linux/arch/powerpc/kernel/kprobes.c

667 lines
18 KiB
C
Raw Normal View History

/*
* Kernel Probes (KProbes)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2002, 2004
*
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
* Probes initial implementation ( includes contributions from
* Rusty Russell).
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
* interface to access function arguments.
* 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
* for PPC64
*/
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/preempt.h>
#include <linux/extable.h>
#include <linux/kdebug.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <asm/code-patching.h>
[PATCH] Move kprobe [dis]arming into arch specific code The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:09:25 +00:00
#include <asm/cacheflush.h>
#include <asm/sstep.h>
#include <asm/sections.h>
#include <linux/uaccess.h>
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
bool arch_within_kprobe_blacklist(unsigned long addr)
{
return (addr >= (unsigned long)__kprobes_text_start &&
addr < (unsigned long)__kprobes_text_end) ||
(addr >= (unsigned long)_stext &&
addr < (unsigned long)__head_end);
}
kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
{
kprobe_opcode_t *addr;
#ifdef PPC64_ELF_ABI_v2
/* PPC64 ABIv2 needs local entry point */
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
if (addr && !offset) {
#ifdef CONFIG_KPROBES_ON_FTRACE
unsigned long faddr;
/*
* Per livepatch.h, ftrace location is always within the first
* 16 bytes of a function on powerpc with -mprofile-kernel.
*/
faddr = ftrace_location_range((unsigned long)addr,
(unsigned long)addr + 16);
if (faddr)
addr = (kprobe_opcode_t *)faddr;
else
#endif
addr = (kprobe_opcode_t *)ppc_function_entry(addr);
}
#elif defined(PPC64_ELF_ABI_v1)
/*
* 64bit powerpc ABIv1 uses function descriptors:
* - Check for the dot variant of the symbol first.
* - If that fails, try looking up the symbol provided.
*
* This ensures we always get to the actual symbol and not
* the descriptor.
*
* Also handle <module:symbol> format.
*/
char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
const char *modsym;
bool dot_appended = false;
if ((modsym = strchr(name, ':')) != NULL) {
modsym++;
if (*modsym != '\0' && *modsym != '.') {
/* Convert to <module:.symbol> */
strncpy(dot_name, name, modsym - name);
dot_name[modsym - name] = '.';
dot_name[modsym - name + 1] = '\0';
strncat(dot_name, modsym,
sizeof(dot_name) - (modsym - name) - 2);
dot_appended = true;
} else {
dot_name[0] = '\0';
strncat(dot_name, name, sizeof(dot_name) - 1);
}
} else if (name[0] != '.') {
dot_name[0] = '.';
dot_name[1] = '\0';
strncat(dot_name, name, KSYM_NAME_LEN - 2);
dot_appended = true;
} else {
dot_name[0] = '\0';
strncat(dot_name, name, KSYM_NAME_LEN - 1);
}
addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
if (!addr && dot_appended) {
/* Let's try the original non-dot symbol lookup */
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
}
#else
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
#endif
return addr;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
int arch_prepare_kprobe(struct kprobe *p)
{
int ret = 0;
kprobe_opcode_t insn = *p->addr;
if ((unsigned long)p->addr & 0x03) {
printk("Attempt to register kprobe at an unaligned address\n");
ret = -EINVAL;
} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
ret = -EINVAL;
}
/* insn must be on a special executable page on ppc64. This is
* not explicitly required on ppc32 (right now), but it doesn't hurt */
if (!ret) {
p->ainsn.insn = get_insn_slot();
if (!p->ainsn.insn)
ret = -ENOMEM;
}
if (!ret) {
memcpy(p->ainsn.insn, p->addr,
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
p->opcode = *p->addr;
flush_icache_range((unsigned long)p->ainsn.insn,
(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
}
p->ainsn.boostable = 0;
return ret;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(arch_prepare_kprobe);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
void arch_arm_kprobe(struct kprobe *p)
{
[PATCH] Move kprobe [dis]arming into arch specific code The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:09:25 +00:00
*p->addr = BREAKPOINT_INSTRUCTION;
flush_icache_range((unsigned long) p->addr,
(unsigned long) p->addr + sizeof(kprobe_opcode_t));
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(arch_arm_kprobe);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
void arch_disarm_kprobe(struct kprobe *p)
