linux/drivers/media/IR/ene_ir.c

1177 lines
30 KiB
C
Raw Normal View History

/*
* driver for ENE KB3926 B/C/D CIR (also known as ENE0100/ENE0200/ENE0201)
*
* Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include "lirc_ene0100.h"
static int sample_period = -1;
static int enable_idle = 1;
static int enable_duty_carrier;
static int input = 1;
static int debug;
static int txsim;
static void ene_rx_set_idle(struct ene_device *dev, int idle);
static int ene_irq_status(struct ene_device *dev);
static void ene_send_sample(struct ene_device *dev, unsigned long sample);
/* read a hardware register */
static u8 ene_hw_read_reg(struct ene_device *dev, u16 reg)
{
u8 retval;
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
retval = inb(dev->hw_io + ENE_IO);
ene_dbg_verbose("reg %04x == %02x", reg, retval);
return retval;
}
/* write a hardware register */
static void ene_hw_write_reg(struct ene_device *dev, u16 reg, u8 value)
{
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
outb(value, dev->hw_io + ENE_IO);
ene_dbg_verbose("reg %04x <- %02x", reg, value);
}
/* change specific bits in hardware register */
static void ene_hw_write_reg_mask(struct ene_device *dev,
u16 reg, u8 value, u8 mask)
{
u8 regvalue;
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
regvalue = inb(dev->hw_io + ENE_IO) & ~mask;
regvalue |= (value & mask);
outb(regvalue, dev->hw_io + ENE_IO);
ene_dbg_verbose("reg %04x <- %02x (mask=%02x)", reg, value, mask);
}
/* detect hardware features */
static int ene_hw_detect(struct ene_device *dev)
{
u8 chip_major, chip_minor;
u8 hw_revision, old_ver;
u8 tmp;
u8 fw_capabilities;
tmp = ene_hw_read_reg(dev, ENE_HW_UNK);
ene_hw_write_reg(dev, ENE_HW_UNK, tmp & ~ENE_HW_UNK_CLR);
chip_major = ene_hw_read_reg(dev, ENE_HW_VER_MAJOR);
chip_minor = ene_hw_read_reg(dev, ENE_HW_VER_MINOR);
ene_hw_write_reg(dev, ENE_HW_UNK, tmp);
hw_revision = ene_hw_read_reg(dev, ENE_HW_VERSION);
old_ver = ene_hw_read_reg(dev, ENE_HW_VER_OLD);
if (hw_revision == 0xFF) {
ene_printk(KERN_WARNING, "device seems to be disabled\n");
ene_printk(KERN_WARNING,
"send a mail to lirc-list@lists.sourceforge.net\n");
ene_printk(KERN_WARNING, "please attach output of acpidump\n");
return -ENODEV;
}
if (chip_major == 0x33) {
ene_printk(KERN_WARNING, "chips 0x33xx aren't supported\n");
return -ENODEV;
}
if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) {
dev->hw_revision = ENE_HW_C;
} else if (old_ver == 0x24 && hw_revision == 0xC0) {
dev->hw_revision = ENE_HW_B;
ene_printk(KERN_NOTICE, "KB3926B detected\n");
} else {
dev->hw_revision = ENE_HW_D;
ene_printk(KERN_WARNING,
"unknown ENE chip detected, assuming KB3926D\n");
ene_printk(KERN_WARNING,
"driver support might be not complete");
}
ene_printk(KERN_DEBUG,
"chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x\n",
chip_major, chip_minor, old_ver, hw_revision);
/* detect features hardware supports */
if (dev->hw_revision < ENE_HW_C)
return 0;
fw_capabilities = ene_hw_read_reg(dev, ENE_FW2);
ene_dbg("Firmware capabilities: %02x", fw_capabilities);
dev->hw_gpio40_learning = fw_capabilities & ENE_FW2_GP40_AS_LEARN;
dev->hw_learning_and_tx_capable = fw_capabilities & ENE_FW2_LEARNING;
dev->hw_fan_as_normal_input = dev->hw_learning_and_tx_capable &&
(fw_capabilities & ENE_FW2_FAN_AS_NRML_IN);
ene_printk(KERN_NOTICE, "hardware features:\n");
ene_printk(KERN_NOTICE,
"learning and transmit %s, gpio40_learn %s, fan_in %s\n",
dev->hw_learning_and_tx_capable ? "on" : "off",
dev->hw_gpio40_learning ? "on" : "off",
dev->hw_fan_as_normal_input ? "on" : "off");
if (dev->hw_learning_and_tx_capable) {
ene_printk(KERN_WARNING,
"Device supports transmitting, but that support is\n");
ene_printk(KERN_WARNING,
"lightly tested. Please test it and mail\n");
ene_printk(KERN_WARNING,
"lirc-list@lists.sourceforge.net\n");
}
return 0;
}
/* this enables/disables IR input via gpio40*/
static void ene_enable_gpio40_recieve(struct ene_device *dev, int enable)
{
ene_hw_write_reg_mask(dev, ENE_CIR_CONF2, enable ?
