License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifndef __ASM_SH_TLB_H
|
|
|
|
#define __ASM_SH_TLB_H
|
|
|
|
|
2007-11-10 11:35:53 +00:00
|
|
|
#ifdef CONFIG_SUPERH64
|
2012-10-02 17:01:25 +00:00
|
|
|
# include <asm/tlb_64.h>
|
2007-11-10 11:35:53 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef __ASSEMBLY__
|
2009-03-17 12:19:49 +00:00
|
|
|
#include <linux/pagemap.h>
|
|
|
|
|
|
|
|
#ifdef CONFIG_MMU
|
2011-05-31 04:27:41 +00:00
|
|
|
#include <linux/swap.h>
|
2009-03-17 12:19:49 +00:00
|
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include <asm/tlbflush.h>
|
2009-11-19 21:11:05 +00:00
|
|
|
#include <asm/mmu_context.h>
|
2009-03-17 12:19:49 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* TLB handling. This allows us to remove pages from the page
|
|
|
|
* tables, and efficiently handle the TLB issues.
|
|
|
|
*/
|
|
|
|
struct mmu_gather {
|
|
|
|
struct mm_struct *mm;
|
|
|
|
unsigned int fullmm;
|
|
|
|
unsigned long start, end;
|
|
|
|
};
|
2007-11-10 11:35:53 +00:00
|
|
|
|
2009-03-17 12:19:49 +00:00
|
|
|
static inline void init_tlb_gather(struct mmu_gather *tlb)
|
|
|
|
{
|
|
|
|
tlb->start = TASK_SIZE;
|
|
|
|
tlb->end = 0;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2009-03-17 12:19:49 +00:00
|
|
|
if (tlb->fullmm) {
|
|
|
|
tlb->start = 0;
|
|
|
|
tlb->end = TASK_SIZE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2011-05-25 00:11:54 +00:00
|
|
|
static inline void
|
2017-08-10 22:24:05 +00:00
|
|
|
arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
|
|
|
|
unsigned long start, unsigned long end)
|
2009-03-17 12:19:49 +00:00
|
|
|
{
|
|
|
|
tlb->mm = mm;
|
Fix TLB gather virtual address range invalidation corner cases
Ben Tebulin reported:
"Since v3.7.2 on two independent machines a very specific Git
repository fails in 9/10 cases on git-fsck due to an SHA1/memory
failures. This only occurs on a very specific repository and can be
reproduced stably on two independent laptops. Git mailing list ran
out of ideas and for me this looks like some very exotic kernel issue"
and bisected the failure to the backport of commit 53a59fc67f97 ("mm:
limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT").
That commit itself is not actually buggy, but what it does is to make it
much more likely to hit the partial TLB invalidation case, since it
introduces a new case in tlb_next_batch() that previously only ever
happened when running out of memory.
The real bug is that the TLB gather virtual memory range setup is subtly
buggered. It was introduced in commit 597e1c3580b7 ("mm/mmu_gather:
enable tlb flush range in generic mmu_gather"), and the range handling
was already fixed at least once in commit e6c495a96ce0 ("mm: fix the TLB
range flushed when __tlb_remove_page() runs out of slots"), but that fix
was not complete.
The problem with the TLB gather virtual address range is that it isn't
set up by the initial tlb_gather_mmu() initialization (which didn't get
the TLB range information), but it is set up ad-hoc later by the
functions that actually flush the TLB. And so any such case that forgot
to update the TLB range entries would potentially miss TLB invalidates.
Rather than try to figure out exactly which particular ad-hoc range
setup was missing (I personally suspect it's the hugetlb case in
zap_huge_pmd(), which didn't have the same logic as zap_pte_range()
did), this patch just gets rid of the problem at the source: make the
TLB range information available to tlb_gather_mmu(), and initialize it
when initializing all the other tlb gather fields.
This makes the patch larger, but conceptually much simpler. And the end
result is much more understandable; even if you want to play games with
partial ranges when invalidating the TLB contents in chunks, now the
range information is always there, and anybody who doesn't want to
bother with it won't introduce subtle bugs.
Ben verified that this fixes his problem.
