linux/drivers/misc/cxl/cxl.h

943 lines
34 KiB
C
Raw Normal View History

/*
* Copyright 2014 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _CXL_H_
#define _CXL_H_
#include <linux/interrupt.h>
#include <linux/semaphore.h>
#include <linux/device.h>
#include <linux/types.h>
#include <linux/cdev.h>
#include <linux/pid.h>
#include <linux/io.h>
#include <linux/pci.h>
#include <linux/fs.h>
#include <asm/cputable.h>
#include <asm/mmu.h>
#include <asm/reg.h>
#include <misc/cxl-base.h>
cxl: Add mechanism for delivering AFU driver specific events This adds an afu_driver_ops structure with fetch_event() and event_delivered() callbacks. An AFU driver such as cxlflash can fill this out and associate it with a context to enable passing custom AFU specific events to userspace. This also adds a new kernel API function cxl_context_pending_events(), that the AFU driver can use to notify the cxl driver that new specific events are ready to be delivered, and wake up anyone waiting on the context wait queue. The current count of AFU driver specific events is stored in the field afu_driver_events of the context structure. The cxl driver checks the afu_driver_events count during poll, select, read, etc. calls to check if an AFU driver specific event is pending, and calls fetch_event() to obtain and deliver that event. This way, the cxl driver takes care of all the usual locking semantics around these calls and handles all the generic cxl events, so that the AFU driver only needs to worry about it's own events. fetch_event() return a struct cxl_event_afu_driver_reserved, allocated by the AFU driver, and filled in with the specific event information and size. Total event size (header + data) should not be greater than CXL_READ_MIN_SIZE (4K). Th cxl driver prepends an appropriate cxl event header, copies the event to userspace, and finally calls event_delivered() to return the status of the operation to the AFU driver. The event is identified by the context and cxl_event_afu_driver_reserved pointers. Since AFU drivers provide their own means for userspace to obtain the AFU file descriptor (i.e. cxlflash uses an ioctl on their scsi file descriptor to obtain the AFU file descriptor) and the generic cxl driver will never use this event, the ABI of the event is up to each individual AFU driver. Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-23 13:03:53 +00:00
#include <misc/cxl.h>
#include <uapi/misc/cxl.h>
extern uint cxl_verbose;
#define CXL_TIMEOUT 5
/*
* Bump version each time a user API change is made, whether it is
* backwards compatible ot not.
*/
cxl: Add mechanism for delivering AFU driver specific events This adds an afu_driver_ops structure with fetch_event() and event_delivered() callbacks. An AFU driver such as cxlflash can fill this out and associate it with a context to enable passing custom AFU specific events to userspace. This also adds a new kernel API function cxl_context_pending_events(), that the AFU driver can use to notify the cxl driver that new specific events are ready to be delivered, and wake up anyone waiting on the context wait queue. The current count of AFU driver specific events is stored in the field afu_driver_events of the context structure. The cxl driver checks the afu_driver_events count during poll, select, read, etc. calls to check if an AFU driver specific event is pending, and calls fetch_event() to obtain and deliver that event. This way, the cxl driver takes care of all the usual locking semantics around these calls and handles all the generic cxl events, so that the AFU driver only needs to worry about it's own events. fetch_event() return a struct cxl_event_afu_driver_reserved, allocated by the AFU driver, and filled in with the specific event information and size. Total event size (header + data) should not be greater than CXL_READ_MIN_SIZE (4K). Th cxl driver prepends an appropriate cxl event header, copies the event to userspace, and finally calls event_delivered() to return the status of the operation to the AFU driver. The event is identified by the context and cxl_event_afu_driver_reserved pointers. Since AFU drivers provide their own means for userspace to obtain the AFU file descriptor (i.e. cxlflash uses an ioctl on their scsi file descriptor to obtain the AFU file descriptor) and the generic cxl driver will never use this event, the ABI of the event is up to each individual AFU driver. Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-23 13:03:53 +00:00
#define CXL_API_VERSION 3
#define CXL_API_VERSION_COMPATIBLE 1
/*
* Opaque types to avoid accidentally passing registers for the wrong MMIO
*
* At the end of the day, I'm not married to using typedef here, but it might
* (and has!) help avoid bugs like mixing up CXL_PSL_CtxTime and
* CXL_PSL_CtxTime_An, or calling cxl_p1n_write instead of cxl_p1_write.
*
* I'm quite happy if these are changed back to #defines before upstreaming, it
* should be little more than a regexp search+replace operation in this file.
*/
typedef struct {
const int x;
} cxl_p1_reg_t;
typedef struct {
const int x;
} cxl_p1n_reg_t;
typedef struct {
const int x;
} cxl_p2n_reg_t;
#define cxl_reg_off(reg) \
(reg.x)
/* Memory maps. Ref CXL Appendix A */
/* PSL Privilege 1 Memory Map */
/* Configuration and Control area */
static const cxl_p1_reg_t CXL_PSL_CtxTime = {0x0000};
static const cxl_p1_reg_t CXL_PSL_ErrIVTE = {0x0008};
static const cxl_p1_reg_t CXL_PSL_KEY1 = {0x0010};
static const cxl_p1_reg_t CXL_PSL_KEY2 = {0x0018};
static const cxl_p1_reg_t CXL_PSL_Control = {0x0020};
/* Downloading */
static const cxl_p1_reg_t CXL_PSL_DLCNTL = {0x0060};
static const cxl_p1_reg_t CXL_PSL_DLADDR = {0x0068};
/* PSL Lookaside Buffer Management Area */
static const cxl_p1_reg_t CXL_PSL_LBISEL = {0x0080};
static const cxl_p1_reg_t CXL_PSL_SLBIE = {0x0088};