{
*p->addr = p->opcode;
[PATCH] Move kprobe [dis]arming into arch specific code The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:09:25 +00:00
flush_icache_range((unsigned long) p->addr,
(unsigned long) p->addr + sizeof(kprobe_opcode_t));
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(arch_disarm_kprobe);
[PATCH] Move kprobe [dis]arming into arch specific code The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:09:25 +00:00
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
void arch_remove_kprobe(struct kprobe *p)
[PATCH] Move kprobe [dis]arming into arch specific code The architecture independent code of the current kprobes implementation is arming and disarming kprobes at registration time. The problem is that the code is assuming that arming and disarming is a just done by a simple write of some magic value to an address. This is problematic for ia64 where our instructions look more like structures, and we can not insert break points by just doing something like: *p->addr = BREAKPOINT_INSTRUCTION; The following patch to 2.6.12-rc4-mm2 adds two new architecture dependent functions: * void arch_arm_kprobe(struct kprobe *p) * void arch_disarm_kprobe(struct kprobe *p) and then adds the new functions for each of the architectures that already implement kprobes (spar64/ppc64/i386/x86_64). I thought arch_[dis]arm_kprobe was the most descriptive of what was really happening, but each of the architectures already had a disarm_kprobe() function that was really a "disarm and do some other clean-up items as needed when you stumble across a recursive kprobe." So... I took the liberty of changing the code that was calling disarm_kprobe() to call arch_disarm_kprobe(), and then do the cleanup in the block of code dealing with the recursive kprobe case. So far this patch as been tested on i386, x86_64, and ppc64, but still needs to be tested in sparc64. Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23 07:09:25 +00:00
{
if (p->ainsn.insn) {
free_insn_slot(p->ainsn.insn, 0);
p->ainsn.insn = NULL;
}
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(arch_remove_kprobe);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
enable_single_step(regs);
/*
* On powerpc we should single step on the original
* instruction even if the probed insn is a trap
* variant as values in regs could play a part in
* if the trap is taken or not
*/
regs->nip = (unsigned long)p->ainsn.insn;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-21 20:23:25 +00:00
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-21 20:23:25 +00:00
__this_cpu_write(current_kprobe, p);
kcb->kprobe_saved_msr = regs->msr;
}
bool arch_function_offset_within_entry(unsigned long offset)
{
#ifdef PPC64_ELF_ABI_v2
#ifdef CONFIG_KPROBES_ON_FTRACE
return offset <= 16;
#else
return offset <= 8;
#endif
#else
return !offset;
#endif
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
{
ri->ret_addr = (kprobe_opcode_t *)regs->link;
/* Replace the return addr with trampoline addr */
regs->link = (unsigned long)kretprobe_trampoline;
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
{
int ret;
unsigned int insn = *p->ainsn.insn;
/* regs->nip is also adjusted if emulate_step returns 1 */
ret = emulate_step(regs, insn);
if (ret > 0) {
/*
* Once this instruction has been boosted
* successfully, set the boostable flag
*/
if (unlikely(p->ainsn.boostable == 0))
p->ainsn.boostable = 1;
} else if (ret < 0) {
/*
* We don't allow kprobes on mtmsr(d)/rfi(d), etc.
* So, we should never get here... but, its still
* good to catch them, just in case...
*/
printk("Can't step on instruction %x\n", insn);
BUG();
} else if (ret == 0)
/* This instruction can't be boosted */
p->ainsn.boostable = -1;
return ret;
}
NOKPROBE_SYMBOL(try_to_emulate);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
int kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
unsigned int *addr = (unsigned int *)regs->nip;
struct kprobe_ctlblk *kcb;
if (user_mode(regs))
return 0;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
/* Check we're not actually recursing */
if (kprobe_running()) {
p = get_kprobe(addr);
if (p) {
kprobe_opcode_t insn = *p->ainsn.insn;
if (kcb->kprobe_status == KPROBE_HIT_SS &&
is_trap(insn)) {
/* Turn off 'trace' bits */
regs->msr &= ~MSR_SINGLESTEP;
regs->msr |= kcb->kprobe_saved_msr;
goto no_kprobe;
}
/* We have reentered the kprobe_handler(), since
* another probe was hit while within the handler.