0 : ENE_CIR_CONF2_GPIO40DIS,
ENE_CIR_CONF2_GPIO40DIS);
}
/* this enables/disables IR via standard input */
static void ene_enable_normal_recieve(struct ene_device *dev, int enable)
{
ene_hw_write_reg(dev, ENE_CIR_CONF1, enable ? ENE_CIR_CONF1_RX_ON : 0);
}
/* this enables/disables IR input via unused fan tachtometer input */
static void ene_enable_fan_recieve(struct ene_device *dev, int enable)
{
if (!enable)
ene_hw_write_reg(dev, ENE_FAN_AS_IN1, 0);
else {
ene_hw_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN);
ene_hw_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN);
}
dev->rx_fan_input_inuse = enable;
}
/* Sense current recieved carrier */
static int ene_rx_sense_carrier(struct ene_device *dev)
{
int period = ene_hw_read_reg(dev, ENE_RX_CARRIER);
int carrier;
ene_dbg("RX: hardware carrier period = %02x", period);
if (!(period & ENE_RX_CARRIER_VALID))
return 0;
period &= ~ENE_RX_CARRIER_VALID;
if (!period)
return 0;
carrier = 2000000 / period;
ene_dbg("RX: sensed carrier = %d Hz", carrier);
return carrier;
}
/* determine which input to use*/
static void ene_rx_set_inputs(struct ene_device *dev)
{
int learning_mode = dev->learning_enabled || dev->rx_carrier_sense;
ene_dbg("RX: setup reciever, learning mode = %d", learning_mode);
ene_enable_normal_recieve(dev, 1);
/* old hardware doesn't support learning mode for sure */
if (dev->hw_revision <= ENE_HW_B)
return;
/* reciever not learning capable, still set gpio40 correctly */
if (!dev->hw_learning_and_tx_capable) {
ene_enable_gpio40_recieve(dev, !dev->hw_gpio40_learning);
return;
}
/* enable learning mode */
if (learning_mode) {
ene_enable_gpio40_recieve(dev, dev->hw_gpio40_learning);
/* fan input is not used for learning */
if (dev->hw_fan_as_normal_input)
ene_enable_fan_recieve(dev, 0);
/* disable learning mode */
} else {
if (dev->hw_fan_as_normal_input) {
ene_enable_fan_recieve(dev, 1);
ene_enable_normal_recieve(dev, 0);
} else
ene_enable_gpio40_recieve(dev,
!dev->hw_gpio40_learning);
}
/* set few additional settings for this mode */
ene_hw_write_reg_mask(dev, ENE_CIR_CONF1, learning_mode ?
ENE_CIR_CONF1_LEARN1 : 0, ENE_CIR_CONF1_LEARN1);
ene_hw_write_reg_mask(dev, ENE_CIR_CONF2, learning_mode ?
ENE_CIR_CONF2_LEARN2 : 0, ENE_CIR_CONF2_LEARN2);
}
/* Enable the device for receive */
static void ene_rx_enable(struct ene_device *dev)
{
u8 reg_value;
if (dev->hw_revision < ENE_HW_C) {
ene_hw_write_reg(dev, ENEB_IRQ, dev->irq << 1);
ene_hw_write_reg(dev, ENEB_IRQ_UNK1, 0x01);
} else {
reg_value = ene_hw_read_reg(dev, ENEC_IRQ) & 0xF0;
reg_value |= ENEC_IRQ_UNK_EN;
reg_value &= ~ENEC_IRQ_STATUS;
reg_value |= (dev->irq & ENEC_IRQ_MASK);
ene_hw_write_reg(dev, ENEC_IRQ, reg_value);
ene_hw_write_reg(dev, ENE_TX_UNK1, 0x63);
}
ene_hw_write_reg(dev, ENE_CIR_CONF2, 0x00);
ene_rx_set_inputs(dev);
/* set sampling period */
ene_hw_write_reg(dev, ENE_CIR_SAMPLE_PERIOD, sample_period);
