECK_ADDR_COUNT(na))
return NULL;
/* Get "reg" or "assigned-addresses" property */
prop = of_get_property(dev, bus->addresses, &psize);
if (prop == NULL)
return NULL;
psize /= 4;
onesize = na + ns;
for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
if (i == index) {
if (size)
*size = of_read_number(prop + na, ns);
if (flags)
*flags = bus->get_flags(prop);
return prop;
}
return NULL;
}
EXPORT_SYMBOL(of_get_address);
static int __of_address_to_resource(struct device_node *dev,
const __be32 *addrp, u64 size, unsigned int flags,
const char *name, struct resource *r)
{
u64 taddr;
if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
return -EINVAL;
taddr = of_translate_address(dev, addrp);
if (taddr == OF_BAD_ADDR)
return -EINVAL;
memset(r, 0, sizeof(struct resource));
if (flags & IORESOURCE_IO) {
unsigned long port;
port = pci_address_to_pio(taddr);
if (port == (unsigned long)-1)
return -EINVAL;
r->start = port;
r->end = port + size - 1;
} else {
r->start = taddr;
r->end = taddr + size - 1;
}
r->flags = flags;
r->name = name ? name : dev->full_name;
return 0;
}
/**
* of_address_to_resource - Translate device tree address and return as resource
*
* Note that if your address is a PIO address, the conversion will fail if
* the physical address can't be internally converted to an IO token with
* pci_address_to_pio(), that is because it's either called to early or it
* can't be matched to any host bridge IO space
*/
int of_address_to_resource(struct device_node *dev, int index,
struct resource *r)
{
const __be32 *addrp;
u64 size;
unsigned int flags;
const char *name = NULL;
addrp = of_get_address(dev, index, &size, &flags);
if (addrp == NULL)
return -EINVAL;
/* Get optional "reg-names" property to add a name to a resource */
of_property_read_string_index(dev, "reg-names", index, &name);
return __of_address_to_resource(dev, addrp, size, flags, name, r);
}
EXPORT_SYMBOL_GPL(of_address_to_resource);
struct device_node *of_find_matching_node_by_address(struct device_node *from,
const struct of_device_id *matches,
u64 base_address)
{
struct device_node *dn = of_find_matching_node(from, matches);
struct resource res;
while (dn) {
if (of_address_to_resource(dn, 0, &res))
continue;
if (res.start == base_address)
return dn;
dn = of_find_matching_node(dn, matches);
}
return NULL;
}
/**
* of_iomap - Maps the memory mapped IO for a given device_node
* @device: the device whose io range will be mapped
* @index: index of the io range
*
* Returns a pointer to the mapped memory
*/
void __iomem *of_iomap(struct device_node *np, int index)
{
struct resource res;
if (of_address_to_resource(np, index, &res))
return NULL;
return ioremap(res.start, resource_size(&res));
}
EXPORT_SYMBOL(of_iomap);