Reported-bisected-and-tested-by: Ben Tebulin <tebulin@googlemail.com>
Build-testing-by: Stephen Rothwell <sfr@canb.auug.org.au>
Build-testing-by: Richard Weinberger <richard.weinberger@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-15 18:42:25 +00:00
|
|
|
tlb->start = start;
|
|
|
|
tlb->end = end;
|
|
|
|
tlb->fullmm = !(start | (end+1));
|
2009-03-17 12:19:49 +00:00
|
|
|
|
|
|
|
init_tlb_gather(tlb);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
2017-08-10 22:24:05 +00:00
|
|
|
arch_tlb_finish_mmu(struct mmu_gather *tlb,
|
mm: fix MADV_[FREE|DONTNEED] TLB flush miss problem
Nadav reported parallel MADV_DONTNEED on same range has a stale TLB
problem and Mel fixed it[1] and found same problem on MADV_FREE[2].
Quote from Mel Gorman:
"The race in question is CPU 0 running madv_free and updating some PTEs
while CPU 1 is also running madv_free and looking at the same PTEs.
CPU 1 may have writable TLB entries for a page but fail the pte_dirty
check (because CPU 0 has updated it already) and potentially fail to
flush.
Hence, when madv_free on CPU 1 returns, there are still potentially
writable TLB entries and the underlying PTE is still present so that a
subsequent write does not necessarily propagate the dirty bit to the
underlying PTE any more. Reclaim at some unknown time at the future
may then see that the PTE is still clean and discard the page even
though a write has happened in the meantime. I think this is possible
but I could have missed some protection in madv_free that prevents it
happening."
This patch aims for solving both problems all at once and is ready for
other problem with KSM, MADV_FREE and soft-dirty story[3].
TLB batch API(tlb_[gather|finish]_mmu] uses [inc|dec]_tlb_flush_pending
and mmu_tlb_flush_pending so that when tlb_finish_mmu is called, we can
catch there are parallel threads going on. In that case, forcefully,
flush TLB to prevent for user to access memory via stale TLB entry
although it fail to gather page table entry.
I confirmed this patch works with [4] test program Nadav gave so this
patch supersedes "mm: Always flush VMA ranges affected by zap_page_range
v2" in current mmotm.
NOTE:
This patch modifies arch-specific TLB gathering interface(x86, ia64,
s390, sh, um). It seems most of architecture are straightforward but
s390 need to be careful because tlb_flush_mmu works only if
mm->context.flush_mm is set to non-zero which happens only a pte entry
really is cleared by ptep_get_and_clear and friends. However, this
problem never changes the pte entries but need to flush to prevent
memory access from stale tlb.
[1] http://lkml.kernel.org/r/20170725101230.5v7gvnjmcnkzzql3@techsingularity.net
[2] http://lkml.kernel.org/r/20170725100722.2dxnmgypmwnrfawp@suse.de
[3] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com
[4] https://patchwork.kernel.org/patch/9861621/
[minchan@kernel.org: decrease tlb flush pending count in tlb_finish_mmu]
Link: http://lkml.kernel.org/r/20170808080821.GA31730@bbox
Link: http://lkml.kernel.org/r/20170802000818.4760-7-namit@vmware.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Reported-by: Nadav Amit <namit@vmware.com>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10 22:24:12 +00:00
|
|
|
unsigned long start, unsigned long end, bool force)
|
2009-03-17 12:19:49 +00:00
|
|
|
{
|
mm: fix MADV_[FREE|DONTNEED] TLB flush miss problem
Nadav reported parallel MADV_DONTNEED on same range has a stale TLB
problem and Mel fixed it[1] and found same problem on MADV_FREE[2].
Quote from Mel Gorman:
"The race in question is CPU 0 running madv_free and updating some PTEs
while CPU 1 is also running madv_free and looking at the same PTEs.
CPU 1 may have writable TLB entries for a page but fail the pte_dirty
check (because CPU 0 has updated it already) and potentially fail to
flush.
