linux/kernel/sched/idle_task.c

111 lines
2.4 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
#include "sched.h"
/*
* idle-task scheduling class.
*
* (NOTE: these are not related to SCHED_IDLE tasks which are
* handled in sched/fair.c)
*/
#ifdef CONFIG_SMP
static int
select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags)
{
return task_cpu(p); /* IDLE tasks as never migrated */
}
#endif /* CONFIG_SMP */
/*
* Idle tasks are unconditionally rescheduled:
*/
static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags)
{
resched_curr(rq);
}
static struct task_struct *
pick_next_task_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
sched: Fix hotplug task migration Dan Carpenter reported: > kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338) > kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005) Kirill also spotted that migrate_tasks() will have an instant NULL deref because pick_next_task() will immediately deref prev. Instead of fixing all the corner cases because migrate_tasks() can pass in a NULL prev task in the unlikely case of hot-un-plug, provide a fake task such that we can remove all the NULL checks from the far more common paths. A further problem; not previously spotted; is that because we pushed pre_schedule() and idle_balance() into pick_next_task() we now need to avoid those getting called and pulling more tasks on our dying CPU. We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1. We also note that since we call pick_next_task() exactly the amount of times we have runnable tasks present, we should never land in idle_balance(). Fixes: 38033c37faab ("sched: Push down pre_schedule() and idle_balance()") Cc: Juri Lelli <juri.lelli@gmail.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Reported-by: Kirill Tkhai <tkhai@yandex.ru> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-12 09:49:30 +00:00
put_prev_task(rq, prev);
sched/core: Rewrite and improve select_idle_siblings() select_idle_siblings() is a known pain point for a number of workloads; it either does too much or not enough and sometimes just does plain wrong. This rewrite attempts to address a number of issues (but sadly not all). The current code does an unconditional sched_domain iteration; with the intent of finding an idle core (on SMT hardware). The problems which this patch tries to address are: - its pointless to look for idle cores if the machine is real busy; at which point you're just wasting cycles. - it's behaviour is inconsistent between SMT and !SMT hardware in that !SMT hardware ends up doing a scan for any idle CPU in the LLC domain, while SMT hardware does a scan for idle cores and if that fails, falls back to a scan for idle threads on the 'target' core. The new code replaces the sched_domain scan with 3 explicit scans: 1) search for an idle core in the LLC 2) search for an idle CPU in the LLC 3) search for an idle thread in the 'target' core where 1 and 3 are conditional on SMT support and 1 and 2 have runtime heuristics to skip the step. Step 1) is conditional on sd_llc_shared->has_idle_cores; when a cpu goes idle and sd_llc_shared->has_idle_cores is false, we scan all SMT siblings of the CPU going idle. Similarly, we clear sd_llc_shared->has_idle_cores when we fail to find an idle core. Step 2) tracks the average cost of the scan and compares this to the average idle time guestimate for the CPU doing the wakeup. There is a significant fudge factor involved to deal with the variability of the averages. Esp. hackbench was sensitive to this. Step 3) is unconditional; we assume (also per step 1) that scanning all SMT siblings in a core is 'cheap'. With this; SMT systems gain step 2, which cures a few benchmarks -- notably one from Facebook. One 'feature' of the sched_domain iteration, which we preserve in the new code, is that it would start scanning from the 'target' CPU, instead of scanning the cpumask in cpu id order. This avoids multiple CPUs in the LLC scanning for idle to gang up and find the same CPU quite as much. The down side is that tasks can end up hopping across the LLC for no apparent reason. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-09 08:38:05 +00:00
update_idle_core(rq);
schedstat_inc(rq->sched_goidle);
return rq->idle;
}
/*
* It is not legal to sleep in the idle task - print a warning
* message if some code attempts to do it:
*/
static void
dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
{
raw_spin_unlock_irq(&rq->lock);
printk(KERN_ERR "bad: scheduling from the idle thread!\n");
dump_stack();
raw_spin_lock_irq(&rq->lock);
}
static void put_prev_task_idle(struct rq *rq, struct task_struct *prev)
{
rq_last_tick_reset(rq);
}