static const cxl_p1_reg_t CXL_PSL_SLBIA = {0x0090};
static const cxl_p1_reg_t CXL_PSL_TLBIE = {0x00A0};
static const cxl_p1_reg_t CXL_PSL_TLBIA = {0x00A8};
static const cxl_p1_reg_t CXL_PSL_AFUSEL = {0x00B0};
/* 0x00C0:7EFF Implementation dependent area */
/* PSL registers */
static const cxl_p1_reg_t CXL_PSL_FIR1 = {0x0100};
static const cxl_p1_reg_t CXL_PSL_FIR2 = {0x0108};
static const cxl_p1_reg_t CXL_PSL_Timebase = {0x0110};
static const cxl_p1_reg_t CXL_PSL_VERSION = {0x0118};
static const cxl_p1_reg_t CXL_PSL_RESLCKTO = {0x0128};
static const cxl_p1_reg_t CXL_PSL_TB_CTLSTAT = {0x0140};
static const cxl_p1_reg_t CXL_PSL_FIR_CNTL = {0x0148};
static const cxl_p1_reg_t CXL_PSL_DSNDCTL = {0x0150};
static const cxl_p1_reg_t CXL_PSL_SNWRALLOC = {0x0158};
static const cxl_p1_reg_t CXL_PSL_TRACE = {0x0170};
/* XSL registers (Mellanox CX4) */
static const cxl_p1_reg_t CXL_XSL_Timebase = {0x0100};
static const cxl_p1_reg_t CXL_XSL_TB_CTLSTAT = {0x0108};
static const cxl_p1_reg_t CXL_XSL_FEC = {0x0158};
static const cxl_p1_reg_t CXL_XSL_DSNCTL = {0x0168};
/* 0x7F00:7FFF Reserved PCIe MSI-X Pending Bit Array area */
/* 0x8000:FFFF Reserved PCIe MSI-X Table Area */
/* PSL Slice Privilege 1 Memory Map */
/* Configuration Area */
static const cxl_p1n_reg_t CXL_PSL_SR_An = {0x00};
static const cxl_p1n_reg_t CXL_PSL_LPID_An = {0x08};
static const cxl_p1n_reg_t CXL_PSL_AMBAR_An = {0x10};
static const cxl_p1n_reg_t CXL_PSL_SPOffset_An = {0x18};
static const cxl_p1n_reg_t CXL_PSL_ID_An = {0x20};
static const cxl_p1n_reg_t CXL_PSL_SERR_An = {0x28};
/* Memory Management and Lookaside Buffer Management */
static const cxl_p1n_reg_t CXL_PSL_SDR_An = {0x30};
static const cxl_p1n_reg_t CXL_PSL_AMOR_An = {0x38};
/* Pointer Area */
static const cxl_p1n_reg_t CXL_HAURP_An = {0x80};
static const cxl_p1n_reg_t CXL_PSL_SPAP_An = {0x88};
static const cxl_p1n_reg_t CXL_PSL_LLCMD_An = {0x90};
/* Control Area */
static const cxl_p1n_reg_t CXL_PSL_SCNTL_An = {0xA0};
static const cxl_p1n_reg_t CXL_PSL_CtxTime_An = {0xA8};
static const cxl_p1n_reg_t CXL_PSL_IVTE_Offset_An = {0xB0};
static const cxl_p1n_reg_t CXL_PSL_IVTE_Limit_An = {0xB8};
/* 0xC0:FF Implementation Dependent Area */
static const cxl_p1n_reg_t CXL_PSL_FIR_SLICE_An = {0xC0};
static const cxl_p1n_reg_t CXL_AFU_DEBUG_An = {0xC8};
static const cxl_p1n_reg_t CXL_PSL_APCALLOC_A = {0xD0};
static const cxl_p1n_reg_t CXL_PSL_COALLOC_A = {0xD8};
static const cxl_p1n_reg_t CXL_PSL_RXCTL_A = {0xE0};
static const cxl_p1n_reg_t CXL_PSL_SLICE_TRACE = {0xE8};
/* PSL Slice Privilege 2 Memory Map */
/* Configuration and Control Area */
static const cxl_p2n_reg_t CXL_PSL_PID_TID_An = {0x000};
static const cxl_p2n_reg_t CXL_CSRP_An = {0x008};
static const cxl_p2n_reg_t CXL_AURP0_An = {0x010};
static const cxl_p2n_reg_t CXL_AURP1_An = {0x018};
static const cxl_p2n_reg_t CXL_SSTP0_An = {0x020};
static const cxl_p2n_reg_t CXL_SSTP1_An = {0x028};
static const cxl_p2n_reg_t CXL_PSL_AMR_An = {0x030};
/* Segment Lookaside Buffer Management */
static const cxl_p2n_reg_t CXL_SLBIE_An = {0x040};
static const cxl_p2n_reg_t CXL_SLBIA_An = {0x048};
static const cxl_p2n_reg_t CXL_SLBI_Select_An = {0x050};
/* Interrupt Registers */
static const cxl_p2n_reg_t CXL_PSL_DSISR_An = {0x060};
static const cxl_p2n_reg_t CXL_PSL_DAR_An = {0x068};
static const cxl_p2n_reg_t CXL_PSL_DSR_An = {0x070};
static const cxl_p2n_reg_t CXL_PSL_TFC_An = {0x078};
static const cxl_p2n_reg_t CXL_PSL_PEHandle_An = {0x080};
static const cxl_p2n_reg_t CXL_PSL_ErrStat_An = {0x088};
/* AFU Registers */
static const cxl_p2n_reg_t CXL_AFU_Cntl_An = {0x090};
static const cxl_p2n_reg_t CXL_AFU_ERR_An = {0x098};
/* Work Element Descriptor */
static const cxl_p2n_reg_t CXL_PSL_WED_An = {0x0A0};
/* 0x0C0:FFF Implementation Dependent Area */
#define CXL_PSL_SPAP_Addr 0x0ffffffffffff000ULL
#define CXL_PSL_SPAP_Size 0x0000000000000ff0ULL
#define CXL_PSL_SPAP_Size_Shift 4
#define CXL_PSL_SPAP_V 0x0000000000000001ULL
/****** CXL_PSL_Control ****************************************************/
#define CXL_PSL_Control_tb 0x0000000000000001ULL
/****** CXL_PSL_DLCNTL *****************************************************/
#define CXL_PSL_DLCNTL_D (0x1ull << (63-28))
#define CXL_PSL_DLCNTL_C (0x1ull << (63-29))
#define CXL_PSL_DLCNTL_E (0x1ull << (63-30))
#define CXL_PSL_DLCNTL_S (0x1ull << (63-31))
#define CXL_PSL_DLCNTL_CE (CXL_PSL_DLCNTL_C | CXL_PSL_DLCNTL_E)
#define CXL_PSL_DLCNTL_DCES (CXL_PSL_DLCNTL_D | CXL_PSL_DLCNTL_CE | CXL_PSL_DLCNTL_S)
/****** CXL_PSL_SR_An ******************************************************/
#define CXL_PSL_SR_An_SF MSR_SF /* 64bit */
#define CXL_PSL_SR_An_TA (1ull << (63-1)) /* Tags active, GA1: 0 */
#define CXL_PSL_SR_An_HV MSR_HV /* Hypervisor, GA1: 0 */
#define CXL_PSL_SR_An_PR MSR_PR /* Problem state, GA1: 1 */
#define CXL_PSL_SR_An_ISL (1ull << (63-53)) /* Ignore Segment Large Page */
#define CXL_PSL_SR_An_TC (1ull << (63-54)) /* Page Table secondary hash */
#define CXL_PSL_SR_An_US (1ull << (63-56)) /* User state, GA1: X */
#define CXL_PSL_SR_An_SC (1ull << (63-58)) /* Segment Table secondary hash */
#define CXL_PSL_SR_An_R MSR_DR /* Relocate, GA1: 1 */
#define CXL_PSL_SR_An_MP (1ull << (63-62)) /* Master Process */
#define CXL_PSL_SR_An_LE (1ull << (63-63)) /* Little Endian */
/****** CXL_PSL_ID_An ****************************************************/
#define CXL_PSL_ID_An_F (1ull << (63-31))
#define CXL_PSL_ID_An_L (1ull << (63-30))
/****** CXL_PSL_SERR_An ****************************************************/
#define CXL_PSL_SERR_An_afuto (1ull << (63-0))
#define CXL_PSL_SERR_An_afudis (1ull << (63-1))
#define CXL_PSL_SERR_An_afuov (1ull << (63-2))
#define CXL_PSL_SERR_An_badsrc (1ull << (63-3))
#define CXL_PSL_SERR_An_badctx (1ull << (63-4))
#define CXL_PSL_SERR_An_llcmdis (1ull << (63-5))