/* ack any pending irqs - just in case */
ene_irq_status(dev);
/* enter idle mode */
ene_rx_set_idle(dev, 1);
/* enable firmware bits */
ene_hw_write_reg_mask(dev, ENE_FW1,
ENE_FW1_ENABLE | ENE_FW1_IRQ,
ENE_FW1_ENABLE | ENE_FW1_IRQ);
}
/* Disable the device reciever */
static void ene_rx_disable(struct ene_device *dev)
{
/* disable inputs */
ene_enable_normal_recieve(dev, 0);
if (dev->hw_fan_as_normal_input)
ene_enable_fan_recieve(dev, 0);
/* disable hardware IRQ and firmware flag */
ene_hw_write_reg_mask(dev, ENE_FW1, 0, ENE_FW1_ENABLE | ENE_FW1_IRQ);
ene_rx_set_idle(dev, 1);
}
/* send current sample to the user */
static void ene_rx_flush(struct ene_device *dev, int timeout)
{
unsigned long value;
value = dev->rx_sample_pulse ? LIRC_PULSE(dev->rx_sample) :
LIRC_SPACE(dev->rx_sample);
ene_send_sample(dev, value);
dev->rx_sample = 0;
dev->rx_sample_pulse = 0;
}
/* recieve new sample and process it */
static void ene_rx_sample(struct ene_device *dev, int sample, int is_pulse)
{
ene_dbg("RX: sample %8d (%s)", sample, is_pulse ? "pulse" : "space");
/* ignore spaces in idle mode, can get them on revC */
/* also ignore a space in front of first pulse */
if (dev->rx_idle && !is_pulse)
return;
/* get out of idle mode now */
if (dev->rx_idle)
ene_rx_set_idle(dev, 0);
if (!dev->rx_sample) {
dev->rx_sample = sample;
dev->rx_sample_pulse = is_pulse;
} else if (is_pulse == dev->rx_sample_pulse)
dev->rx_sample += sample;
else {
ene_rx_flush(dev, 0);
dev->rx_sample = sample;
dev->rx_sample_pulse = is_pulse;
}
if (is_pulse)
return;
/* overflow sample from fan input recieved, enable idle mode */
if (dev->rx_fan_input_inuse &&
sample == ENE_FAN_VALUE_MASK * ENE_SAMPLE_PERIOD_FAN) {
ene_rx_set_idle(dev, 1);
return;
}
if (!dev->rx_fan_input_inuse) {
/* Report timeout if enabled */
if (dev->rx_timeout && dev->rx_send_timeout_packet &&
!dev->rx_timeout_sent &&
dev->rx_sample > dev->rx_timeout) {
ene_dbg("RX: sending timeout sample");
ene_send_sample(dev, LIRC_TIMEOUT(dev->rx_sample));
dev->rx_timeout_sent = 1;
}
/* too large sample accumulated via normal input.
note that on revC, hardware idle mode turns on automaticly,
so max gap should be less that the gap after which
hw stops sending samples */
if (dev->rx_sample > ENE_MAXGAP) {
ene_rx_set_idle(dev, 1);
return;
}
}
}
/* enable or disable idle mode */
static void ene_rx_set_idle(struct ene_device *dev, int idle)
{
struct timeval now;
int disable_sampler = 0;
/* Also put hardware sampler in 'idle' mode on revB*/
/* revC and higher do that automaticly (firmware does?) */
if ((dev->hw_revision < ENE_HW_C) && enable_idle)
if (idle)
disable_sampler = 1;
ene_hw_write_reg_mask(dev, ENE_CIR_SAMPLE_PERIOD,
disable_sampler ? 0 : ENE_CIR_SAMPLE_OVERFLOW,
ENE_CIR_SAMPLE_OVERFLOW);
dev->rx_idle = idle;
/* remember when we have entered the idle mode */
if (idle) {
ene_dbg("RX: going into idle mode");
