linux/drivers/gpu/drm/nouveau/nouveau_mem.c

782 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
* Copyright 2005 Stephane Marchesin
*
* The Weather Channel (TM) funded Tungsten Graphics to develop the
* initial release of the Radeon 8500 driver under the XFree86 license.
* This notice must be preserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
#include "drmP.h"
#include "drm.h"
#include "drm_sarea.h"
#include "nouveau_drv.h"
#include "nouveau_pm.h"
#include "nouveau_mm.h"
#include "nouveau_vm.h"
/*
* NV10-NV40 tiling helpers
*/
static void
nv10_mem_update_tile_region(struct drm_device *dev,
struct nouveau_tile_reg *tile, uint32_t addr,
uint32_t size, uint32_t pitch, uint32_t flags)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_fifo_engine *pfifo = &dev_priv->engine.fifo;
struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
struct nouveau_pgraph_engine *pgraph = &dev_priv->engine.graph;
int i = tile - dev_priv->tile.reg;
unsigned long save;
nouveau_fence_unref(&tile->fence);
if (tile->pitch)
pfb->free_tile_region(dev, i);
if (pitch)
pfb->init_tile_region(dev, i, addr, size, pitch, flags);
spin_lock_irqsave(&dev_priv->context_switch_lock, save);
pfifo->reassign(dev, false);
pfifo->cache_pull(dev, false);
nouveau_wait_for_idle(dev);
pfb->set_tile_region(dev, i);
pgraph->set_tile_region(dev, i);
pfifo->cache_pull(dev, true);
pfifo->reassign(dev, true);
spin_unlock_irqrestore(&dev_priv->context_switch_lock, save);
}
static struct nouveau_tile_reg *
nv10_mem_get_tile_region(struct drm_device *dev, int i)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
spin_lock(&dev_priv->tile.lock);
if (!tile->used &&
(!tile->fence || nouveau_fence_signalled(tile->fence)))
tile->used = true;
else
tile = NULL;
spin_unlock(&dev_priv->tile.lock);
return tile;
}
void
nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile,
struct nouveau_fence *fence)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
if (tile) {
spin_lock(&dev_priv->tile.lock);
if (fence) {
/* Mark it as pending. */
tile->fence = fence;
nouveau_fence_ref(fence);
}
tile->used = false;
spin_unlock(&dev_priv->tile.lock);
}
}
struct nouveau_tile_reg *
nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size,
uint32_t pitch, uint32_t flags)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
struct nouveau_tile_reg *tile, *found = NULL;
int i;
for (i = 0; i < pfb->num_tiles; i++) {
tile = nv10_mem_get_tile_region(dev, i);
if (pitch && !found) {
found = tile;
continue;
} else if (tile && tile->pitch) {
/* Kill an unused tile region. */
nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0);
}
nv10_mem_put_tile_region(dev, tile, NULL);
}
if (found)
nv10_mem_update_tile_region(dev, found, addr, size,
pitch, flags);
return found;
}
/*
* Cleanup everything
*/
void
nouveau_mem_vram_fini(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
nouveau_bo_ref(NULL, &dev_priv->vga_ram);
ttm_bo_device_release(&dev_priv->ttm.bdev);
nouveau_ttm_global_release(dev_priv);
if (dev_priv->fb_mtrr >= 0) {
drm_mtrr_del(dev_priv->fb_mtrr,
pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1), DRM_MTRR_WC);
dev_priv->fb_mtrr = -1;
}
}
void
nouveau_mem_gart_fini(struct drm_device *dev)
{
nouveau_sgdma_takedown(dev);
if (drm_core_has_AGP(dev) && dev->agp) {
struct drm_agp_mem *entry, *tempe;
/* Remove AGP resources, but leave dev->agp
intact until drv_cleanup is called. */
list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) {
if (entry->bound)
drm_unbind_agp(entry->memory);