#define CXL_PSL_SERR_An_llcmdto (1ull << (63-6))
#define CXL_PSL_SERR_An_afupar (1ull << (63-7))
#define CXL_PSL_SERR_An_afudup (1ull << (63-8))
#define CXL_PSL_SERR_An_AE (1ull << (63-30))
/****** CXL_PSL_SCNTL_An ****************************************************/
#define CXL_PSL_SCNTL_An_CR (0x1ull << (63-15))
/* Programming Modes: */
#define CXL_PSL_SCNTL_An_PM_MASK (0xffffull << (63-31))
#define CXL_PSL_SCNTL_An_PM_Shared (0x0000ull << (63-31))
#define CXL_PSL_SCNTL_An_PM_OS (0x0001ull << (63-31))
#define CXL_PSL_SCNTL_An_PM_Process (0x0002ull << (63-31))
#define CXL_PSL_SCNTL_An_PM_AFU (0x0004ull << (63-31))
#define CXL_PSL_SCNTL_An_PM_AFU_PBT (0x0104ull << (63-31))
/* Purge Status (ro) */
#define CXL_PSL_SCNTL_An_Ps_MASK (0x3ull << (63-39))
#define CXL_PSL_SCNTL_An_Ps_Pending (0x1ull << (63-39))
#define CXL_PSL_SCNTL_An_Ps_Complete (0x3ull << (63-39))
/* Purge */
#define CXL_PSL_SCNTL_An_Pc (0x1ull << (63-48))
/* Suspend Status (ro) */
#define CXL_PSL_SCNTL_An_Ss_MASK (0x3ull << (63-55))
#define CXL_PSL_SCNTL_An_Ss_Pending (0x1ull << (63-55))
#define CXL_PSL_SCNTL_An_Ss_Complete (0x3ull << (63-55))
/* Suspend Control */
#define CXL_PSL_SCNTL_An_Sc (0x1ull << (63-63))
/* AFU Slice Enable Status (ro) */
#define CXL_AFU_Cntl_An_ES_MASK (0x7ull << (63-2))
#define CXL_AFU_Cntl_An_ES_Disabled (0x0ull << (63-2))
#define CXL_AFU_Cntl_An_ES_Enabled (0x4ull << (63-2))
/* AFU Slice Enable */
#define CXL_AFU_Cntl_An_E (0x1ull << (63-3))
/* AFU Slice Reset status (ro) */
#define CXL_AFU_Cntl_An_RS_MASK (0x3ull << (63-5))
#define CXL_AFU_Cntl_An_RS_Pending (0x1ull << (63-5))
#define CXL_AFU_Cntl_An_RS_Complete (0x2ull << (63-5))
/* AFU Slice Reset */
#define CXL_AFU_Cntl_An_RA (0x1ull << (63-7))
/****** CXL_SSTP0/1_An ******************************************************/
/* These top bits are for the segment that CONTAINS the segment table */
#define CXL_SSTP0_An_B_SHIFT SLB_VSID_SSIZE_SHIFT
#define CXL_SSTP0_An_KS (1ull << (63-2))
#define CXL_SSTP0_An_KP (1ull << (63-3))
#define CXL_SSTP0_An_N (1ull << (63-4))
#define CXL_SSTP0_An_L (1ull << (63-5))
#define CXL_SSTP0_An_C (1ull << (63-6))
#define CXL_SSTP0_An_TA (1ull << (63-7))
#define CXL_SSTP0_An_LP_SHIFT (63-9) /* 2 Bits */
/* And finally, the virtual address & size of the segment table: */
#define CXL_SSTP0_An_SegTableSize_SHIFT (63-31) /* 12 Bits */
#define CXL_SSTP0_An_SegTableSize_MASK \
(((1ull << 12) - 1) << CXL_SSTP0_An_SegTableSize_SHIFT)
#define CXL_SSTP0_An_STVA_U_MASK ((1ull << (63-49))-1)
#define CXL_SSTP1_An_STVA_L_MASK (~((1ull << (63-55))-1))
#define CXL_SSTP1_An_V (1ull << (63-63))
/****** CXL_PSL_SLBIE_[An] **************************************************/
/* write: */
#define CXL_SLBIE_C PPC_BIT(36) /* Class */
#define CXL_SLBIE_SS PPC_BITMASK(37, 38) /* Segment Size */
#define CXL_SLBIE_SS_SHIFT PPC_BITLSHIFT(38)
#define CXL_SLBIE_TA PPC_BIT(38) /* Tags Active */
/* read: */
#define CXL_SLBIE_MAX PPC_BITMASK(24, 31)
#define CXL_SLBIE_PENDING PPC_BITMASK(56, 63)
/****** Common to all CXL_TLBIA/SLBIA_[An] **********************************/
#define CXL_TLB_SLB_P (1ull) /* Pending (read) */
/****** Common to all CXL_TLB/SLB_IA/IE_[An] registers **********************/
#define CXL_TLB_SLB_IQ_ALL (0ull) /* Inv qualifier */
#define CXL_TLB_SLB_IQ_LPID (1ull) /* Inv qualifier */
#define CXL_TLB_SLB_IQ_LPIDPID (3ull) /* Inv qualifier */
/****** CXL_PSL_AFUSEL ******************************************************/
#define CXL_PSL_AFUSEL_A (1ull << (63-55)) /* Adapter wide invalidates affect all AFUs */
/****** CXL_PSL_DSISR_An ****************************************************/
#define CXL_PSL_DSISR_An_DS (1ull << (63-0)) /* Segment not found */
#define CXL_PSL_DSISR_An_DM (1ull << (63-1)) /* PTE not found (See also: M) or protection fault */
#define CXL_PSL_DSISR_An_ST (1ull << (63-2)) /* Segment Table PTE not found */
#define CXL_PSL_DSISR_An_UR (1ull << (63-3)) /* AURP PTE not found */
#define CXL_PSL_DSISR_TRANS (CXL_PSL_DSISR_An_DS | CXL_PSL_DSISR_An_DM | CXL_PSL_DSISR_An_ST | CXL_PSL_DSISR_An_UR)
#define CXL_PSL_DSISR_An_PE (1ull << (63-4)) /* PSL Error (implementation specific) */
#define CXL_PSL_DSISR_An_AE (1ull << (63-5)) /* AFU Error */
#define CXL_PSL_DSISR_An_OC (1ull << (63-6)) /* OS Context Warning */
#define CXL_PSL_DSISR_PENDING (CXL_PSL_DSISR_TRANS | CXL_PSL_DSISR_An_PE | CXL_PSL_DSISR_An_AE | CXL_PSL_DSISR_An_OC)
/* NOTE: Bits 32:63 are undefined if DSISR[DS] = 1 */
#define CXL_PSL_DSISR_An_M DSISR_NOHPTE /* PTE not found */
#define CXL_PSL_DSISR_An_P DSISR_PROTFAULT /* Storage protection violation */
#define CXL_PSL_DSISR_An_A (1ull << (63-37)) /* AFU lock access to write through or cache inhibited storage */
#define CXL_PSL_DSISR_An_S DSISR_ISSTORE /* Access was afu_wr or afu_zero */
#define CXL_PSL_DSISR_An_K DSISR_KEYFAULT /* Access not permitted by virtual page class key protection */
/****** CXL_PSL_TFC_An ******************************************************/
#define CXL_PSL_TFC_An_A (1ull << (63-28)) /* Acknowledge non-translation fault */
#define CXL_PSL_TFC_An_C (1ull << (63-29)) /* Continue (abort transaction) */
#define CXL_PSL_TFC_An_AE (1ull << (63-30)) /* Restart PSL with address error */
#define CXL_PSL_TFC_An_R (1ull << (63-31)) /* Restart PSL transaction */
/* cxl_process_element->software_status */
#define CXL_PE_SOFTWARE_STATE_V (1ul << (31 - 0)) /* Valid */
#define CXL_PE_SOFTWARE_STATE_C (1ul << (31 - 29)) /* Complete */
#define CXL_PE_SOFTWARE_STATE_S (1ul << (31 - 30)) /* Suspend */
#define CXL_PE_SOFTWARE_STATE_T (1ul << (31 - 31)) /* Terminate */
/****** CXL_PSL_RXCTL_An (Implementation Specific) **************************
* Controls AFU Hang Pulse, which sets the timeout for the AFU to respond to
* the PSL for any response (except MMIO). Timeouts will occur between 1x to 2x
* of the hang pulse frequency.