do_gettimeofday(&dev->rx_gap_start);
return;
}
ene_dbg("RX: back from idle mode");
/* send the gap between keypresses now */
do_gettimeofday(&now);
if (dev->rx_sample_pulse) {
ene_dbg("RX: somehow we recieved a pulse before idle mode???");
return;
}
/* manually calculate and recieve the gap between keypresses */
if (now.tv_sec - dev->rx_gap_start.tv_sec > 16)
dev->rx_sample = LIRC_SPACE(LIRC_VALUE_MASK);
else
dev->rx_sample +=
1000000ull * (now.tv_sec - dev->rx_gap_start.tv_sec)
+ now.tv_usec - dev->rx_gap_start.tv_usec;
if (dev->rx_sample > LIRC_SPACE(LIRC_VALUE_MASK))
dev->rx_sample = LIRC_SPACE(LIRC_VALUE_MASK);
ene_rx_flush(dev, 0);
dev->rx_timeout_sent = 0;
}
/* prepare transmission */
static void ene_tx_prepare(struct ene_device *dev)
{
u8 conf1;
conf1 = ene_hw_read_reg(dev, ENE_CIR_CONF1);
dev->saved_conf1 = conf1;
if (dev->hw_revision == ENE_HW_C)
conf1 &= ~ENE_CIR_CONF1_TX_CLEAR;
/* Enable TX engine */
conf1 |= ENE_CIR_CONF1_TX_ON;
/* Set carrier */
if (dev->tx_period) {
int tx_period_in500ns = dev->tx_period * 2;
int tx_pulse_width_in_500ns =
tx_period_in500ns / (100 / dev->tx_duty_cycle);
if (!tx_pulse_width_in_500ns)
tx_pulse_width_in_500ns = 1;
ene_dbg("TX: pulse distance = %d * 500 ns", tx_period_in500ns);
ene_dbg("TX: pulse width = %d * 500 ns",
tx_pulse_width_in_500ns);
ene_hw_write_reg(dev, ENE_TX_PERIOD, ENE_TX_PERIOD_UNKBIT |
tx_period_in500ns);
ene_hw_write_reg(dev, ENE_TX_PERIOD_PULSE,
tx_pulse_width_in_500ns);
conf1 |= ENE_CIR_CONF1_TX_CARR;
} else
conf1 &= ~ENE_CIR_CONF1_TX_CARR;
ene_hw_write_reg(dev, ENE_CIR_CONF1, conf1);
dev->tx_underway = 1;
}
/* end transmission */
static void ene_tx_complete(struct ene_device *dev)
{
ene_hw_write_reg(dev, ENE_CIR_CONF1, dev->saved_conf1);
dev->tx_underway = 0;
}
/* set transmit mask */
static void ene_tx_set_transmiter_mask(struct ene_device *dev)
{
u8 txport1 = ene_hw_read_reg(dev, ENE_TX_PORT1) & ~ENE_TX_PORT1_EN;
u8 txport2 = ene_hw_read_reg(dev, ENE_TX_PORT2) & ~ENE_TX_PORT2_EN;
if (dev->transmitter_mask & 0x01)
txport1 |= ENE_TX_PORT1_EN;
if (dev->transmitter_mask & 0x02)
txport2 |= ENE_TX_PORT2_EN;
ene_hw_write_reg(dev, ENE_TX_PORT1, txport1);
ene_hw_write_reg(dev, ENE_TX_PORT2, txport2);
}
/* TX one sample - must be called with dev->hw_lock*/
static void ene_tx_sample(struct ene_device *dev)
{
u8 raw_tx;
u32 sample;
if (!dev->tx_underway) {
ene_dbg("TX: attempt to transmit while hw isn't setup");
return;
}
/* Grab next TX sample */
if (!dev->tx_sample) {
again:
if (dev->tx_pos == dev->tx_len + 1) {
if (!dev->tx_done) {
ene_dbg("TX: no more data to send");
dev->tx_done = 1;
goto exit;
} else {
ene_dbg("TX: last sample sent by hardware");
ene_tx_complete(dev);
complete(&dev->tx_complete);
return;
}
}
sample = dev->tx_buffer[dev->tx_pos++];
dev->tx_sample_pulse = !dev->tx_sample_pulse;
ene_dbg("TX: sample %8d (%s)", sample, dev->tx_sample_pulse ?