drm_free_agp(entry->memory, entry->pages);
kfree(entry);
}
INIT_LIST_HEAD(&dev->agp->memory);
if (dev->agp->acquired)
drm_agp_release(dev);
dev->agp->acquired = 0;
dev->agp->enabled = 0;
}
}
static uint32_t
nouveau_mem_detect_nv04(struct drm_device *dev)
{
uint32_t boot0 = nv_rd32(dev, NV04_PFB_BOOT_0);
if (boot0 & 0x00000100)
return (((boot0 >> 12) & 0xf) * 2 + 2) * 1024 * 1024;
switch (boot0 & NV04_PFB_BOOT_0_RAM_AMOUNT) {
case NV04_PFB_BOOT_0_RAM_AMOUNT_32MB:
return 32 * 1024 * 1024;
case NV04_PFB_BOOT_0_RAM_AMOUNT_16MB:
return 16 * 1024 * 1024;
case NV04_PFB_BOOT_0_RAM_AMOUNT_8MB:
return 8 * 1024 * 1024;
case NV04_PFB_BOOT_0_RAM_AMOUNT_4MB:
return 4 * 1024 * 1024;
}
return 0;
}
static uint32_t
nouveau_mem_detect_nforce(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct pci_dev *bridge;
uint32_t mem;
bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0, 1));
if (!bridge) {
NV_ERROR(dev, "no bridge device\n");
return 0;
}
if (dev_priv->flags & NV_NFORCE) {
pci_read_config_dword(bridge, 0x7C, &mem);
return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024;
} else
if (dev_priv->flags & NV_NFORCE2) {
pci_read_config_dword(bridge, 0x84, &mem);
return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024;
}
NV_ERROR(dev, "impossible!\n");
return 0;
}
int
nouveau_mem_detect(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
if (dev_priv->card_type == NV_04) {
dev_priv->vram_size = nouveau_mem_detect_nv04(dev);
} else
if (dev_priv->flags & (NV_NFORCE | NV_NFORCE2)) {
dev_priv->vram_size = nouveau_mem_detect_nforce(dev);
} else
if (dev_priv->card_type < NV_50) {
dev_priv->vram_size = nv_rd32(dev, NV04_PFB_FIFO_DATA);
dev_priv->vram_size &= NV10_PFB_FIFO_DATA_RAM_AMOUNT_MB_MASK;
}
if (dev_priv->vram_size)
return 0;
return -ENOMEM;
}
bool
nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags)
{
if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK))
return true;
return false;
}
#if __OS_HAS_AGP
static unsigned long
get_agp_mode(struct drm_device *dev, unsigned long mode)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
/*
* FW seems to be broken on nv18, it makes the card lock up
* randomly.
*/
if (dev_priv->chipset == 0x18)
mode &= ~PCI_AGP_COMMAND_FW;
/*
* AGP mode set in the command line.
*/
if (nouveau_agpmode > 0) {
bool agpv3 = mode & 0x8;
int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode;
mode = (mode & ~0x7) | (rate & 0x7);
}
return mode;
}
#endif
int
nouveau_mem_reset_agp(struct drm_device *dev)
{
#if __OS_HAS_AGP
uint32_t saved_pci_nv_1, pmc_enable;
int ret;
/* First of all, disable fast writes, otherwise if it's
* already enabled in the AGP bridge and we disable the card's
* AGP controller we might be locking ourselves out of it. */
if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) |
dev->agp->mode) & PCI_AGP_COMMAND_FW) {
struct drm_agp_info info;
struct drm_agp_mode mode;
ret = drm_agp_info(dev, &info);
if (ret)
return ret;
mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW;
ret = drm_agp_enable(dev, mode);
if (ret)
return ret;
}
saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1);
/* clear busmaster bit */
nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
/* disable AGP */
nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0);
/* power cycle pgraph, if enabled */
pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE);
if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
nv_wr32(dev, NV03_PMC_ENABLE,
pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
