linux/drivers/ntb/hw/intel/ntb_hw_intel.h

386 lines
12 KiB
C
Raw Normal View History

PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2012 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright(c) 2012 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Intel PCIe NTB Linux driver
*
* Contact Information:
* Jon Mason <jon.mason@intel.com>
*/
#include <linux/ntb_transport.h>
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
#define NTB_LINK_STATUS_ACTIVE 0x2000
#define NTB_LINK_SPEED_MASK 0x000f
#define NTB_LINK_WIDTH_MASK 0x03f0
#define SNB_MSIX_CNT 4
#define SNB_MAX_B2B_SPADS 16
#define SNB_MAX_COMPAT_SPADS 16
/* Reserve the uppermost bit for link interrupt */
#define SNB_MAX_DB_BITS 15
#define SNB_LINK_DB 15
#define SNB_DB_BITS_PER_VEC 5
#define HSX_SPLITBAR_MAX_MW 3
#define SNB_MAX_MW 2
#define SNB_ERRATA_MAX_MW 1
#define SNB_DB_HW_LINK 0x8000
#define SNB_UNCERRSTS_OFFSET 0x014C
#define SNB_CORERRSTS_OFFSET 0x0158
#define SNB_LINK_STATUS_OFFSET 0x01A2
#define SNB_PCICMD_OFFSET 0x0504
#define SNB_DEVCTRL_OFFSET 0x0598
#define SNB_DEVSTS_OFFSET 0x059A
#define SNB_SLINK_STATUS_OFFSET 0x05A2
#define SNB_PBAR2LMT_OFFSET 0x0000
#define SNB_PBAR4LMT_OFFSET 0x0008
#define SNB_PBAR5LMT_OFFSET 0x000C
#define SNB_PBAR2XLAT_OFFSET 0x0010
#define SNB_PBAR4XLAT_OFFSET 0x0018
#define SNB_PBAR5XLAT_OFFSET 0x001C
#define SNB_SBAR2LMT_OFFSET 0x0020
#define SNB_SBAR4LMT_OFFSET 0x0028
#define SNB_SBAR5LMT_OFFSET 0x002C
#define SNB_SBAR2XLAT_OFFSET 0x0030
#define SNB_SBAR4XLAT_OFFSET 0x0038
#define SNB_SBAR5XLAT_OFFSET 0x003C
#define SNB_SBAR0BASE_OFFSET 0x0040
#define SNB_SBAR2BASE_OFFSET 0x0048
#define SNB_SBAR4BASE_OFFSET 0x0050
#define SNB_SBAR5BASE_OFFSET 0x0054
#define SNB_NTBCNTL_OFFSET 0x0058
#define SNB_SBDF_OFFSET 0x005C
#define SNB_PDOORBELL_OFFSET 0x0060
#define SNB_PDBMSK_OFFSET 0x0062
#define SNB_SDOORBELL_OFFSET 0x0064
#define SNB_SDBMSK_OFFSET 0x0066
#define SNB_USMEMMISS_OFFSET 0x0070
#define SNB_SPAD_OFFSET 0x0080
#define SNB_SPADSEMA4_OFFSET 0x00c0
#define SNB_WCCNTRL_OFFSET 0x00e0
#define SNB_B2B_SPAD_OFFSET 0x0100
#define SNB_B2B_DOORBELL_OFFSET 0x0140
#define SNB_B2B_XLAT_OFFSETL 0x0144
#define SNB_B2B_XLAT_OFFSETU 0x0148
/*
* The addresses are setup so the 32bit BARs can function. Thus
* the addresses are all in 32bit space
*/
#define SNB_MBAR01_USD_ADDR 0x000000002100000CULL
#define SNB_MBAR23_USD_ADDR 0x000000004100000CULL
#define SNB_MBAR4_USD_ADDR 0x000000008100000CULL
#define SNB_MBAR5_USD_ADDR 0x00000000A100000CULL
#define SNB_MBAR01_DSD_ADDR 0x000000002000000CULL
#define SNB_MBAR23_DSD_ADDR 0x000000004000000CULL
#define SNB_MBAR4_DSD_ADDR 0x000000008000000CULL
#define SNB_MBAR5_DSD_ADDR 0x00000000A000000CULL
#define BWD_MSIX_CNT 34
#define BWD_MAX_SPADS 16
#define BWD_MAX_DB_BITS 34
#define BWD_DB_BITS_PER_VEC 1
#define BWD_MAX_MW 2
#define BWD_PCICMD_OFFSET 0xb004
#define BWD_MBAR23_OFFSET 0xb018
#define BWD_MBAR45_OFFSET 0xb020
#define BWD_DEVCTRL_OFFSET 0xb048
#define BWD_LINK_STATUS_OFFSET 0xb052
#define BWD_ERRCORSTS_OFFSET 0xb110
#define BWD_SBAR2XLAT_OFFSET 0x0008
#define BWD_SBAR4XLAT_OFFSET 0x0010
#define BWD_PDOORBELL_OFFSET 0x0020
#define BWD_PDBMSK_OFFSET 0x0028
#define BWD_NTBCNTL_OFFSET 0x0060
#define BWD_EBDF_OFFSET 0x0064
#define BWD_SPAD_OFFSET 0x0080
#define BWD_SPADSEMA_OFFSET 0x00c0
#define BWD_STKYSPAD_OFFSET 0x00c4