* We here save the original kprobes variables and
* just single step on the instruction of the new probe
* without calling any user handlers.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kprobes_inc_nmissed_count(p);
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_REENTER;
if (p->ainsn.boostable >= 0) {
ret = try_to_emulate(p, regs);
if (ret > 0) {
restore_previous_kprobe(kcb);
return 1;
}
}
return 1;
} else {
if (*addr != BREAKPOINT_INSTRUCTION) {
/* If trap variant, then it belongs not to us */
kprobe_opcode_t cur_insn = *addr;
if (is_trap(cur_insn))
goto no_kprobe;
/* The breakpoint instruction was removed by
* another cpu right after we hit, no further
* handling of this interrupt is appropriate
*/
ret = 1;
goto no_kprobe;
}
powerpc: Replace __get_cpu_var uses This still has not been merged and now powerpc is the only arch that does not have this change. Sorry about missing linuxppc-dev before. V2->V2 - Fix up to work against 3.18-rc1 __get_cpu_var() is used for multiple purposes in the kernel source. One of them is address calculation via the form &__get_cpu_var(x). This calculates the address for the instance of the percpu variable of the current processor based on an offset. Other use cases are for storing and retrieving data from the current processors percpu area. __get_cpu_var() can be used as an lvalue when writing data or on the right side of an assignment. __get_cpu_var() is defined as : __get_cpu_var() always only does an address determination. However, store and retrieve operations could use a segment prefix (or global register on other platforms) to avoid the address calculation. this_cpu_write() and this_cpu_read() can directly take an offset into a percpu area and use optimized assembly code to read and write per cpu variables. This patch converts __get_cpu_var into either an explicit address calculation using this_cpu_ptr() or into a use of this_cpu operations that use the offset. Thereby address calculations are avoided and less registers are used when code is generated. At the end of the patch set all uses of __get_cpu_var have been removed so the macro is removed too. The patch set includes passes over all arches as well. Once these operations are used throughout then specialized macros can be defined in non -x86 arches as well in order to optimize per cpu access by f.e. using a global register that may be set to the per cpu base. Transformations done to __get_cpu_var() 1. Determine the address of the percpu instance of the current processor. DEFINE_PER_CPU(int, y); int *x = &__get_cpu_var(y); Converts to int *x = this_cpu_ptr(&y); 2. Same as #1 but this time an array structure is involved. DEFINE_PER_CPU(int, y[20]); int *x = __get_cpu_var(y); Converts to int *x = this_cpu_ptr(y); 3. Retrieve the content of the current processors instance of a per cpu variable. DEFINE_PER_CPU(int, y); int x = __get_cpu_var(y) Converts to int x = __this_cpu_read(y); 4. Retrieve the content of a percpu struct DEFINE_PER_CPU(struct mystruct, y); struct mystruct x = __get_cpu_var(y); Converts to memcpy(&x, this_cpu_ptr(&y), sizeof(x)); 5. Assignment to a per cpu variable DEFINE_PER_CPU(int, y) __get_cpu_var(y) = x; Converts to __this_cpu_write(y, x); 6. Increment/Decrement etc of a per cpu variable DEFINE_PER_CPU(int, y); __get_cpu_var(y)++ Converts to __this_cpu_inc(y) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: Paul Mackerras <paulus@samba.org> Signed-off-by: Christoph Lameter <cl@linux.com> [mpe: Fix build errors caused by set/or_softirq_pending(), and rework assignment in __set_breakpoint() to use memcpy().] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-10-21 20:23:25 +00:00
p = __this_cpu_read(current_kprobe);
if (p->break_handler && p->break_handler(p, regs)) {
if (!skip_singlestep(p, regs, kcb))
goto ss_probe;
ret = 1;
}
}
goto no_kprobe;
}
p = get_kprobe(addr);
if (!p) {
if (*addr != BREAKPOINT_INSTRUCTION) {
/*
* PowerPC has multiple variants of the "trap"
* instruction. If the current instruction is a
* trap variant, it could belong to someone else
*/
kprobe_opcode_t cur_insn = *addr;
if (is_trap(cur_insn))
goto no_kprobe;
/*
* The breakpoint instruction was removed right
* after we hit it. Another cpu has removed
* either a probepoint or a debugger breakpoint
* at this address. In either case, no further
* handling of this interrupt is appropriate.