"pulse" : "space");
dev->tx_sample = DIV_ROUND_CLOSEST(sample, ENE_TX_SMPL_PERIOD);
/* guard against too short samples */
if (!dev->tx_sample)
goto again;
}
raw_tx = min(dev->tx_sample , (unsigned int)ENE_TX_SMLP_MASK);
dev->tx_sample -= raw_tx;
if (dev->tx_sample_pulse)
raw_tx |= ENE_TX_PULSE_MASK;
ene_hw_write_reg(dev, ENE_TX_INPUT1 + dev->tx_reg, raw_tx);
dev->tx_reg = !dev->tx_reg;
exit:
/* simulate TX done interrupt */
if (txsim)
mod_timer(&dev->tx_sim_timer, jiffies + HZ / 500);
}
/* timer to simulate tx done interrupt */
static void ene_tx_irqsim(unsigned long data)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_sample(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
}
/* read irq status and ack it */
static int ene_irq_status(struct ene_device *dev)
{
u8 irq_status;
u8 fw_flags1, fw_flags2;
int cur_rx_pointer;
int retval = 0;
fw_flags2 = ene_hw_read_reg(dev, ENE_FW2);
cur_rx_pointer = !!(fw_flags2 & ENE_FW2_BUF_HIGH);
if (dev->hw_revision < ENE_HW_C) {
irq_status = ene_hw_read_reg(dev, ENEB_IRQ_STATUS);
if (!(irq_status & ENEB_IRQ_STATUS_IR))
return 0;
ene_hw_write_reg(dev, ENEB_IRQ_STATUS,
irq_status & ~ENEB_IRQ_STATUS_IR);
dev->rx_pointer = cur_rx_pointer;
return ENE_IRQ_RX;
}
irq_status = ene_hw_read_reg(dev, ENEC_IRQ);
if (!(irq_status & ENEC_IRQ_STATUS))
return 0;
/* original driver does that twice - a workaround ? */
ene_hw_write_reg(dev, ENEC_IRQ, irq_status & ~ENEC_IRQ_STATUS);
ene_hw_write_reg(dev, ENEC_IRQ, irq_status & ~ENEC_IRQ_STATUS);
/* clear unknown flag in F8F9 */
if (fw_flags2 & ENE_FW2_IRQ_CLR)
ene_hw_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_IRQ_CLR);
/* check if this is a TX interrupt */
fw_flags1 = ene_hw_read_reg(dev, ENE_FW1);
if (fw_flags1 & ENE_FW1_TXIRQ) {
ene_hw_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ);
retval |= ENE_IRQ_TX;
}
/* Check if this is RX interrupt */
if (dev->rx_pointer != cur_rx_pointer) {
retval |= ENE_IRQ_RX;
dev->rx_pointer = cur_rx_pointer;
} else if (!(retval & ENE_IRQ_TX)) {
ene_dbg("RX: interrupt without change in RX pointer(%d)",
dev->rx_pointer);
retval |= ENE_IRQ_RX;
}
if ((retval & ENE_IRQ_RX) && (retval & ENE_IRQ_TX))
ene_dbg("both RX and TX interrupt at same time");
return retval;
}
/* interrupt handler */
static irqreturn_t ene_isr(int irq, void *data)
{
u16 hw_value;
int i, hw_sample;
int pulse;
int irq_status;
unsigned long flags;
int carrier = 0;
irqreturn_t retval = IRQ_NONE;
struct ene_device *dev = (struct ene_device *)data;
spin_lock_irqsave(&dev->hw_lock, flags);
irq_status = ene_irq_status(dev);
if (!irq_status)
goto unlock;
retval = IRQ_HANDLED;
if (irq_status & ENE_IRQ_TX) {
if (!dev->hw_learning_and_tx_capable) {
ene_dbg("TX interrupt on unsupported device!");
goto unlock;
}
ene_tx_sample(dev);
}
if (!(irq_status & ENE_IRQ_RX))
goto unlock;
if ((debug && dev->learning_enabled) || dev->rx_carrier_sense)
carrier = ene_rx_sense_carrier(dev);
if (dev->rx_carrier_sense && carrier)
ene_send_sample(dev, LIRC_FREQUENCY(carrier));
for (i = 0; i < ENE_SAMPLES_SIZE; i++) {
hw_value = ene_hw_read_reg(dev,
ENE_SAMPLE_BUFFER + dev->rx_pointer * 4 + i);
if (dev->rx_fan_input_inuse) {
/* read high part of the sample */
hw_value |= ene_hw_read_reg(dev,
ENE_SAMPLE_BUFFER_FAN +
dev->rx_pointer * 4 + i) << 8;
pulse = hw_value & ENE_FAN_SMPL_PULS_MSK;
/* clear space bit, and other unused bits */
hw_value &= ENE_FAN_VALUE_MASK;
hw_sample = hw_value * ENE_SAMPLE_PERIOD_FAN;
} else {
pulse = !(hw_value & ENE_SAMPLE_SPC_MASK);
hw_value &= ENE_SAMPLE_VALUE_MASK;
hw_sample = hw_value * sample_period;
}
/* no more data */
if (!(hw_value))
break;
ene_rx_sample(dev, hw_sample, pulse);
}
unlock:
spin_unlock_irqrestore(&dev->hw_lock, flags);
return retval;
}
/* Initialize default settings */
static void ene_setup_settings(struct ene_device *dev)
{