*/
#define CXL_PSL_RXCTL_AFUHP_4S 0x7000000000000000ULL
/* SPA->sw_command_status */
#define CXL_SPA_SW_CMD_MASK 0xffff000000000000ULL
#define CXL_SPA_SW_CMD_TERMINATE 0x0001000000000000ULL
#define CXL_SPA_SW_CMD_REMOVE 0x0002000000000000ULL
#define CXL_SPA_SW_CMD_SUSPEND 0x0003000000000000ULL
#define CXL_SPA_SW_CMD_RESUME 0x0004000000000000ULL
#define CXL_SPA_SW_CMD_ADD 0x0005000000000000ULL
#define CXL_SPA_SW_CMD_UPDATE 0x0006000000000000ULL
#define CXL_SPA_SW_STATE_MASK 0x0000ffff00000000ULL
#define CXL_SPA_SW_STATE_TERMINATED 0x0000000100000000ULL
#define CXL_SPA_SW_STATE_REMOVED 0x0000000200000000ULL
#define CXL_SPA_SW_STATE_SUSPENDED 0x0000000300000000ULL
#define CXL_SPA_SW_STATE_RESUMED 0x0000000400000000ULL
#define CXL_SPA_SW_STATE_ADDED 0x0000000500000000ULL
#define CXL_SPA_SW_STATE_UPDATED 0x0000000600000000ULL
#define CXL_SPA_SW_PSL_ID_MASK 0x00000000ffff0000ULL
#define CXL_SPA_SW_LINK_MASK 0x000000000000ffffULL
#define CXL_MAX_SLICES 4
#define MAX_AFU_MMIO_REGS 3
#define CXL_MODE_TIME_SLICED 0x4
#define CXL_SUPPORTED_MODES (CXL_MODE_DEDICATED | CXL_MODE_DIRECTED)
#define CXL_DEV_MINORS 13 /* 1 control + 4 AFUs * 3 (dedicated/master/shared) */
#define CXL_CARD_MINOR(adapter) (adapter->adapter_num * CXL_DEV_MINORS)
#define CXL_DEVT_ADAPTER(dev) (MINOR(dev) / CXL_DEV_MINORS)
enum cxl_context_status {
CLOSED,
OPENED,
STARTED
};
enum prefault_modes {
CXL_PREFAULT_NONE,
CXL_PREFAULT_WED,
CXL_PREFAULT_ALL,
};
enum cxl_attrs {
CXL_ADAPTER_ATTRS,
CXL_AFU_MASTER_ATTRS,
CXL_AFU_ATTRS,
};
struct cxl_sste {
__be64 esid_data;
__be64 vsid_data;
};
#define to_cxl_adapter(d) container_of(d, struct cxl, dev)
#define to_cxl_afu(d) container_of(d, struct cxl_afu, dev)
struct cxl_afu_native {
void __iomem *p1n_mmio;
void __iomem *afu_desc_mmio;
irq_hw_number_t psl_hwirq;
unsigned int psl_virq;
struct mutex spa_mutex;
/*
* Only the first part of the SPA is used for the process element
* linked list. The only other part that software needs to worry about
* is sw_command_status, which we store a separate pointer to.
* Everything else in the SPA is only used by hardware
*/
struct cxl_process_element *spa;
__be64 *sw_command_status;
unsigned int spa_size;
int spa_order;
int spa_max_procs;
u64 pp_offset;
};
struct cxl_afu_guest {
cxl: Check periodically the coherent platform function's state In the PowerVM environment, the PHYP CoherentAccel component manages the state of the Coherent Accelerator Processor Interface adapter and virtualizes CAPI resources, handles CAPP, PSL, PSL Slice errors - and interrupts - and provides a new set of hcalls for the OS APIs to utilize Accelerator Function Unit (AFU). During the course of operation, a coherent platform function can encounter errors. Some possible reason for errors are: • Hardware recoverable and unrecoverable errors • Transient and over-threshold correctable errors PHYP implements its own state model for the coherent platform function. The state of the AFU is available through a hcall. The current implementation of the cxl driver, for the PowerVM environment, checks this state of the AFU only when an action is requested - open a device, ioctl command, memory map, attach/detach a process - from an external driver - cxlflash, libcxl. If an error is detected the cxl driver handles the error according the content of the Power Architecture Platform Requirements document. But in case of low-level troubles (or error injection), the PHYP component may reset the card and change the AFU state. The PHYP interface doesn't provide any way to be notified when that happens thus implies that the cxl driver: • cannot handle immediatly the state change of the AFU. • cannot notify other drivers (cxlflash, ...) The purpose of this patch is to wake up the cpu periodically to check the current state of each AFU and to see if we need to enter an error recovery path. Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com> Acked-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-22 13:39:22 +00:00
struct cxl_afu *parent;
u64 handle;
phys_addr_t p2n_phys;
u64 p2n_size;
int max_ints;
cxl: Check periodically the coherent platform function's state In the PowerVM environment, the PHYP CoherentAccel component manages the state of the Coherent Accelerator Processor Interface adapter and virtualizes CAPI resources, handles CAPP, PSL, PSL Slice errors - and interrupts - and provides a new set of hcalls for the OS APIs to utilize Accelerator Function Unit (AFU). During the course of operation, a coherent platform function can encounter errors. Some possible reason for errors are: • Hardware recoverable and unrecoverable errors • Transient and over-threshold correctable errors PHYP implements its own state model for the coherent platform function. The state of the AFU is available through a hcall. The current implementation of the cxl driver, for the PowerVM environment, checks this state of the AFU only when an action is requested - open a device, ioctl command, memory map, attach/detach a process - from an external driver - cxlflash, libcxl. If an error is detected the cxl driver handles the error according the content of the Power Architecture Platform Requirements document. But in case of low-level troubles (or error injection), the PHYP component may reset the card and change the AFU state. The PHYP interface doesn't provide any way to be notified when that happens thus implies that the cxl driver: • cannot handle immediatly the state change of the AFU. • cannot notify other drivers (cxlflash, ...) The purpose of this patch is to wake up the cpu periodically to check the current state of each AFU and to see if we need to enter an error recovery path. Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com> Acked-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-04-22 13:39:22 +00:00
bool handle_err;
struct delayed_work work_err;
int previous_state;
};
struct cxl_afu {
struct cxl_afu_native *native;
struct cxl_afu_guest *guest;
irq_hw_number_t serr_hwirq;
unsigned int serr_virq;
char *psl_irq_name;
char *err_irq_name;
void __iomem *p2n_mmio;
phys_addr_t psn_phys;
u64 pp_size;
struct cxl *adapter;
struct device dev;
struct cdev afu_cdev_s, afu_cdev_m, afu_cdev_d;
struct device *chardev_s, *chardev_m, *chardev_d;
struct idr contexts_idr;
struct dentry *debugfs;
struct mutex contexts_lock;
spinlock_t afu_cntl_lock;
/* AFU error buffer fields and bin attribute for sysfs */
u64 eb_len, eb_offset;
struct bin_attribute attr_eb;
/* pointer to the vphb */
struct pci_controller *phb;
int pp_irqs;
int irqs_max;
int num_procs;
int max_procs_virtualised;
int slice;
int modes_supported;
int current_mode;
int crs_num;
u64 crs_len;
u64 crs_offset;
struct list_head crs;
enum prefault_modes prefault_mode;
bool psa;
bool pp_psa;
bool enabled;
};
struct cxl_irq_name {
struct list_head list;
char *name;
};
struct irq_avail {
irq_hw_number_t offset;
irq_hw_number_t range;
unsigned long *bitmap;
};
/*
* This is a cxl context. If the PSL is in dedicated mode, there will be one
* of these per AFU. If in AFU directed there can be lots of these.