NV_PMC_ENABLE_PGRAPH);
}
/* and restore (gives effect of resetting AGP) */
nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
#endif
return 0;
}
int
nouveau_mem_init_agp(struct drm_device *dev)
{
#if __OS_HAS_AGP
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct drm_agp_info info;
struct drm_agp_mode mode;
int ret;
if (!dev->agp->acquired) {
ret = drm_agp_acquire(dev);
if (ret) {
NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret);
return ret;
}
}
nouveau_mem_reset_agp(dev);
ret = drm_agp_info(dev, &info);
if (ret) {
NV_ERROR(dev, "Unable to get AGP info: %d\n", ret);
return ret;
}
/* see agp.h for the AGPSTAT_* modes available */
mode.mode = get_agp_mode(dev, info.mode);
ret = drm_agp_enable(dev, mode);
if (ret) {
NV_ERROR(dev, "Unable to enable AGP: %d\n", ret);
return ret;
}
dev_priv->gart_info.type = NOUVEAU_GART_AGP;
dev_priv->gart_info.aper_base = info.aperture_base;
dev_priv->gart_info.aper_size = info.aperture_size;
#endif
return 0;
}
int
nouveau_mem_vram_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
int ret, dma_bits;
dma_bits = 32;
if (dev_priv->card_type >= NV_50) {
if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40)))
dma_bits = 40;
} else
if (drm_pci_device_is_pcie(dev) &&
dev_priv->chipset != 0x40 &&
dev_priv->chipset != 0x45) {
if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39)))
dma_bits = 39;
}
ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
if (ret)
return ret;
dev_priv->fb_phys = pci_resource_start(dev->pdev, 1);
ret = nouveau_ttm_global_init(dev_priv);
if (ret)
return ret;
ret = ttm_bo_device_init(&dev_priv->ttm.bdev,
dev_priv->ttm.bo_global_ref.ref.object,
&nouveau_bo_driver, DRM_FILE_PAGE_OFFSET,
dma_bits <= 32 ? true : false);
if (ret) {
NV_ERROR(dev, "Error initialising bo driver: %d\n", ret);
return ret;
}
/* reserve space at end of VRAM for PRAMIN */
if (dev_priv->chipset == 0x40 || dev_priv->chipset == 0x47 ||
dev_priv->chipset == 0x49 || dev_priv->chipset == 0x4b)
dev_priv->ramin_rsvd_vram = (2 * 1024 * 1024);
else
if (dev_priv->card_type >= NV_40)
dev_priv->ramin_rsvd_vram = (1 * 1024 * 1024);
else
dev_priv->ramin_rsvd_vram = (512 * 1024);
ret = dev_priv->engine.vram.init(dev);
if (ret)
return ret;
NV_INFO(dev, "Detected %dMiB VRAM\n", (int)(dev_priv->vram_size >> 20));
if (dev_priv->vram_sys_base) {
NV_INFO(dev, "Stolen system memory at: 0x%010llx\n",
dev_priv->vram_sys_base);
}
dev_priv->fb_available_size = dev_priv->vram_size;
dev_priv->fb_mappable_pages = dev_priv->fb_available_size;
if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1))
dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1);
dev_priv->fb_mappable_pages >>= PAGE_SHIFT;
dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
dev_priv->fb_aper_free = dev_priv->fb_available_size;
/* mappable vram */
ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM,
dev_priv->fb_available_size >> PAGE_SHIFT);
if (ret) {
NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret);
return ret;
}
if (dev_priv->card_type < NV_50) {
ret = nouveau_bo_new(dev, NULL, 256*1024, 0, TTM_PL_FLAG_VRAM,
0, 0, &dev_priv->vga_ram);
if (ret == 0)
ret = nouveau_bo_pin(dev_priv->vga_ram,
TTM_PL_FLAG_VRAM);
if (ret) {
NV_WARN(dev, "failed to reserve VGA memory\n");
nouveau_bo_ref(NULL, &dev_priv->vga_ram);
}
}
dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1),
pci_resource_len(dev->pdev, 1),
DRM_MTRR_WC);
return 0;
}
int
nouveau_mem_gart_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
int ret;