dev->rx_send_timeout_packet = 0;
dev->rx_timeout = ENE_MAXGAP;
dev->tx_period = 32;
dev->tx_duty_cycle = 25; /*%*/
dev->transmitter_mask = 3;
/* Force learning mode if (input == 2), otherwise
let user set it with LIRC_SET_REC_CARRIER */
dev->learning_enabled =
(input == 2 && dev->hw_learning_and_tx_capable);
/* Clear accumulated sample bufer */
dev->rx_sample = 0;
dev->rx_sample_pulse = 0;
dev->rx_pointer = -1;
dev->rx_carrier_sense = 0;
}
/* outside interface: called on first open*/
static int ene_open(void *data)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
dev->in_use = 1;
ene_setup_settings(dev);
ene_rx_enable(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0;
}
/* outside interface: called on device close*/
static void ene_close(void *data)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
ene_rx_disable(dev);
dev->in_use = 0;
spin_unlock_irqrestore(&dev->hw_lock, flags);
}
/* outside interface for settings */
static int ene_ioctl(struct inode *node, struct file *file,
unsigned int cmd, unsigned long arg)
{
int lvalue = 0, retval, tmp;
unsigned long flags;
struct ene_device *dev = lirc_get_pdata(file);
switch (cmd) {
case LIRC_SET_SEND_CARRIER:
case LIRC_SET_SEND_DUTY_CYCLE:
case LIRC_SET_TRANSMITTER_MASK:
case LIRC_SET_MEASURE_CARRIER_MODE:
case LIRC_SET_REC_CARRIER:
/* All these aren't possible without this */
if (!dev->hw_learning_and_tx_capable)
return -ENOSYS;
/* Fall through */
case LIRC_SET_REC_TIMEOUT:
case LIRC_SET_REC_TIMEOUT_REPORTS:
retval = get_user(lvalue, (unsigned int *) arg);
if (retval)
return retval;
}
switch (cmd) {
case LIRC_SET_SEND_CARRIER:
ene_dbg("TX: attempt to set tx carrier to %d kHz", lvalue);
tmp = 1000000 / lvalue; /* (1 / freq) (* # usec in 1 sec) */
if (tmp && (tmp > ENE_TX_PERIOD_MAX ||
tmp < ENE_TX_PERIOD_MIN)) {
ene_dbg("TX: out of range %d-%d carrier, "
"falling back to 32 kHz",
1000 / ENE_TX_PERIOD_MIN,
1000 / ENE_TX_PERIOD_MAX);
tmp = 32; /* this is just a coincidence!!! */
}
ene_dbg("TX: set carrier to %d kHz", lvalue);
spin_lock_irqsave(&dev->hw_lock, flags);
dev->tx_period = tmp;
spin_unlock_irqrestore(&dev->hw_lock, flags);
break;
case LIRC_SET_SEND_DUTY_CYCLE:
ene_dbg("TX: attempt to set duty cycle to %d%%", lvalue);
if ((lvalue >= 100) || (lvalue <= 0)) {
retval = -EINVAL;
break;
}
spin_lock_irqsave(&dev->hw_lock, flags);
dev->tx_duty_cycle = lvalue;
spin_unlock_irqrestore(&dev->hw_lock, flags);
break;
case LIRC_SET_TRANSMITTER_MASK:
ene_dbg("TX: attempt to set transmitter mask %02x", lvalue);
/* invalid txmask */
if (!lvalue || lvalue & ~0x3) {
ene_dbg("TX: invalid mask");
/* this supposed to return num of transmitters */
retval = 2;
break;
}
spin_lock_irqsave(&dev->hw_lock, flags);
dev->transmitter_mask = lvalue;
spin_unlock_irqrestore(&dev->hw_lock, flags);
break;
case LIRC_SET_REC_CARRIER:
tmp = (lvalue > ENE_NORMAL_RX_HI || lvalue < ENE_NORMAL_RX_LOW);
if (tmp != dev->learning_enabled) {
spin_lock_irqsave(&dev->hw_lock, flags);
dev->learning_enabled = tmp;
ene_rx_set_inputs(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
}
break;
case LIRC_SET_REC_TIMEOUT:
spin_lock_irqsave(&dev->hw_lock, flags);
dev->rx_timeout = lvalue;
spin_unlock_irqrestore(&dev->hw_lock, flags);
ene_dbg("RX: set rx report timeout to %d", dev->rx_timeout);
break;
case LIRC_SET_REC_TIMEOUT_REPORTS:
spin_lock_irqsave(&dev->hw_lock, flags);
dev->rx_send_timeout_packet = lvalue;
spin_unlock_irqrestore(&dev->hw_lock, flags);
ene_dbg("RX: %sable timeout reports",
dev->rx_send_timeout_packet ? "en" : "dis");
break;
case LIRC_SET_MEASURE_CARRIER_MODE:
if (dev->rx_carrier_sense == lvalue)
break;
spin_lock_irqsave(&dev->hw_lock, flags);
dev->rx_carrier_sense = lvalue;
ene_rx_set_inputs(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
break;
case LIRC_GET_REC_RESOLUTION:
tmp = dev->rx_fan_input_inuse ?