Hence, when madv_free on CPU 1 returns, there are still potentially
writable TLB entries and the underlying PTE is still present so that a
subsequent write does not necessarily propagate the dirty bit to the
underlying PTE any more. Reclaim at some unknown time at the future
may then see that the PTE is still clean and discard the page even
though a write has happened in the meantime. I think this is possible
but I could have missed some protection in madv_free that prevents it
happening."
This patch aims for solving both problems all at once and is ready for
other problem with KSM, MADV_FREE and soft-dirty story[3].
TLB batch API(tlb_[gather|finish]_mmu] uses [inc|dec]_tlb_flush_pending
and mmu_tlb_flush_pending so that when tlb_finish_mmu is called, we can
catch there are parallel threads going on. In that case, forcefully,
flush TLB to prevent for user to access memory via stale TLB entry
although it fail to gather page table entry.
I confirmed this patch works with [4] test program Nadav gave so this
patch supersedes "mm: Always flush VMA ranges affected by zap_page_range
v2" in current mmotm.
NOTE:
This patch modifies arch-specific TLB gathering interface(x86, ia64,
s390, sh, um). It seems most of architecture are straightforward but
s390 need to be careful because tlb_flush_mmu works only if
mm->context.flush_mm is set to non-zero which happens only a pte entry
really is cleared by ptep_get_and_clear and friends. However, this
problem never changes the pte entries but need to flush to prevent
memory access from stale tlb.
[1] http://lkml.kernel.org/r/20170725101230.5v7gvnjmcnkzzql3@techsingularity.net
[2] http://lkml.kernel.org/r/20170725100722.2dxnmgypmwnrfawp@suse.de
[3] http://lkml.kernel.org/r/BD3A0EBE-ECF4-41D4-87FA-C755EA9AB6BD@gmail.com
[4] https://patchwork.kernel.org/patch/9861621/
[minchan@kernel.org: decrease tlb flush pending count in tlb_finish_mmu]
Link: http://lkml.kernel.org/r/20170808080821.GA31730@bbox
Link: http://lkml.kernel.org/r/20170802000818.4760-7-namit@vmware.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Reported-by: Nadav Amit <namit@vmware.com>
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-08-10 22:24:12 +00:00
|
|
|
if (tlb->fullmm || force)
|
2009-03-17 12:19:49 +00:00
|
|
|
flush_tlb_mm(tlb->mm);
|
|
|
|
|
|
|
|
/* keep the page table cache within bounds */
|
|
|
|
check_pgt_cache();
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
tlb_remove_tlb_entry(struct mmu_gather *tlb, pte_t *ptep, unsigned long address)
|
|
|
|
{
|
|
|
|
if (tlb->start > address)
|
|
|
|
tlb->start = address;
|
|
|
|
if (tlb->end < address + PAGE_SIZE)
|
|
|
|
tlb->end = address + PAGE_SIZE;
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2016-12-13 00:42:37 +00:00
|
|
|
#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
|
|
|
|
tlb_remove_tlb_entry(tlb, ptep, address)
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
2009-03-17 12:19:49 +00:00
|
|
|
* In the case of tlb vma handling, we can optimise these away in the
|
|
|
|
* case where we're doing a full MM flush. When we're doing a munmap,
|
|
|
|
* the vmas are adjusted to only cover the region to be torn down.