*/
struct cxl_context {
struct cxl_afu *afu;
/* Problem state MMIO */
phys_addr_t psn_phys;
u64 psn_size;
/* Used to unmap any mmaps when force detaching */
struct address_space *mapping;
struct mutex mapping_lock;
cxl: Add alternate MMIO error handling userspace programs using cxl currently have to use two strategies for dealing with MMIO errors simultaneously. They have to check every read for a return of all Fs in case the adapter has gone away and the kernel has not yet noticed, and they have to deal with SIGBUS in case the kernel has already noticed, invalidated the mapping and marked the context as failed. In order to simplify things, this patch adds an alternative approach where the kernel will return a page filled with Fs instead of delivering a SIGBUS. This allows userspace to only need to deal with one of these two error paths, and is intended for use in libraries that use cxl transparently and may not be able to safely install a signal handler. This approach will only work if certain constraints are met. Namely, if the application is both reading and writing to an address in the problem state area it cannot assume that a non-FF read is OK, as it may just be reading out a value it has previously written. Further - since only one page is used per context a write to a given offset would be visible when reading the same offset from a different page in the mapping (this only applies within a single context, not between contexts). An application could deal with this by e.g. making sure it also reads from a read-only offset after any reads to a read/write offset. Due to these constraints, this functionality must be explicitly requested by userspace when starting the context by passing in the CXL_START_WORK_ERR_FF flag. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Acked-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-07-23 06:43:56 +00:00
struct page *ff_page;
bool mmio_err_ff;
bool kernelapi;
spinlock_t sste_lock; /* Protects segment table entries */
struct cxl_sste *sstp;
u64 sstp0, sstp1;
unsigned int sst_size, sst_lru;
wait_queue_head_t wq;
cxl: Fix DSI misses when the context owning task exits Presently when a user-space process issues CXL_IOCTL_START_WORK ioctl we store the pid of the current task_struct and use it to get pointer to the mm_struct of the process, while processing page or segment faults from the capi card. However this causes issues when the thread that had originally issued the start-work ioctl exits in which case the stored pid is no more valid and the cxl driver is unable to handle faults as the mm_struct corresponding to process is no more accessible. This patch fixes this issue by using the mm_struct of the next alive task in the thread group. This is done by iterating over all the tasks in the thread group starting from thread group leader and calling get_task_mm on each one of them. When a valid mm_struct is obtained the pid of the associated task is stored in the context replacing the exiting one for handling future faults. The patch introduces a new function named get_mem_context that checks if the current task pointed to by ctx->pid is dead? If yes it performs the steps described above. Also a new variable cxl_context.glpid is introduced which stores the pid of the thread group leader associated with the context owning task. Reported-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com> Reported-by: Frank Haverkamp <HAVERKAM@de.ibm.com> Suggested-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com> Acked-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-11-24 10:56:18 +00:00
/* pid of the group leader associated with the pid */
struct pid *glpid;
/* use mm context associated with this pid for ds faults */
struct pid *pid;
spinlock_t lock; /* Protects pending_irq_mask, pending_fault and fault_addr */
/* Only used in PR mode */
u64 process_token;
/* driver private data */
void *priv;
unsigned long *irq_bitmap; /* Accessed from IRQ context */
struct cxl_irq_ranges irqs;
struct list_head irq_names;
u64 fault_addr;
u64 fault_dsisr;
u64 afu_err;
/*
* This status and it's lock pretects start and detach context
* from racing. It also prevents detach from racing with
* itself
*/
enum cxl_context_status status;
struct mutex status_mutex;
/* XXX: Is it possible to need multiple work items at once? */
struct work_struct fault_work;
u64 dsisr;
u64 dar;
struct cxl_process_element *elem;
/*
* pe is the process element handle, assigned by this driver when the
* context is initialized.
*
* external_pe is the PE shown outside of cxl.
* On bare-metal, pe=external_pe, because we decide what the handle is.
* In a guest, we only find out about the pe used by pHyp when the
* context is attached, and that's the value we want to report outside
* of cxl.