#define BWD_PBAR2XLAT_OFFSET 0x8008
#define BWD_PBAR4XLAT_OFFSET 0x8010
#define BWD_B2B_DOORBELL_OFFSET 0x8020
#define BWD_B2B_SPAD_OFFSET 0x8080
#define BWD_B2B_SPADSEMA_OFFSET 0x80c0
#define BWD_B2B_STKYSPAD_OFFSET 0x80c4
#define BWD_MODPHY_PCSREG4 0x1c004
#define BWD_MODPHY_PCSREG6 0x1c006
#define BWD_IP_BASE 0xC000
#define BWD_DESKEWSTS_OFFSET (BWD_IP_BASE + 0x3024)
#define BWD_LTSSMERRSTS0_OFFSET (BWD_IP_BASE + 0x3180)
#define BWD_LTSSMSTATEJMP_OFFSET (BWD_IP_BASE + 0x3040)
#define BWD_IBSTERRRCRVSTS0_OFFSET (BWD_IP_BASE + 0x3324)
#define BWD_DESKEWSTS_DBERR (1 << 15)
#define BWD_LTSSMERRSTS0_UNEXPECTEDEI (1 << 20)
#define BWD_LTSSMSTATEJMP_FORCEDETECT (1 << 2)
#define BWD_IBIST_ERR_OFLOW 0x7FFF7FFF
#define NTB_CNTL_CFG_LOCK (1 << 0)
#define NTB_CNTL_LINK_DISABLE (1 << 1)
#define NTB_CNTL_S2P_BAR23_SNOOP (1 << 2)
#define NTB_CNTL_P2S_BAR23_SNOOP (1 << 4)
#define NTB_CNTL_S2P_BAR4_SNOOP (1 << 6)
#define NTB_CNTL_P2S_BAR4_SNOOP (1 << 8)
#define NTB_CNTL_S2P_BAR5_SNOOP (1 << 12)
#define NTB_CNTL_P2S_BAR5_SNOOP (1 << 14)
#define BWD_CNTL_LINK_DOWN (1 << 16)
#define NTB_PPD_OFFSET 0x00D4
#define SNB_PPD_CONN_TYPE 0x0003
#define SNB_PPD_DEV_TYPE 0x0010
#define SNB_PPD_SPLIT_BAR (1 << 6)
#define BWD_PPD_INIT_LINK 0x0008
#define BWD_PPD_CONN_TYPE 0x0300
#define BWD_PPD_DEV_TYPE 0x1000
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
#define PCI_DEVICE_ID_INTEL_NTB_B2B_JSF 0x3725
#define PCI_DEVICE_ID_INTEL_NTB_PS_JSF 0x3726
#define PCI_DEVICE_ID_INTEL_NTB_SS_JSF 0x3727
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
#define PCI_DEVICE_ID_INTEL_NTB_B2B_SNB 0x3C0D
#define PCI_DEVICE_ID_INTEL_NTB_PS_SNB 0x3C0E
#define PCI_DEVICE_ID_INTEL_NTB_SS_SNB 0x3C0F
#define PCI_DEVICE_ID_INTEL_NTB_B2B_IVT 0x0E0D
#define PCI_DEVICE_ID_INTEL_NTB_PS_IVT 0x0E0E
#define PCI_DEVICE_ID_INTEL_NTB_SS_IVT 0x0E0F
#define PCI_DEVICE_ID_INTEL_NTB_B2B_HSX 0x2F0D
#define PCI_DEVICE_ID_INTEL_NTB_PS_HSX 0x2F0E
#define PCI_DEVICE_ID_INTEL_NTB_SS_HSX 0x2F0F
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
#define PCI_DEVICE_ID_INTEL_NTB_B2B_BWD 0x0C4E
#ifndef readq
static inline u64 readq(void __iomem *addr)
{
return readl(addr) | (((u64) readl(addr + 4)) << 32LL);
}
#endif
#ifndef writeq
static inline void writeq(u64 val, void __iomem *addr)
{
writel(val & 0xffffffff, addr);
writel(val >> 32, addr + 4);
}
#endif
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
#define NTB_BAR_MMIO 0
#define NTB_BAR_23 2
#define NTB_BAR_4 4
#define NTB_BAR_5 5
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
#define NTB_BAR_MASK ((1 << NTB_BAR_MMIO) | (1 << NTB_BAR_23) |\
(1 << NTB_BAR_4))
#define NTB_SPLITBAR_MASK ((1 << NTB_BAR_MMIO) | (1 << NTB_BAR_23) |\
(1 << NTB_BAR_4) | (1 << NTB_BAR_5))
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
#define NTB_HB_TIMEOUT msecs_to_jiffies(1000)
enum ntb_hw_event {
NTB_EVENT_SW_EVENT0 = 0,
NTB_EVENT_SW_EVENT1,
NTB_EVENT_SW_EVENT2,
NTB_EVENT_HW_ERROR,
NTB_EVENT_HW_LINK_UP,
NTB_EVENT_HW_LINK_DOWN,
};
struct ntb_mw {
dma_addr_t phys_addr;
void __iomem *vbase;
resource_size_t bar_sz;
};
struct ntb_db_cb {
int (*callback)(void *data, int db_num);
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
unsigned int db_num;
void *data;
struct ntb_device *ndev;
struct tasklet_struct irq_work;
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
};
#define WA_SNB_ERR 0x00000001