dev_priv->gart_info.type = NOUVEAU_GART_NONE;
#if !defined(__powerpc__) && !defined(__ia64__)
if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) {
ret = nouveau_mem_init_agp(dev);
if (ret)
NV_ERROR(dev, "Error initialising AGP: %d\n", ret);
}
#endif
if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
ret = nouveau_sgdma_init(dev);
if (ret) {
NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret);
return ret;
}
}
NV_INFO(dev, "%d MiB GART (aperture)\n",
(int)(dev_priv->gart_info.aper_size >> 20));
dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size;
ret = ttm_bo_init_mm(bdev, TTM_PL_TT,
dev_priv->gart_info.aper_size >> PAGE_SHIFT);
if (ret) {
NV_ERROR(dev, "Failed TT mm init: %d\n", ret);
return ret;
}
return 0;
}
void
nouveau_mem_timing_init(struct drm_device *dev)
{
/* cards < NVC0 only */
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_pm_engine *pm = &dev_priv->engine.pm;
struct nouveau_pm_memtimings *memtimings = &pm->memtimings;
struct nvbios *bios = &dev_priv->vbios;
struct bit_entry P;
u8 tUNK_0, tUNK_1, tUNK_2;
u8 tRP; /* Byte 3 */
u8 tRAS; /* Byte 5 */
u8 tRFC; /* Byte 7 */
u8 tRC; /* Byte 9 */
u8 tUNK_10, tUNK_11, tUNK_12, tUNK_13, tUNK_14;
u8 tUNK_18, tUNK_19, tUNK_20, tUNK_21;
u8 *mem = NULL, *entry;
int i, recordlen, entries;
if (bios->type == NVBIOS_BIT) {
if (bit_table(dev, 'P', &P))
return;
if (P.version == 1)
mem = ROMPTR(bios, P.data[4]);
else
if (P.version == 2)
mem = ROMPTR(bios, P.data[8]);
else {
NV_WARN(dev, "unknown mem for BIT P %d\n", P.version);
}
} else {
NV_DEBUG(dev, "BMP version too old for memory\n");
return;
}
if (!mem) {
NV_DEBUG(dev, "memory timing table pointer invalid\n");
return;
}
if (mem[0] != 0x10) {
NV_WARN(dev, "memory timing table 0x%02x unknown\n", mem[0]);
return;
}
/* validate record length */
entries = mem[2];
recordlen = mem[3];
if (recordlen < 15) {
NV_ERROR(dev, "mem timing table length unknown: %d\n", mem[3]);
return;
}
/* parse vbios entries into common format */
memtimings->timing =
kcalloc(entries, sizeof(*memtimings->timing), GFP_KERNEL);
if (!memtimings->timing)
return;
entry = mem + mem[1];
for (i = 0; i < entries; i++, entry += recordlen) {
struct nouveau_pm_memtiming *timing = &pm->memtimings.timing[i];
if (entry[0] == 0)
continue;
tUNK_18 = 1;
tUNK_19 = 1;
tUNK_20 = 0;
tUNK_21 = 0;
switch (min(recordlen, 22)) {
case 22:
tUNK_21 = entry[21];
case 21:
tUNK_20 = entry[20];
case 20:
tUNK_19 = entry[19];
case 19:
tUNK_18 = entry[18];
default:
tUNK_0 = entry[0];
tUNK_1 = entry[1];
tUNK_2 = entry[2];
tRP = entry[3];
tRAS = entry[5];
tRFC = entry[7];
tRC = entry[9];
tUNK_10 = entry[10];
tUNK_11 = entry[11];
tUNK_12 = entry[12];
tUNK_13 = entry[13];
tUNK_14 = entry[14];
break;
}
timing->reg_100220 = (tRC << 24 | tRFC << 16 | tRAS << 8 | tRP);
/* XXX: I don't trust the -1's and +1's... they must come
* from somewhere! */
timing->reg_100224 = ((tUNK_0 + tUNK_19 + 1) << 24 |
tUNK_18 << 16 |
(tUNK_1 + tUNK_19 + 1) << 8 |
(tUNK_2 - 1));
timing->reg_100228 = (tUNK_12 << 16 | tUNK_11 << 8 | tUNK_10);
if(recordlen > 19) {
timing->reg_100228 += (tUNK_19 - 1) << 24;
}/* I cannot back-up this else-statement right now
else {
timing->reg_100228 += tUNK_12 << 24;
}*/
/* XXX: reg_10022c */
timing->reg_10022c = tUNK_2 - 1;
timing->reg_100230 = (tUNK_20 << 24 | tUNK_21 << 16 |
tUNK_13 << 8 | tUNK_13);
/* XXX: +6? */
timing->reg_100234 = (tRAS << 24 | (tUNK_19 + 6) << 8 | tRC);
timing->reg_100234 += max(tUNK_10,tUNK_11) << 16;
/* XXX; reg_100238, reg_10023c
* reg: 0x00??????