*/
int pe;
int external_pe;
u32 irq_count;
bool pe_inserted;
bool master;
bool kernel;
bool real_mode;
bool pending_irq;
bool pending_fault;
bool pending_afu_err;
cxl: Add mechanism for delivering AFU driver specific events This adds an afu_driver_ops structure with fetch_event() and event_delivered() callbacks. An AFU driver such as cxlflash can fill this out and associate it with a context to enable passing custom AFU specific events to userspace. This also adds a new kernel API function cxl_context_pending_events(), that the AFU driver can use to notify the cxl driver that new specific events are ready to be delivered, and wake up anyone waiting on the context wait queue. The current count of AFU driver specific events is stored in the field afu_driver_events of the context structure. The cxl driver checks the afu_driver_events count during poll, select, read, etc. calls to check if an AFU driver specific event is pending, and calls fetch_event() to obtain and deliver that event. This way, the cxl driver takes care of all the usual locking semantics around these calls and handles all the generic cxl events, so that the AFU driver only needs to worry about it's own events. fetch_event() return a struct cxl_event_afu_driver_reserved, allocated by the AFU driver, and filled in with the specific event information and size. Total event size (header + data) should not be greater than CXL_READ_MIN_SIZE (4K). Th cxl driver prepends an appropriate cxl event header, copies the event to userspace, and finally calls event_delivered() to return the status of the operation to the AFU driver. The event is identified by the context and cxl_event_afu_driver_reserved pointers. Since AFU drivers provide their own means for userspace to obtain the AFU file descriptor (i.e. cxlflash uses an ioctl on their scsi file descriptor to obtain the AFU file descriptor) and the generic cxl driver will never use this event, the ABI of the event is up to each individual AFU driver. Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-23 13:03:53 +00:00
/* Used by AFU drivers for driver specific event delivery */
struct cxl_afu_driver_ops *afu_driver_ops;
atomic_t afu_driver_events;
struct rcu_head rcu;
/*
* Only used when more interrupts are allocated via
* pci_enable_msix_range than are supported in the default context, to
* use additional contexts to overcome the limitation. i.e. Mellanox
* CX4 only:
*/
struct list_head extra_irq_contexts;
};
struct cxl_service_layer_ops {
int (*adapter_regs_init)(struct cxl *adapter, struct pci_dev *dev);
int (*afu_regs_init)(struct cxl_afu *afu);
int (*register_serr_irq)(struct cxl_afu *afu);
void (*release_serr_irq)(struct cxl_afu *afu);
void (*debugfs_add_adapter_sl_regs)(struct cxl *adapter, struct dentry *dir);
void (*debugfs_add_afu_sl_regs)(struct cxl_afu *afu, struct dentry *dir);
void (*psl_irq_dump_registers)(struct cxl_context *ctx);
void (*err_irq_dump_registers)(struct cxl *adapter);
void (*debugfs_stop_trace)(struct cxl *adapter);
void (*write_timebase_ctrl)(struct cxl *adapter);
u64 (*timebase_read)(struct cxl *adapter);
int capi_mode;
cxl: Fix bug where AFU disable operation had no effect The AFU disable operation has a bug where it will not clear the enable bit and therefore will have no effect. To date this has likely been masked by fact that we perform an AFU reset before the disable, which also has the effect of clearing the enable bit, making the following disable operation effectively a noop on most hardware. This patch modifies the afu_control function to take a parameter to clear from the AFU control register so that the disable operation can clear the appropriate bit. This bug was uncovered on the Mellanox CX4, which uses an XSL rather than a PSL. On the XSL the reset operation will not complete while the AFU is enabled, meaning the enable bit was still set at the start of the disable and as a result this bug was hit and the disable also timed out. Because of this difference in behaviour between the PSL and XSL, this patch now makes the reset dependent on the card using a PSL to avoid waiting for a timeout on the XSL. It is entirely possible that we may be able to drop the reset altogether if it turns out we only ever needed it due to this bug - however I am not willing to drop it without further regression testing and have added comments to the code explaining the background. This also fixes a small issue where the AFU_Cntl register was read outside of the lock that protects it. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-06-30 16:50:40 +00:00
bool needs_reset_before_disable;
};
struct cxl_native {
u64 afu_desc_off;
u64 afu_desc_size;
void __iomem *p1_mmio;
void __iomem *p2_mmio;
irq_hw_number_t err_hwirq;
unsigned int err_virq;
u64 ps_off;
const struct cxl_service_layer_ops *sl_ops;
};
struct cxl_guest {
struct platform_device *pdev;
int irq_nranges;
struct cdev cdev;
irq_hw_number_t irq_base_offset;
struct irq_avail *irq_avail;
spinlock_t irq_alloc_lock;
u64 handle;
char *status;
u16 vendor;
u16 device;
u16 subsystem_vendor;
u16 subsystem;
};
struct cxl {
struct cxl_native *native;
struct cxl_guest *guest;
spinlock_t afu_list_lock;
struct cxl_afu *afu[CXL_MAX_SLICES];
struct device dev;
struct dentry *trace;
struct dentry *psl_err_chk;
struct dentry *debugfs;
char *irq_name;
struct bin_attribute cxl_attr;
int adapter_num;
int user_irqs;
u64 ps_size;
u16 psl_rev;
u16 base_image;
u8 vsec_status;
u8 caia_major;
u8 caia_minor;
u8 slices;
bool user_image_loaded;
bool perst_loads_image;
bool perst_select_user;
bool perst_same_image;
bool psl_timebase_synced;
};
int cxl_pci_alloc_one_irq(struct cxl *adapter);
void cxl_pci_release_one_irq(struct cxl *adapter, int hwirq);
int cxl_pci_alloc_irq_ranges(struct cxl_irq_ranges *irqs, struct cxl *adapter, unsigned int num);
void cxl_pci_release_irq_ranges(struct cxl_irq_ranges *irqs, struct cxl *adapter);
int cxl_pci_setup_irq(struct cxl *adapter, unsigned int hwirq, unsigned int virq);
int cxl_update_image_control(struct cxl *adapter);
int cxl_pci_reset(struct cxl *adapter);
void cxl_pci_release_afu(struct device *dev);
ssize_t cxl_pci_read_adapter_vpd(struct cxl *adapter, void *buf, size_t len);
/* common == phyp + powernv */
struct cxl_process_element_common {
__be32 tid;
__be32 pid;
__be64 csrp;
__be64 aurp0;
__be64 aurp1;
__be64 sstp0;
__be64 sstp1;
__be64 amr;
u8 reserved3[4];
__be64 wed;
} __packed;
/* just powernv */
struct cxl_process_element {
__be64 sr;
__be64 SPOffset;
__be64 sdr;
__be64 haurp;
__be32 ctxtime;
__be16 ivte_offsets[4];
__be16 ivte_ranges[4];
__be32 lpid;
struct cxl_process_element_common common;
__be32 software_state;
} __packed;
static inline bool cxl_adapter_link_ok(struct cxl *cxl, struct cxl_afu *afu)
{
struct pci_dev *pdev;
if (cpu_has_feature(CPU_FTR_HVMODE)) {
pdev = to_pci_dev(cxl->dev.parent);
return !pci_channel_offline(pdev);
}
return true;
}
static inline void __iomem *_cxl_p1_addr(struct cxl *cxl, cxl_p1_reg_t reg)
{
WARN_ON(!cpu_has_feature(CPU_FTR_HVMODE));
return cxl->native->p1_mmio + cxl_reg_off(reg);
}
static inline void cxl_p1_write(struct cxl *cxl, cxl_p1_reg_t reg, u64 val)
{
if (likely(cxl_adapter_link_ok(cxl, NULL)))
out_be64(_cxl_p1_addr(cxl, reg), val);
}
static inline u64 cxl_p1_read(struct cxl *cxl, cxl_p1_reg_t reg)
{
if (likely(cxl_adapter_link_ok(cxl, NULL)))
return in_be64(_cxl_p1_addr(cxl, reg));
else
return ~0ULL;
}
static inline void __iomem *_cxl_p1n_addr(struct cxl_afu *afu, cxl_p1n_reg_t reg)
{
WARN_ON(!cpu_has_feature(CPU_FTR_HVMODE));
return afu->native->p1n_mmio + cxl_reg_off(reg);