|
2005-04-16 22:20:36 +00:00
|
|
|
*/
|
2009-03-17 12:19:49 +00:00
|
|
|
static inline void
|
|
|
|
tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
if (!tlb->fullmm)
|
|
|
|
flush_cache_range(vma, vma->vm_start, vma->vm_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
if (!tlb->fullmm && tlb->end) {
|
|
|
|
flush_tlb_range(vma, tlb->start, tlb->end);
|
|
|
|
init_tlb_gather(tlb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-04-25 23:05:40 +00:00
|
|
|
static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void tlb_flush_mmu_free(struct mmu_gather *tlb)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2011-05-25 00:11:54 +00:00
|
|
|
static inline void tlb_flush_mmu(struct mmu_gather *tlb)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
|
|
|
|
{
|
|
|
|
free_page_and_swap_cache(page);
|
2016-07-26 22:24:09 +00:00
|
|
|
return false; /* avoid calling tlb_flush_mmu */
|
2011-05-25 00:11:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
|
|
|
|
{
|
|
|
|
__tlb_remove_page(tlb, page);
|
|
|
|
}
|
|
|
|
|
2016-07-26 22:24:12 +00:00
|
|
|
static inline bool __tlb_remove_page_size(struct mmu_gather *tlb,
|
|
|
|
struct page *page, int page_size)
|
|
|
|
{
|
|
|
|
return __tlb_remove_page(tlb, page);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void tlb_remove_page_size(struct mmu_gather *tlb,
|
|
|
|
struct page *page, int page_size)
|
|
|
|
{
|
|
|
|
return tlb_remove_page(tlb, page);
|
|
|
|
}
|
|
|
|
|
2016-12-13 00:42:40 +00:00
|
|
|
#define tlb_remove_check_page_size_change tlb_remove_check_page_size_change
|
|
|
|
static inline void tlb_remove_check_page_size_change(struct mmu_gather *tlb,
|
|
|
|
unsigned int page_size)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
mm: Pass virtual address to [__]p{te,ud,md}_free_tlb()
mm: Pass virtual address to [__]p{te,ud,md}_free_tlb()
Upcoming paches to support the new 64-bit "BookE" powerpc architecture
will need to have the virtual address corresponding to PTE page when
freeing it, due to the way the HW table walker works.
Basically, the TLB can be loaded with "large" pages that cover the whole
virtual space (well, sort-of, half of it actually) represented by a PTE
page, and which contain an "indirect" bit indicating that this TLB entry
RPN points to an array of PTEs from which the TLB can then create direct
entries. Thus, in order to invalidate those when PTE pages are deleted,
we need the virtual address to pass to tlbilx or tlbivax instructions.
The old trick of sticking it somewhere in the PTE page struct page sucks
too much, the address is almost readily available in all call sites and
almost everybody implemets these as macros, so we may as well add the
argument everywhere. I added it to the pmd and pud variants for consistency.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: David Howells <dhowells@redhat.com> [MN10300 & FRV]
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [s390]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-07-22 05:44:28 +00:00
|
|
|
#define pte_free_tlb(tlb, ptep, addr) pte_free((tlb)->mm, ptep)
|
|
|
|
#define pmd_free_tlb(tlb, pmdp, addr) pmd_free((tlb)->mm, pmdp)
|
|
|
|
#define pud_free_tlb(tlb, pudp, addr) pud_free((tlb)->mm, pudp)
|
2009-03-17 12:19:49 +00:00
|
|
|
|
|
|
|
#define tlb_migrate_finish(mm) do { } while (0)
|
|
|
|
|
2010-01-19 06:20:35 +00:00
|
|
|
#if defined(CONFIG_CPU_SH4) || defined(CONFIG_SUPERH64)
|
2009-11-17 21:05:31 +00:00
|
|
|
extern void tlb_wire_entry(struct vm_area_struct *, unsigned long, pte_t);
|
|
|
|
extern void tlb_unwire_entry(void);
|
|
|
|
#else
|
|
|
|
static inline void tlb_wire_entry(struct vm_area_struct *vma ,
|
|
|
|
unsigned long addr, pte_t pte)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void tlb_unwire_entry(void)
|
|
|
|
{
|
|
|
|
BUG();
|
|
|
|
}
|
2010-01-19 06:20:35 +00:00
|
|
|
#endif
|
2009-11-17 21:05:31 +00:00
|
|
|
|
2009-03-17 12:19:49 +00:00
|
|
|
#else /* CONFIG_MMU */
|
|
|
|
|
|
|
|
#define tlb_start_vma(tlb, vma) do { } while (0)
|
|
|
|
#define tlb_end_vma(tlb, vma) do { } while (0)
|
|
|
|
#define __tlb_remove_tlb_entry(tlb, pte, address) do { } while (0)
|
|
|
|
#define tlb_flush(tlb) do { } while (0)
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#include <asm-generic/tlb.h>
|
2007-11-10 11:35:53 +00:00
|
|
|
|
2009-03-17 12:19:49 +00:00
|
|
|
#endif /* CONFIG_MMU */
|
2007-11-10 11:35:53 +00:00
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif /* __ASM_SH_TLB_H */
|