* reg_10023c:
* 0 for pre-NV50 cards
* 0x????0202 for NV50+ cards (empirical evidence) */
if(dev_priv->card_type >= NV_50) {
timing->reg_10023c = 0x202;
}
NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", i,
timing->reg_100220, timing->reg_100224,
timing->reg_100228, timing->reg_10022c);
NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n",
timing->reg_100230, timing->reg_100234,
timing->reg_100238, timing->reg_10023c);
}
memtimings->nr_timing = entries;
memtimings->supported = true;
}
void
nouveau_mem_timing_fini(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_pm_memtimings *mem = &dev_priv->engine.pm.memtimings;
kfree(mem->timing);
}
static int
nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long p_size)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
struct nouveau_mm *mm;
u64 size, block, rsvd;
int ret;
rsvd = (256 * 1024); /* vga memory */
size = (p_size << PAGE_SHIFT) - rsvd;
block = dev_priv->vram_rblock_size;
ret = nouveau_mm_init(&mm, rsvd >> 12, size >> 12, block >> 12);
if (ret)
return ret;
man->priv = mm;
return 0;
}
static int
nouveau_vram_manager_fini(struct ttm_mem_type_manager *man)
{
struct nouveau_mm *mm = man->priv;
int ret;
ret = nouveau_mm_fini(&mm);
if (ret)
return ret;
man->priv = NULL;
return 0;
}
static void
nouveau_vram_manager_del(struct ttm_mem_type_manager *man,
struct ttm_mem_reg *mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
struct drm_device *dev = dev_priv->dev;
vram->put(dev, (struct nouveau_vram **)&mem->mm_node);
}
static int
nouveau_vram_manager_new(struct ttm_mem_type_manager *man,
struct ttm_buffer_object *bo,
struct ttm_placement *placement,
struct ttm_mem_reg *mem)
{
struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
struct drm_device *dev = dev_priv->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nouveau_vram *node;
u32 size_nc = 0;
int ret;
if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG)
size_nc = 1 << nvbo->vma.node->type;
ret = vram->get(dev, mem->num_pages << PAGE_SHIFT,
mem->page_alignment << PAGE_SHIFT, size_nc,
(nvbo->tile_flags >> 8) & 0xff, &node);
if (ret)
return ret;
node->page_shift = 12;
if (nvbo->vma.node)
node->page_shift = nvbo->vma.node->type;
mem->mm_node = node;
mem->start = node->offset >> PAGE_SHIFT;
return 0;
}
void
nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
{
struct nouveau_mm *mm = man->priv;
struct nouveau_mm_node *r;
u32 total = 0, free = 0;
mutex_lock(&mm->mutex);
list_for_each_entry(r, &mm->nodes, nl_entry) {
printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n",
prefix, r->type, ((u64)r->offset << 12),
(((u64)r->offset + r->length) << 12));
total += r->length;
if (!r->type)
free += r->length;
}
mutex_unlock(&mm->mutex);
printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n",
prefix, (u64)total << 12, (u64)free << 12);
printk(KERN_DEBUG "%s block: 0x%08x\n",
prefix, mm->block_size << 12);
}
const struct ttm_mem_type_manager_func nouveau_vram_manager = {
nouveau_vram_manager_init,
nouveau_vram_manager_fini,
nouveau_vram_manager_new,
nouveau_vram_manager_del,
nouveau_vram_manager_debug
};