}
static inline void cxl_p1n_write(struct cxl_afu *afu, cxl_p1n_reg_t reg, u64 val)
{
if (likely(cxl_adapter_link_ok(afu->adapter, afu)))
out_be64(_cxl_p1n_addr(afu, reg), val);
}
static inline u64 cxl_p1n_read(struct cxl_afu *afu, cxl_p1n_reg_t reg)
{
if (likely(cxl_adapter_link_ok(afu->adapter, afu)))
return in_be64(_cxl_p1n_addr(afu, reg));
else
return ~0ULL;
}
static inline void __iomem *_cxl_p2n_addr(struct cxl_afu *afu, cxl_p2n_reg_t reg)
{
return afu->p2n_mmio + cxl_reg_off(reg);
}
static inline void cxl_p2n_write(struct cxl_afu *afu, cxl_p2n_reg_t reg, u64 val)
{
if (likely(cxl_adapter_link_ok(afu->adapter, afu)))
out_be64(_cxl_p2n_addr(afu, reg), val);
}
static inline u64 cxl_p2n_read(struct cxl_afu *afu, cxl_p2n_reg_t reg)
{
if (likely(cxl_adapter_link_ok(afu->adapter, afu)))
return in_be64(_cxl_p2n_addr(afu, reg));
else
return ~0ULL;
}
ssize_t cxl_pci_afu_read_err_buffer(struct cxl_afu *afu, char *buf,
loff_t off, size_t count);
/* Internal functions wrapped in cxl_base to allow PHB to call them */
bool _cxl_pci_associate_default_context(struct pci_dev *dev, struct cxl_afu *afu);
void _cxl_pci_disable_device(struct pci_dev *dev);
int _cxl_next_msi_hwirq(struct pci_dev *pdev, struct cxl_context **ctx, int *afu_irq);
cxl: Add support for interrupts on the Mellanox CX4 The Mellanox CX4 in cxl mode uses a hybrid interrupt model, where interrupts are routed from the networking hardware to the XSL using the MSIX table, and from there will be transformed back into an MSIX interrupt using the cxl style interrupts (i.e. using IVTE entries and ranges to map a PE and AFU interrupt number to an MSIX address). We want to hide the implementation details of cxl interrupts as much as possible. To this end, we use a special version of the MSI setup & teardown routines in the PHB while in cxl mode to allocate the cxl interrupts and configure the IVTE entries in the process element. This function does not configure the MSIX table - the CX4 card uses a custom format in that table and it would not be appropriate to fill that out in generic code. The rest of the functionality is similar to the "Full MSI-X mode" described in the CAIA, and this could be easily extended to support other adapters that use that mode in the future. The interrupts will be associated with the default context. If the maximum number of interrupts per context has been limited (e.g. by the mlx5 driver), it will automatically allocate additional kernel contexts to associate extra interrupts as required. These contexts will be started using the same WED that was used to start the default context. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-13 21:17:10 +00:00
int _cxl_cx4_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type);
void _cxl_cx4_teardown_msi_irqs(struct pci_dev *pdev);
struct cxl_calls {
void (*cxl_slbia)(struct mm_struct *mm);
bool (*cxl_pci_associate_default_context)(struct pci_dev *dev, struct cxl_afu *afu);
void (*cxl_pci_disable_device)(struct pci_dev *dev);
int (*cxl_next_msi_hwirq)(struct pci_dev *pdev, struct cxl_context **ctx, int *afu_irq);
cxl: Add support for interrupts on the Mellanox CX4 The Mellanox CX4 in cxl mode uses a hybrid interrupt model, where interrupts are routed from the networking hardware to the XSL using the MSIX table, and from there will be transformed back into an MSIX interrupt using the cxl style interrupts (i.e. using IVTE entries and ranges to map a PE and AFU interrupt number to an MSIX address). We want to hide the implementation details of cxl interrupts as much as possible. To this end, we use a special version of the MSI setup & teardown routines in the PHB while in cxl mode to allocate the cxl interrupts and configure the IVTE entries in the process element. This function does not configure the MSIX table - the CX4 card uses a custom format in that table and it would not be appropriate to fill that out in generic code. The rest of the functionality is similar to the "Full MSI-X mode" described in the CAIA, and this could be easily extended to support other adapters that use that mode in the future. The interrupts will be associated with the default context. If the maximum number of interrupts per context has been limited (e.g. by the mlx5 driver), it will automatically allocate additional kernel contexts to associate extra interrupts as required. These contexts will be started using the same WED that was used to start the default context. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-13 21:17:10 +00:00
int (*cxl_cx4_setup_msi_irqs)(struct pci_dev *pdev, int nvec, int type);
void (*cxl_cx4_teardown_msi_irqs)(struct pci_dev *pdev);
struct module *owner;
};
int register_cxl_calls(struct cxl_calls *calls);
void unregister_cxl_calls(struct cxl_calls *calls);
int cxl_update_properties(struct device_node *dn, struct property *new_prop);
void cxl_remove_adapter_nr(struct cxl *adapter);
int cxl_alloc_spa(struct cxl_afu *afu);
void cxl_release_spa(struct cxl_afu *afu);
dev_t cxl_get_dev(void);
int cxl_file_init(void);
void cxl_file_exit(void);
int cxl_register_adapter(struct cxl *adapter);
int cxl_register_afu(struct cxl_afu *afu);
int cxl_chardev_d_afu_add(struct cxl_afu *afu);
int cxl_chardev_m_afu_add(struct cxl_afu *afu);
int cxl_chardev_s_afu_add(struct cxl_afu *afu);
void cxl_chardev_afu_remove(struct cxl_afu *afu);
void cxl_context_detach_all(struct cxl_afu *afu);
void cxl_context_free(struct cxl_context *ctx);
void cxl_context_detach(struct cxl_context *ctx);
int cxl_sysfs_adapter_add(struct cxl *adapter);
void cxl_sysfs_adapter_remove(struct cxl *adapter);
int cxl_sysfs_afu_add(struct cxl_afu *afu);
void cxl_sysfs_afu_remove(struct cxl_afu *afu);
int cxl_sysfs_afu_m_add(struct cxl_afu *afu);
void cxl_sysfs_afu_m_remove(struct cxl_afu *afu);
struct cxl *cxl_alloc_adapter(void);
struct cxl_afu *cxl_alloc_afu(struct cxl *adapter, int slice);
int cxl_afu_select_best_mode(struct cxl_afu *afu);
int cxl_native_register_psl_irq(struct cxl_afu *afu);
void cxl_native_release_psl_irq(struct cxl_afu *afu);
int cxl_native_register_psl_err_irq(struct cxl *adapter);
void cxl_native_release_psl_err_irq(struct cxl *adapter);
int cxl_native_register_serr_irq(struct cxl_afu *afu);
void cxl_native_release_serr_irq(struct cxl_afu *afu);
int afu_register_irqs(struct cxl_context *ctx, u32 count);
void afu_release_irqs(struct cxl_context *ctx, void *cookie);
void afu_irq_name_free(struct cxl_context *ctx);
int cxl_debugfs_init(void);
void cxl_debugfs_exit(void);
int cxl_debugfs_adapter_add(struct cxl *adapter);
void cxl_debugfs_adapter_remove(struct cxl *adapter);
int cxl_debugfs_afu_add(struct cxl_afu *afu);
void cxl_debugfs_afu_remove(struct cxl_afu *afu);
void cxl_handle_fault(struct work_struct *work);
void cxl_prefault(struct cxl_context *ctx, u64 wed);
struct cxl *get_cxl_adapter(int num);
int cxl_alloc_sst(struct cxl_context *ctx);
void cxl_dump_debug_buffer(void *addr, size_t size);
void init_cxl_native(void);
struct cxl_context *cxl_context_alloc(void);
int cxl_context_init(struct cxl_context *ctx, struct cxl_afu *afu, bool master,
struct address_space *mapping);
void cxl_context_free(struct cxl_context *ctx);
int cxl_context_iomap(struct cxl_context *ctx, struct vm_area_struct *vma);
unsigned int cxl_map_irq(struct cxl *adapter, irq_hw_number_t hwirq,
irq_handler_t handler, void *cookie, const char *name);
void cxl_unmap_irq(unsigned int virq, void *cookie);
int __detach_context(struct cxl_context *ctx);
/*
* This must match the layout of the H_COLLECT_CA_INT_INFO retbuf defined
* in PAPR.