ENE_SAMPLE_PERIOD_FAN : sample_period;
retval = put_user(tmp, (unsigned long *) arg);
break;
default:
retval = -ENOIOCTLCMD;
break;
}
return retval;
}
/* outside interface: transmit */
static ssize_t ene_transmit(struct file *file, const char *buf,
size_t n, loff_t *ppos)
{
struct ene_device *dev = lirc_get_pdata(file);
unsigned long flags;
if (!dev)
return -EFAULT;
if (!dev->hw_learning_and_tx_capable)
return -ENODEV;
if (n % sizeof(int))
return -EINVAL;
if (n > ENE_TXBUF_SIZE * sizeof(int))
return -ENOMEM;
if (copy_from_user(dev->tx_buffer, buf, n))
return -EFAULT;
dev->tx_len = n / sizeof(int);
dev->tx_pos = 0;
dev->tx_reg = 0;
dev->tx_done = 0;
dev->tx_sample = 0;
dev->tx_sample_pulse = 0;
ene_dbg("TX: %d samples", dev->tx_len);
spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_set_transmiter_mask(dev);
ene_tx_prepare(dev);
/* Transmit first two samples */
ene_tx_sample(dev);
ene_tx_sample(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) {
ene_dbg("TX: timeout");
spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_complete(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
} else
ene_dbg("TX: done");
return n;
}
/* Sends one sample to the user */
static void ene_send_sample(struct ene_device *dev, unsigned long sample)
{
if (!lirc_buffer_full(dev->lirc_driver->rbuf)) {
lirc_buffer_write(dev->lirc_driver->rbuf, (void *)&sample);
wake_up(&dev->lirc_driver->rbuf->wait_poll);
}
}
static const struct file_operations ene_fops = {
.owner = THIS_MODULE,
.write = ene_transmit,
.ioctl = ene_ioctl,
};
/* main load function */
static int ene_probe(struct pnp_dev *pnp_dev,
const struct pnp_device_id *dev_id)
{
struct ene_device *dev;
struct lirc_driver *lirc_driver;
int error = -ENOMEM;
dev = kzalloc(sizeof(struct ene_device), GFP_KERNEL);
if (!dev)
goto err1;
dev->pnp_dev = pnp_dev;
pnp_set_drvdata(pnp_dev, dev);
/* prepare lirc interface */
error = -ENOMEM;
lirc_driver = kzalloc(sizeof(struct lirc_driver), GFP_KERNEL);
if (!lirc_driver)
goto err2;
dev->lirc_driver = lirc_driver;
strcpy(lirc_driver->name, ENE_DRIVER_NAME);
lirc_driver->minor = -1;
lirc_driver->code_length = sizeof(int) * 8;
lirc_driver->features = LIRC_CAN_REC_MODE2 |
LIRC_CAN_GET_REC_RESOLUTION |
LIRC_CAN_SET_REC_TIMEOUT;
lirc_driver->data = dev;
lirc_driver->set_use_inc = ene_open;
lirc_driver->set_use_dec = ene_close;
lirc_driver->dev = &pnp_dev->dev;
lirc_driver->owner = THIS_MODULE;
lirc_driver->fops = &ene_fops;
lirc_driver->min_timeout = ENE_MINGAP;
lirc_driver->max_timeout = ENE_MAXGAP;
lirc_driver->rbuf = kzalloc(sizeof(struct lirc_buffer), GFP_KERNEL);
if (!lirc_driver->rbuf)
goto err3;
if (lirc_buffer_init(lirc_driver->rbuf, sizeof(int), sizeof(int) * 512))
goto err4;
/* validate resources */
if (!pnp_port_valid(pnp_dev, 0) ||
pnp_port_len(pnp_dev, 0) < ENE_MAX_IO)
goto err5;
if (!pnp_irq_valid(pnp_dev, 0))
goto err5;
dev->hw_io = pnp_port_start(pnp_dev, 0);
dev->irq = pnp_irq(pnp_dev, 0);
spin_lock_init(&dev->hw_lock);
/* claim the resources */
error = -EBUSY;
if (!request_region(dev->hw_io, ENE_MAX_IO, ENE_DRIVER_NAME))
goto err5;
if (request_irq(dev->irq, ene_isr,
IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev))
goto err6;
/* detect hardware version and features */
error = ene_hw_detect(dev);
if (error)
goto err7;
ene_setup_settings(dev);
if (!dev->hw_learning_and_tx_capable && txsim) {
dev->hw_learning_and_tx_capable = 1;
setup_timer(&dev->tx_sim_timer, ene_tx_irqsim,
(long unsigned int)dev);
ene_printk(KERN_WARNING,
"Simulation of TX activated\n");
}
if (dev->hw_learning_and_tx_capable) {
lirc_driver->features |= LIRC_CAN_SEND_PULSE |
LIRC_CAN_SET_SEND_CARRIER |
LIRC_CAN_SET_TRANSMITTER_MASK;
if (enable_duty_carrier)
lirc_driver->features |= LIRC_CAN_SET_SEND_DUTY_CYCLE;