*/
ret = 1;
}
/* Not one of ours: let kernel handle it */
goto no_kprobe;
}
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
set_current_kprobe(p, regs, kcb);
if (p->pre_handler && p->pre_handler(p, regs))
/* handler has already set things up, so skip ss setup */
return 1;
ss_probe:
if (p->ainsn.boostable >= 0) {
ret = try_to_emulate(p, regs);
if (ret > 0) {
if (p->post_handler)
p->post_handler(p, regs, 0);
kcb->kprobe_status = KPROBE_HIT_SSDONE;
reset_current_kprobe();
preempt_enable_no_resched();
return 1;
}
}
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable_no_resched();
return ret;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(kprobe_handler);
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
/*
* Function return probe trampoline:
* - init_kprobes() establishes a probepoint here
* - When the probed function returns, this probe
* causes the handlers to fire
*/
powerpc/kprobes: Remove kretprobe_trampoline_holder. Fixes the following testsuite failure: $ sudo ./perf test -v kallsyms 1: vmlinux symtab matches kallsyms : --- start --- test child forked, pid 12489 Using /proc/kcore for kernel object code Looking at the vmlinux_path (8 entries long) Using /boot/vmlinux for symbols 0xc00000000003d300: diff name v: .kretprobe_trampoline_holder k: kretprobe_trampoline Maps only in vmlinux: c00000000086ca38-c000000000879b6c 87ca38 [kernel].text.unlikely c000000000879b6c-c000000000bf0000 889b6c [kernel].meminit.text c000000000bf0000-c000000000c53264 c00000 [kernel].init.text c000000000c53264-d000000004250000 c63264 [kernel].exit.text d000000004250000-d000000004450000 0 [libcrc32c] d000000004450000-d000000004620000 0 [xfs] d000000004620000-d000000004680000 0 [autofs4] d000000004680000-d0000000046e0000 0 [x_tables] d0000000046e0000-d000000004780000 0 [ip_tables] d000000004780000-d0000000047e0000 0 [rng_core] d0000000047e0000-ffffffffffffffff 0 [pseries_rng] Maps in vmlinux with a different name in kallsyms: Maps only in kallsyms: d000000000000000-f000000000000000 1000000000010000 [kernel.kallsyms] f000000000000000-ffffffffffffffff 3000000000010000 [kernel.kallsyms] test child finished with -1 ---- end ---- vmlinux symtab matches kallsyms: FAILED! The problem is that the kretprobe_trampoline symbol looks like this: $ eu-readelf -s /boot/vmlinux G kretprobe_trampoline 2431: c000000001302368 24 NOTYPE LOCAL DEFAULT 37 kretprobe_trampoline_holder 2432: c00000000003d300 8 FUNC LOCAL DEFAULT 1 .kretprobe_trampoline_holder 97543: c00000000003d300 0 NOTYPE GLOBAL DEFAULT 1 kretprobe_trampoline Its type is NOTYPE, and its size is 0, and this is a problem because symbol-elf.c:dso__load_sym skips function symbols that are not STT_FUNC or STT_GNU_IFUNC (this is determined by elf_sym__is_function). Even if the type is changed to STT_FUNC, when dso__load_sym calls symbols__fixup_duplicate, the kretprobe_trampoline symbol is dropped in favour of .kretprobe_trampoline_holder because the latter has non-zero size (as determined by choose_best_symbol). With this patch, all vmlinux symbols match /proc/kallsyms and the testcase passes. Commit c1c355ce14c0 ("x86/kprobes: Get rid of kretprobe_trampoline_holder()") gets rid of kretprobe_trampoline_holder altogether on x86. This commit does the same on powerpc. This change introduces no regressions on the perf and ftracetest testsuite results. Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-03-31 20:10:40 +00:00
asm(".global kretprobe_trampoline\n"
".type kretprobe_trampoline, @function\n"
"kretprobe_trampoline:\n"
"nop\n"
"blr\n"
powerpc/kprobes: Remove kretprobe_trampoline_holder. Fixes the following testsuite failure: $ sudo ./perf test -v kallsyms 1: vmlinux symtab matches kallsyms : --- start --- test child forked, pid 12489 Using /proc/kcore for kernel object code Looking at the vmlinux_path (8 entries long) Using /boot/vmlinux for symbols 0xc00000000003d300: diff name v: .kretprobe_trampoline_holder k: kretprobe_trampoline Maps only in vmlinux: c00000000086ca38-c000000000879b6c 87ca38 [kernel].text.unlikely c000000000879b6c-c000000000bf0000 889b6c [kernel].meminit.text c000000000bf0000-c000000000c53264 c00000 [kernel].init.text c000000000c53264-d000000004250000 c63264 [kernel].exit.text d000000004250000-d000000004450000 0 [libcrc32c] d000000004450000-d000000004620000 0 [xfs] d000000004620000-d000000004680000 0 [autofs4] d000000004680000-d0000000046e0000 0 [x_tables] d0000000046e0000-d000000004780000 0 [ip_tables] d000000004780000-d0000000047e0000 0 [rng_core] d0000000047e0000-ffffffffffffffff 0 [pseries_rng] Maps in vmlinux with a different name in kallsyms: Maps only in kallsyms: d000000000000000-f000000000000000 1000000000010000 [kernel.kallsyms] f000000000000000-ffffffffffffffff 3000000000010000 [kernel.kallsyms] test child finished with -1 ---- end ---- vmlinux symtab matches kallsyms: FAILED! The problem is that the kretprobe_trampoline symbol looks like this: $ eu-readelf -s /boot/vmlinux G kretprobe_trampoline 