* A word about endianness: a pointer to this structure is passed when
* calling the hcall. However, it is not a block of memory filled up by
* the hypervisor. The return values are found in registers, and copied
* one by one when returning from the hcall. See the end of the call to
* plpar_hcall9() in hvCall.S
* As a consequence:
* - we don't need to do any endianness conversion
* - the pid and tid are an exception. They are 32-bit values returned in
* the same 64-bit register. So we do need to worry about byte ordering.
*/
struct cxl_irq_info {
u64 dsisr;
u64 dar;
u64 dsr;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
u32 pid;
u32 tid;
#else
u32 tid;
u32 pid;
#endif
u64 afu_err;
u64 errstat;
u64 proc_handle;
u64 padding[2]; /* to match the expected retbuf size for plpar_hcall9 */
};
void cxl_assign_psn_space(struct cxl_context *ctx);
irqreturn_t cxl_irq(int irq, struct cxl_context *ctx, struct cxl_irq_info *irq_info);
int cxl_register_one_irq(struct cxl *adapter, irq_handler_t handler,
void *cookie, irq_hw_number_t *dest_hwirq,
unsigned int *dest_virq, const char *name);
int cxl_check_error(struct cxl_afu *afu);
int cxl_afu_slbia(struct cxl_afu *afu);
int cxl_tlb_slb_invalidate(struct cxl *adapter);
int cxl_afu_disable(struct cxl_afu *afu);
int cxl_psl_purge(struct cxl_afu *afu);
void cxl_debugfs_add_adapter_psl_regs(struct cxl *adapter, struct dentry *dir);
void cxl_debugfs_add_adapter_xsl_regs(struct cxl *adapter, struct dentry *dir);
void cxl_debugfs_add_afu_psl_regs(struct cxl_afu *afu, struct dentry *dir);
void cxl_native_psl_irq_dump_regs(struct cxl_context *ctx);
void cxl_native_err_irq_dump_regs(struct cxl *adapter);
void cxl_stop_trace(struct cxl *cxl);
int cxl_pci_vphb_add(struct cxl_afu *afu);
void cxl_pci_vphb_remove(struct cxl_afu *afu);
extern struct pci_driver cxl_pci_driver;
extern struct platform_driver cxl_of_driver;
int afu_allocate_irqs(struct cxl_context *ctx, u32 count);
int afu_open(struct inode *inode, struct file *file);
int afu_release(struct inode *inode, struct file *file);
long afu_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
int afu_mmap(struct file *file, struct vm_area_struct *vm);
unsigned int afu_poll(struct file *file, struct poll_table_struct *poll);
ssize_t afu_read(struct file *file, char __user *buf, size_t count, loff_t *off);
extern const struct file_operations afu_fops;
struct cxl *cxl_guest_init_adapter(struct device_node *np, struct platform_device *dev);
void cxl_guest_remove_adapter(struct cxl *adapter);
int cxl_of_read_adapter_handle(struct cxl *adapter, struct device_node *np);
int cxl_of_read_adapter_properties(struct cxl *adapter, struct device_node *np);
ssize_t cxl_guest_read_adapter_vpd(struct cxl *adapter, void *buf, size_t len);
ssize_t cxl_guest_read_afu_vpd(struct cxl_afu *afu, void *buf, size_t len);
int cxl_guest_init_afu(struct cxl *adapter, int slice, struct device_node *afu_np);
void cxl_guest_remove_afu(struct cxl_afu *afu);
int cxl_of_read_afu_handle(struct cxl_afu *afu, struct device_node *afu_np);
int cxl_of_read_afu_properties(struct cxl_afu *afu, struct device_node *afu_np);
int cxl_guest_add_chardev(struct cxl *adapter);
void cxl_guest_remove_chardev(struct cxl *adapter);
void cxl_guest_reload_module(struct cxl *adapter);
int cxl_of_probe(struct platform_device *pdev);
struct cxl_backend_ops {
struct module *module;
int (*adapter_reset)(struct cxl *adapter);
int (*alloc_one_irq)(struct cxl *adapter);
void (*release_one_irq)(struct cxl *adapter, int hwirq);
int (*alloc_irq_ranges)(struct cxl_irq_ranges *irqs,
struct cxl *adapter, unsigned int num);
void (*release_irq_ranges)(struct cxl_irq_ranges *irqs,
struct cxl *adapter);
int (*setup_irq)(struct cxl *adapter, unsigned int hwirq,
unsigned int virq);
irqreturn_t (*handle_psl_slice_error)(struct cxl_context *ctx,
u64 dsisr, u64 errstat);
irqreturn_t (*psl_interrupt)(int irq, void *data);
int (*ack_irq)(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask);
void (*irq_wait)(struct cxl_context *ctx);
int (*attach_process)(struct cxl_context *ctx, bool kernel,
u64 wed, u64 amr);
int (*detach_process)(struct cxl_context *ctx);
void (*update_ivtes)(struct cxl_context *ctx);
bool (*support_attributes)(const char *attr_name, enum cxl_attrs type);
bool (*link_ok)(struct cxl *cxl, struct cxl_afu *afu);
void (*release_afu)(struct device *dev);
ssize_t (*afu_read_err_buffer)(struct cxl_afu *afu, char *buf,
loff_t off, size_t count);
int (*afu_check_and_enable)(struct cxl_afu *afu);
int (*afu_activate_mode)(struct cxl_afu *afu, int mode);
int (*afu_deactivate_mode)(struct cxl_afu *afu, int mode);
int (*afu_reset)(struct cxl_afu *afu);
int (*afu_cr_read8)(struct cxl_afu *afu, int cr_idx, u64 offset, u8 *val);
int (*afu_cr_read16)(struct cxl_afu *afu, int cr_idx, u64 offset, u16 *val);
int (*afu_cr_read32)(struct cxl_afu *afu, int cr_idx, u64 offset, u32 *val);
int (*afu_cr_read64)(struct cxl_afu *afu, int cr_idx, u64 offset, u64 *val);
int (*afu_cr_write8)(struct cxl_afu *afu, int cr_idx, u64 offset, u8 val);
int (*afu_cr_write16)(struct cxl_afu *afu, int cr_idx, u64 offset, u16 val);
int (*afu_cr_write32)(struct cxl_afu *afu, int cr_idx, u64 offset, u32 val);
ssize_t (*read_adapter_vpd)(struct cxl *adapter, void *buf, size_t count);
};
extern const struct cxl_backend_ops cxl_native_ops;
extern const struct cxl_backend_ops cxl_guest_ops;
extern const struct cxl_backend_ops *cxl_ops;
/* check if the given pci_dev is on the the cxl vphb bus */
bool cxl_pci_is_vphb_device(struct pci_dev *dev);
/* decode AFU error bits in the PSL register PSL_SERR_An */
void cxl_afu_decode_psl_serr(struct cxl_afu *afu, u64 serr);
#endif