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
struct ntb_device {
struct pci_dev *pdev;
struct msix_entry *msix_entries;
void __iomem *reg_base;
struct ntb_mw *mw;
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
struct {
unsigned char max_mw;
unsigned char max_spads;
unsigned char max_db_bits;
unsigned char msix_cnt;
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
} limits;
struct {
void __iomem *ldb;
void __iomem *ldb_mask;
void __iomem *rdb;
void __iomem *bar2_xlat;
void __iomem *bar4_xlat;
void __iomem *bar5_xlat;
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
void __iomem *spad_write;
void __iomem *spad_read;
void __iomem *lnk_cntl;
void __iomem *lnk_stat;
void __iomem *spci_cmd;
} reg_ofs;
struct ntb_transport *ntb_transport;
void (*event_cb)(void *handle, enum ntb_hw_event event);
struct ntb_db_cb *db_cb;
unsigned char hw_type;
unsigned char conn_type;
unsigned char dev_type;
unsigned char num_msix;
unsigned char bits_per_vector;
unsigned char max_cbs;
unsigned char link_width;
unsigned char link_speed;
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
unsigned char link_status;
unsigned char split_bar;
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
struct delayed_work hb_timer;
unsigned long last_ts;
struct delayed_work lr_timer;
struct dentry *debugfs_dir;
struct dentry *debugfs_info;
unsigned int wa_flags;
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
};
/**
* ntb_max_cbs() - return the max callbacks
* @ndev: pointer to ntb_device instance
*
* Given the ntb pointer, return the maximum number of callbacks
*
* RETURNS: the maximum number of callbacks
*/
static inline unsigned char ntb_max_cbs(struct ntb_device *ndev)
{
return ndev->max_cbs;
}
/**
* ntb_max_mw() - return the max number of memory windows
* @ndev: pointer to ntb_device instance
*
* Given the ntb pointer, return the maximum number of memory windows
*
* RETURNS: the maximum number of memory windows
*/
static inline unsigned char ntb_max_mw(struct ntb_device *ndev)
{
return ndev->limits.max_mw;
}
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
/**
* ntb_hw_link_status() - return the hardware link status
* @ndev: pointer to ntb_device instance
*
* Returns true if the hardware is connected to the remote system
*
* RETURNS: true or false based on the hardware link state
*/
static inline bool ntb_hw_link_status(struct ntb_device *ndev)
{
return ndev->link_status == NTB_LINK_UP;
}
/**
* ntb_query_pdev() - return the pci_dev pointer
* @ndev: pointer to ntb_device instance
*
* Given the ntb pointer, return the pci_dev pointer for the NTB hardware device
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
*
* RETURNS: a pointer to the ntb pci_dev
*/
static inline struct pci_dev *ntb_query_pdev(struct ntb_device *ndev)
{
return ndev->pdev;
}
/**
* ntb_query_debugfs() - return the debugfs pointer
* @ndev: pointer to ntb_device instance
*
* Given the ntb pointer, return the debugfs directory pointer for the NTB
* hardware device
*
* RETURNS: a pointer to the debugfs directory
*/
static inline struct dentry *ntb_query_debugfs(struct ntb_device *ndev)
{
return ndev->debugfs_dir;
}
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
struct ntb_device *ntb_register_transport(struct pci_dev *pdev,
void *transport);
void ntb_unregister_transport(struct ntb_device *ndev);