2431: c000000001302368 24 NOTYPE LOCAL DEFAULT 37 kretprobe_trampoline_holder 2432: c00000000003d300 8 FUNC LOCAL DEFAULT 1 .kretprobe_trampoline_holder 97543: c00000000003d300 0 NOTYPE GLOBAL DEFAULT 1 kretprobe_trampoline Its type is NOTYPE, and its size is 0, and this is a problem because symbol-elf.c:dso__load_sym skips function symbols that are not STT_FUNC or STT_GNU_IFUNC (this is determined by elf_sym__is_function). Even if the type is changed to STT_FUNC, when dso__load_sym calls symbols__fixup_duplicate, the kretprobe_trampoline symbol is dropped in favour of .kretprobe_trampoline_holder because the latter has non-zero size (as determined by choose_best_symbol). With this patch, all vmlinux symbols match /proc/kallsyms and the testcase passes. Commit c1c355ce14c0 ("x86/kprobes: Get rid of kretprobe_trampoline_holder()") gets rid of kretprobe_trampoline_holder altogether on x86. This commit does the same on powerpc. This change introduces no regressions on the perf and ftracetest testsuite results. Reviewed-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-03-31 20:10:40 +00:00
".size kretprobe_trampoline, .-kretprobe_trampoline\n");
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
/*
* Called when the probe at kretprobe trampoline is hit
*/
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:06:00 +00:00
struct hlist_node *tmp;
unsigned long flags, orig_ret_address = 0;
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
INIT_HLIST_HEAD(&empty_rp);
kprobes: improve kretprobe scalability with hashed locking Currently list of kretprobe instances are stored in kretprobe object (as used_instances,free_instances) and in kretprobe hash table. We have one global kretprobe lock to serialise the access to these lists. This causes only one kretprobe handler to execute at a time. Hence affects system performance, particularly on SMP systems and when return probe is set on lot of functions (like on all systemcalls). Solution proposed here gives fine-grain locks that performs better on SMP system compared to present kretprobe implementation. Solution: 1) Instead of having one global lock to protect kretprobe instances present in kretprobe object and kretprobe hash table. We will have two locks, one lock for protecting kretprobe hash table and another lock for kretporbe object. 2) We hold lock present in kretprobe object while we modify kretprobe instance in kretprobe object and we hold per-hash-list lock while modifying kretprobe instances present in that hash list. To prevent deadlock, we never grab a per-hash-list lock while holding a kretprobe lock. 3) We can remove used_instances from struct kretprobe, as we can track used instances of kretprobe instances using kretprobe hash table. Time duration for kernel compilation ("make -j 8") on a 8-way ppc64 system with return probes set on all systemcalls looks like this. cacheline non-cacheline Un-patched kernel aligned patch aligned patch =============================================================================== real 9m46.784s 9m54.412s 10m2.450s user 40m5.715s 40m7.142s 40m4.273s sys 2m57.754s 2m58.583s 3m17.430s =========================================================== Time duration for kernel compilation ("make -j 8) on the same system, when kernel is not probed. ========================= real 9m26.389s user 40m8.775s sys 2m7.283s ========================= Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com> Signed-off-by: Jim Keniston <jkenisto@us.ibm.com> Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Masami Hiramatsu <mhiramat@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:04 +00:00
kretprobe_hash_lock(current, &head, &flags);
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
/*
* It is possible to have multiple instances associated with a given
* task either because an multiple functions in the call path
* have a return probe installed on them, and/or more than one return
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always inserted at the head of the list
* - when multiple return probes are registered for the same
* function, the first instance's ret_addr will point to the
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
* real return address, and all the rest will point to
* kretprobe_trampoline
*/
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:06:00 +00:00
hlist_for_each_entry_safe(ri, tmp, head, hlist) {
if (ri->task != current)
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
/* another task is sharing our hash bucket */
continue;
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
if (ri->rp && ri->rp->handler)
ri->rp->handler(ri, regs);
orig_ret_address = (unsigned long)ri->ret_addr;
recycle_rp_inst(ri, &empty_rp);
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
if (orig_ret_address != trampoline_address)
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
regs->nip = orig_ret_address;
/*
* Make LR point to the orig_ret_address.