if (input == 0)
lirc_driver->features |= LIRC_CAN_SET_REC_CARRIER;
init_completion(&dev->tx_complete);
}
/* don't allow too short/long sample periods */
if (sample_period < 5 || sample_period > 0x7F)
sample_period = -1;
/* choose default sample period */
if (sample_period == -1) {
sample_period = 50;
/* on revB, hardware idle mode eats first sample
if we set too low sample period */
if (dev->hw_revision == ENE_HW_B && enable_idle)
sample_period = 75;
}
device_set_wakeup_capable(&pnp_dev->dev, 1);
device_set_wakeup_enable(&pnp_dev->dev, 1);
error = -ENODEV;
if (lirc_register_driver(lirc_driver))
goto err7;
ene_printk(KERN_NOTICE, "driver has been succesfully loaded\n");
return 0;
err7:
free_irq(dev->irq, dev);
err6:
release_region(dev->hw_io, ENE_MAX_IO);
err5:
lirc_buffer_free(lirc_driver->rbuf);
err4:
kfree(lirc_driver->rbuf);
err3:
kfree(lirc_driver);
err2:
kfree(dev);
err1:
return error;
}
/* main unload function */
static void ene_remove(struct pnp_dev *pnp_dev)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
ene_rx_disable(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
free_irq(dev->irq, dev);
release_region(dev->hw_io, ENE_MAX_IO);
lirc_unregister_driver(dev->lirc_driver->minor);
lirc_buffer_free(dev->lirc_driver->rbuf);
kfree(dev->lirc_driver);
kfree(dev);
}
/* enable wake on IR (wakes on specific button on original remote) */
static void ene_enable_wake(struct ene_device *dev, int enable)
{
enable = enable && device_may_wakeup(&dev->pnp_dev->dev);
ene_dbg("wake on IR %s", enable ? "enabled" : "disabled");
ene_hw_write_reg_mask(dev, ENE_FW1, enable ?
ENE_FW1_WAKE : 0, ENE_FW1_WAKE);
}
#ifdef CONFIG_PM
static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
ene_enable_wake(dev, 1);
return 0;
}
static int ene_resume(struct pnp_dev *pnp_dev)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
if (dev->in_use)
ene_rx_enable(dev);
ene_enable_wake(dev, 0);
return 0;
}
#endif
static void ene_shutdown(struct pnp_dev *pnp_dev)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
ene_enable_wake(dev, 1);
}
static const struct pnp_device_id ene_ids[] = {
{.id = "ENE0100",},
{.id = "ENE0200",},
{.id = "ENE0201",},
{},
};
static struct pnp_driver ene_driver = {
.name = ENE_DRIVER_NAME,
.id_table = ene_ids,
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
.probe = ene_probe,
.remove = __devexit_p(ene_remove),
#ifdef CONFIG_PM
.suspend = ene_suspend,
.resume = ene_resume,
#endif
.shutdown = ene_shutdown,
};
static int __init ene_init(void)
{
return pnp_register_driver(&ene_driver);
}
static void ene_exit(void)
{
pnp_unregister_driver(&ene_driver);
}
module_param(sample_period, int, S_IRUGO);
MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)");
module_param(enable_idle, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_idle,
"Enables turning off signal sampling after long inactivity time; "
"if disabled might help detecting input signal (default: enabled)"
" (KB3926B only)");
module_param(input, bool, S_IRUGO);
MODULE_PARM_DESC(input, "select which input to use "
"0 - auto, 1 - standard, 2 - wideband(KB3926C+)");
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debug (debug=2 verbose debug output)");
module_param(txsim, bool, S_IRUGO);
MODULE_PARM_DESC(txsim,
"Simulate TX features on unsupported hardware (dangerous)");
module_param(enable_duty_carrier, bool, S_IRUGO);
MODULE_PARM_DESC(enable_duty_carrier,
"Enable a code that might allow to to set TX carrier duty cycle");
MODULE_DEVICE_TABLE(pnp, ene_ids);
MODULE_DESCRIPTION
("LIRC driver for KB3926B/KB3926C/KB3926D "
"(aka ENE0100/ENE0200/ENE0201) CIR port");
MODULE_AUTHOR("Maxim Levitsky");
MODULE_LICENSE("GPL");
module_init(ene_init);
module_exit(ene_exit);