void ntb_set_mw_addr(struct ntb_device *ndev, unsigned int mw, u64 addr);
int ntb_register_db_callback(struct ntb_device *ndev, unsigned int idx,
void *data, int (*db_cb_func)(void *data,
int db_num));
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
void ntb_unregister_db_callback(struct ntb_device *ndev, unsigned int idx);
int ntb_register_event_callback(struct ntb_device *ndev,
void (*event_cb_func)(void *handle,
enum ntb_hw_event event));
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
void ntb_unregister_event_callback(struct ntb_device *ndev);
int ntb_get_max_spads(struct ntb_device *ndev);
int ntb_write_local_spad(struct ntb_device *ndev, unsigned int idx, u32 val);
int ntb_read_local_spad(struct ntb_device *ndev, unsigned int idx, u32 *val);
int ntb_write_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 val);
int ntb_read_remote_spad(struct ntb_device *ndev, unsigned int idx, u32 *val);
resource_size_t ntb_get_mw_base(struct ntb_device *ndev, unsigned int mw);
void __iomem *ntb_get_mw_vbase(struct ntb_device *ndev, unsigned int mw);
u64 ntb_get_mw_size(struct ntb_device *ndev, unsigned int mw);
void ntb_ring_doorbell(struct ntb_device *ndev, unsigned int idx);
PCI-Express Non-Transparent Bridge Support A PCI-Express non-transparent bridge (NTB) is a point-to-point PCIe bus connecting 2 systems, providing electrical isolation between the two subsystems. A non-transparent bridge is functionally similar to a transparent bridge except that both sides of the bridge have their own independent address domains. The host on one side of the bridge will not have the visibility of the complete memory or I/O space on the other side of the bridge. To communicate across the non-transparent bridge, each NTB endpoint has one (or more) apertures exposed to the local system. Writes to these apertures are mirrored to memory on the remote system. Communications can also occur through the use of doorbell registers that initiate interrupts to the alternate domain, and scratch-pad registers accessible from both sides. The NTB device driver is needed to configure these memory windows, doorbell, and scratch-pad registers as well as use them in such a way as they can be turned into a viable communication channel to the remote system. ntb_hw.[ch] determines the usage model (NTB to NTB or NTB to Root Port) and abstracts away the underlying hardware to provide access and a common interface to the doorbell registers, scratch pads, and memory windows. These hardware interfaces are exported so that other, non-mainlined kernel drivers can access these. ntb_transport.[ch] also uses the exported interfaces in ntb_hw.[ch] to setup a communication channel(s) and provide a reliable way of transferring data from one side to the other, which it then exports so that "client" drivers can access them. These client drivers are used to provide a standard kernel interface (i.e., Ethernet device) to NTB, such that Linux can transfer data from one system to the other in a standard way. Signed-off-by: Jon Mason <jon.mason@intel.com> Reviewed-by: Nicholas Bellinger <nab@linux-iscsi.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-11-17 02:27:12 +00:00
void *ntb_find_transport(struct pci_dev *pdev);
int ntb_transport_init(struct pci_dev *pdev);
void ntb_transport_free(void *transport);