* When the 'nop' inside the kretprobe_trampoline
* is optimized, we can do a 'blr' after executing the
* detour buffer code.
*/
regs->link = orig_ret_address;
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
reset_current_kprobe();
kprobes: improve kretprobe scalability with hashed locking Currently list of kretprobe instances are stored in kretprobe object (as used_instances,free_instances) and in kretprobe hash table. We have one global kretprobe lock to serialise the access to these lists. This causes only one kretprobe handler to execute at a time. Hence affects system performance, particularly on SMP systems and when return probe is set on lot of functions (like on all systemcalls). Solution proposed here gives fine-grain locks that performs better on SMP system compared to present kretprobe implementation. Solution: 1) Instead of having one global lock to protect kretprobe instances present in kretprobe object and kretprobe hash table. We will have two locks, one lock for protecting kretprobe hash table and another lock for kretporbe object. 2) We hold lock present in kretprobe object while we modify kretprobe instance in kretprobe object and we hold per-hash-list lock while modifying kretprobe instances present in that hash list. To prevent deadlock, we never grab a per-hash-list lock while holding a kretprobe lock. 3) We can remove used_instances from struct kretprobe, as we can track used instances of kretprobe instances using kretprobe hash table. Time duration for kernel compilation ("make -j 8") on a 8-way ppc64 system with return probes set on all systemcalls looks like this. cacheline non-cacheline Un-patched kernel aligned patch aligned patch =============================================================================== real 9m46.784s 9m54.412s 10m2.450s user 40m5.715s 40m7.142s 40m4.273s sys 2m57.754s 2m58.583s 3m17.430s =========================================================== Time duration for kernel compilation ("make -j 8) on the same system, when kernel is not probed. ========================= real 9m26.389s user 40m8.775s sys 2m7.283s ========================= Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com> Signed-off-by: Jim Keniston <jkenisto@us.ibm.com> Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S. Miller <davem@davemloft.net> Cc: Masami Hiramatsu <mhiramat@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:04 +00:00
kretprobe_hash_unlock(current, &flags);
2005-11-07 09:00:07 +00:00
preempt_enable_no_resched();
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
hlist: drop the node parameter from iterators I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28 01:06:00 +00:00
hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
/*
* By returning a non-zero value, we are telling
* kprobe_handler() that we don't want the post_handler
* to run (and have re-enabled preemption)
*/
return 1;
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(trampoline_probe_handler);
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "breakpoint"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*/
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
int kprobe_post_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur || user_mode(regs))
return 0;
/* make sure we got here for instruction we have a kprobe on */
if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
return 0;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
/* Adjust nip to after the single-stepped instruction */
regs->nip = (unsigned long)cur->addr + 4;
regs->msr |= kcb->kprobe_saved_msr;
/*Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable_no_resched();
/*
* if somebody else is singlestepping across a probe point, msr
* will have DE/SE set, in which case, continue the remaining processing
* of do_debug, as if this is not a probe hit.
*/
if (regs->msr & MSR_SINGLESTEP)
return 0;
return 1;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(kprobe_post_handler);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
const struct exception_table_entry *entry;
switch(kcb->kprobe_status) {
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the nip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->nip = (unsigned long)cur->addr;
regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
regs->msr |= kcb->kprobe_saved_msr;
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else
reset_current_kprobe();
preempt_enable_no_resched();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accounting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
if ((entry = search_exception_tables(regs->nip)) != NULL) {
regs->nip = extable_fixup(entry);
return 1;
}
/*
* fixup_exception() could not handle it,
* Let do_page_fault() fix it.