static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
{
}
static void set_curr_task_idle(struct rq *rq)
{
}
static void switched_to_idle(struct rq *rq, struct task_struct *p)
{
BUG();
}
static void
prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
{
BUG();
}
static unsigned int get_rr_interval_idle(struct rq *rq, struct task_struct *task)
{
return 0;
}
sched: Provide update_curr callbacks for stop/idle scheduling classes Chris bisected a NULL pointer deference in task_sched_runtime() to commit 6e998916dfe3 'sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency'. Chris observed crashes in atop or other /proc walking programs when he started fork bombs on his machine. He assumed that this is a new exit race, but that does not make any sense when looking at that commit. What's interesting is that, the commit provides update_curr callbacks for all scheduling classes except stop_task and idle_task. While nothing can ever hit that via the clock_nanosleep() and clock_gettime() interfaces, which have been the target of the commit in question, the author obviously forgot that there are other code paths which invoke task_sched_runtime() do_task_stat(() thread_group_cputime_adjusted() thread_group_cputime() task_cputime() task_sched_runtime() if (task_current(rq, p) && task_on_rq_queued(p)) { update_rq_clock(rq); up->sched_class->update_curr(rq); } If the stats are read for a stomp machine task, aka 'migration/N' and that task is current on its cpu, this will happily call the NULL pointer of stop_task->update_curr. Ooops. Chris observation that this happens faster when he runs the fork bomb makes sense as the fork bomb will kick migration threads more often so the probability to hit the issue will increase. Add the missing update_curr callbacks to the scheduler classes stop_task and idle_task. While idle tasks cannot be monitored via /proc we have other means to hit the idle case. Fixes: 6e998916dfe3 'sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency' Reported-by: Chris Mason <clm@fb.com> Reported-and-tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 22:04:52 +00:00
static void update_curr_idle(struct rq *rq)
{
}
/*
* Simple, special scheduling class for the per-CPU idle tasks:
*/
const struct sched_class idle_sched_class = {
/* .next is NULL */
/* no enqueue/yield_task for idle tasks */
/* dequeue is not valid, we print a debug message there: */
.dequeue_task = dequeue_task_idle,
.check_preempt_curr = check_preempt_curr_idle,
.pick_next_task = pick_next_task_idle,
.put_prev_task = put_prev_task_idle,
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_idle,
.set_cpus_allowed = set_cpus_allowed_common,
#endif
.set_curr_task = set_curr_task_idle,
.task_tick = task_tick_idle,
.get_rr_interval = get_rr_interval_idle,
.prio_changed = prio_changed_idle,
.switched_to = switched_to_idle,
sched: Provide update_curr callbacks for stop/idle scheduling classes Chris bisected a NULL pointer deference in task_sched_runtime() to commit 6e998916dfe3 'sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency'. Chris observed crashes in atop or other /proc walking programs when he started fork bombs on his machine. He assumed that this is a new exit race, but that does not make any sense when looking at that commit. What's interesting is that, the commit provides update_curr callbacks for all scheduling classes except stop_task and idle_task. While nothing can ever hit that via the clock_nanosleep() and clock_gettime() interfaces, which have been the target of the commit in question, the author obviously forgot that there are other code paths which invoke task_sched_runtime() do_task_stat(() thread_group_cputime_adjusted() thread_group_cputime() task_cputime() task_sched_runtime() if (task_current(rq, p) && task_on_rq_queued(p)) { update_rq_clock(rq); up->sched_class->update_curr(rq); } If the stats are read for a stomp machine task, aka 'migration/N' and that task is current on its cpu, this will happily call the NULL pointer of stop_task->update_curr. Ooops. Chris observation that this happens faster when he runs the fork bomb makes sense as the fork bomb will kick migration threads more often so the probability to hit the issue will increase. Add the missing update_curr callbacks to the scheduler classes stop_task and idle_task. While idle tasks cannot be monitored via /proc we have other means to hit the idle case. Fixes: 6e998916dfe3 'sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency' Reported-by: Chris Mason <clm@fb.com> Reported-and-tested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Stanislaw Gruszka <sgruszka@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 22:04:52 +00:00
.update_curr = update_curr_idle,
};