*/
break;
default:
break;
}
return 0;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(kprobe_fault_handler);
unsigned long arch_deref_entry_point(void *entry)
{
return ppc_global_function_entry(entry);
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(arch_deref_entry_point);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
/* setup return addr to the jprobe handler routine */
regs->nip = arch_deref_entry_point(jp->entry);
#ifdef PPC64_ELF_ABI_v2
regs->gpr[12] = (unsigned long)jp->entry;
#elif defined(PPC64_ELF_ABI_v1)
regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
#endif
return 1;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(setjmp_pre_handler);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
void __used jprobe_return(void)
{
asm volatile("trap" ::: "memory");
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(jprobe_return);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
static void __used jprobe_return_end(void)
{
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
}
NOKPROBE_SYMBOL(jprobe_return_end);
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
/*
* FIXME - we should ideally be validating that we got here 'cos
* of the "trap" in jprobe_return() above, before restoring the
* saved regs...
*/
memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
preempt_enable_no_resched();
return 1;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(longjmp_break_handler);
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
static struct kprobe trampoline_p = {
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
.pre_handler = trampoline_probe_handler
};
int __init arch_init_kprobes(void)
[PATCH] Return probe redesign: ppc64 specific implementation The following is a patch provided by Ananth Mavinakayanahalli that implements the new PPC64 specific parts of the new function return probe design. NOTE: Since getting Ananth's patch, I changed trampoline_probe_handler() to consume each of the outstanding return probem instances (feedback on my original RFC after Ananth cut a patch), and also added the arch_init() function (adding arch specific initialization.) I have cross compiled but have not testing this on a PPC64 machine. Changes include: * Addition of kretprobe_trampoline to act as a dummy function for instrumented functions to return to, and for the return probe infrastructure to place a kprobe on on, gaining control so that the return probe handler can be called, and so that the instruction pointer can be moved back to the original return address. * Addition of arch_init(), allowing a kprobe to be registered on kretprobe_trampoline * Addition of trampoline_probe_handler() which is used as the pre_handler for the kprobe inserted on kretprobe_implementation. This is the function that handles the details for calling the return probe handler function and returning control back at the original return address * Addition of arch_prepare_kretprobe() which is setup as the pre_handler for a kprobe registered at the beginning of the target function by kernel/kprobes.c so that a return probe instance can be setup when a caller enters the target function. (A return probe instance contains all the needed information for trampoline_probe_handler to do it's job.) * Hooks added to the exit path of a task so that we can cleanup any left-over return probe instances (i.e. if a task dies while inside a targeted function then the return probe instance was reserved at the beginning of the function but the function never returns so we need to mark the instance as unused.) Signed-off-by: Rusty Lynch <rusty.lynch@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-27 22:17:15 +00:00
{
return register_kprobe(&trampoline_p);
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
int arch_trampoline_kprobe(struct kprobe *p)
{
if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
return 1;
return 0;
}
powerpc/kprobes: Convert __kprobes to NOKPROBE_SYMBOL() Along similar lines as commit 9326638cbee2 ("kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotation"), convert __kprobes annotation to either NOKPROBE_SYMBOL() or nokprobe_inline. The latter forces inlining, in which case the caller needs to be added to NOKPROBE_SYMBOL(). Also: - blacklist arch_deref_entry_point(), and - convert a few regular inlines to nokprobe_inline in lib/sstep.c A key benefit is the ability to detect such symbols as being blacklisted. Before this patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem $ perf probe read_mem Failed to write event: Invalid argument Error: Failed to add events. $ dmesg | tail -1 [ 3736.112815] Could not insert probe at _text+10014968: -22 After patch: $ cat /sys/kernel/debug/kprobes/blacklist | grep read_mem 0xc000000000072b50-0xc000000000072d20 read_mem $ perf probe read_mem read_mem is blacklisted function, skip it. Added new events: (null):(null) (on read_mem) probe:read_mem (on read_mem) You can now use it in all perf tools, such as: perf record -e probe:read_mem -aR sleep 1 $ grep " read_mem" /proc/kallsyms c000000000072b50 t read_mem c0000000005f3b40 t read_mem $ cat /sys/kernel/debug/kprobes/list c0000000005f3b48 k read_mem+0x8 [DISABLED] Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> [mpe: Minor change log formatting, fix up some conflicts] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-04-12 11:18:51 +00:00
NOKPROBE_SYMBOL(arch_trampoline_kprobe);