2008-07-30 19:06:12 +00:00
|
|
|
/*
|
|
|
|
* Copyright © 2008 Intel Corporation
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
* Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Eric Anholt <eric@anholt.net>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2012-10-02 17:01:07 +00:00
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
#include <drm/drmP.h>
|
|
|
|
#include <drm/i915_drm.h>
|
2008-07-30 19:06:12 +00:00
|
|
|
#include "i915_drv.h"
|
|
|
|
|
|
|
|
/** @file i915_gem_tiling.c
|
|
|
|
*
|
|
|
|
* Support for managing tiling state of buffer objects.
|
|
|
|
*
|
|
|
|
* The idea behind tiling is to increase cache hit rates by rearranging
|
|
|
|
* pixel data so that a group of pixel accesses are in the same cacheline.
|
|
|
|
* Performance improvement from doing this on the back/depth buffer are on
|
|
|
|
* the order of 30%.
|
|
|
|
*
|
|
|
|
* Intel architectures make this somewhat more complicated, though, by
|
|
|
|
* adjustments made to addressing of data when the memory is in interleaved
|
|
|
|
* mode (matched pairs of DIMMS) to improve memory bandwidth.
|
|
|
|
* For interleaved memory, the CPU sends every sequential 64 bytes
|
|
|
|
* to an alternate memory channel so it can get the bandwidth from both.
|
|
|
|
*
|
|
|
|
* The GPU also rearranges its accesses for increased bandwidth to interleaved
|
|
|
|
* memory, and it matches what the CPU does for non-tiled. However, when tiled
|
|
|
|
* it does it a little differently, since one walks addresses not just in the
|
|
|
|
* X direction but also Y. So, along with alternating channels when bit
|
|
|
|
* 6 of the address flips, it also alternates when other bits flip -- Bits 9
|
|
|
|
* (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
|
|
|
|
* are common to both the 915 and 965-class hardware.
|
|
|
|
*
|
|
|
|
* The CPU also sometimes XORs in higher bits as well, to improve
|
|
|
|
* bandwidth doing strided access like we do so frequently in graphics. This
|
|
|
|
* is called "Channel XOR Randomization" in the MCH documentation. The result
|
|
|
|
* is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
|
|
|
|
* decode.
|
|
|
|
*
|
|
|
|
* All of this bit 6 XORing has an effect on our memory management,
|
|
|
|
* as we need to make sure that the 3d driver can correctly address object
|
|
|
|
* contents.
|
|
|
|
*
|
|
|
|
* If we don't have interleaved memory, all tiling is safe and no swizzling is
|
|
|
|
* required.
|
|
|
|
*
|
|
|
|
* When bit 17 is XORed in, we simply refuse to tile at all. Bit
|
|
|
|
* 17 is not just a page offset, so as we page an objet out and back in,
|
|
|
|
* individual pages in it will have different bit 17 addresses, resulting in
|
|
|
|
* each 64 bytes being swapped with its neighbor!
|
|
|
|
*
|
|
|
|
* Otherwise, if interleaved, we have to tell the 3d driver what the address
|
|
|
|
* swizzling it needs to do is, since it's writing with the CPU to the pages
|
|
|
|
* (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
|
|
|
|
* pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
|
|
|
|
* required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
|
|
|
|
* to match what the GPU expects.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Detects bit 6 swizzling of address lookup between IGD access and CPU
|
|
|
|
* access through main memory.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
|
|
|
|
{
|
2014-03-31 11:27:21 +00:00
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
2008-07-30 19:06:12 +00:00
|
|
|
uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
|
|
|
|
uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
|
|
|
|
|
drm/i915/bdw: Let the memory controller do all the swizzling
Previously, it was possible for the GPU memory accesses to be swizzled
to try to optimize the fetches for tiled buffers. This swizzling was on
top of what the memory controller in the uncore already does.
With broadwell, we drop that GPU side swizzling, and the corresponding
initialization in 3 units (GAM, GT, DE). All those bits are reserved, as
specs put it:
Before Gen8, there was a historical configuration control field to
swizzle address bit[6] for in X/Y tiling modes. This was set in three
different places: TILECTL[1:0], ARB_MODE[5:4], and
DISP_ARB_CTL[14:13]"
For Gen8 the swizzle fields are all reserved, and the CPU's memory
controller performs all address swizzling modifications.
This also means that user space doesn't have to manually swizzle when
accessing tiled buffers from the CPU, and so we always return
I915_BIT_6_SWIZZLE_NONE from i915_gem_detect_bit_6_swizzle(), which
short-circuits the initialization of the registers mentionned above in
i915_gem_init_swizzling().
v2: Refine the explanation a bit more (Daniel)
v3: Make it BDW+ specific (Steve)
Cc: Steve Aarnio <steve.j.aarnio@linux.intel.com>
Signed-off-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Keep the actual code to set the tiling bits for now, in case
some bios escaped to the wild that uses this - we'd need it for
fastboot.]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-08-27 11:24:51 +00:00
|
|
|
if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
|
|
|
|
/*
|
|
|
|
* On BDW+, swizzling is not used. We leave the CPU memory
|
|
|
|
* controller in charge of optimizing memory accesses without
|
|
|
|
* the extra address manipulation GPU side.
|
|
|
|
*
|
|
|
|
* VLV and CHV don't have GPU swizzling.
|
|
|
|
*/
|
2012-10-02 22:43:46 +00:00
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
} else if (INTEL_INFO(dev)->gen >= 6) {
|
2014-10-09 19:57:43 +00:00
|
|
|
if (dev_priv->preserve_bios_swizzle) {
|
|
|
|
if (I915_READ(DISP_ARB_CTL) &
|
|
|
|
DISP_TILE_SURFACE_SWIZZLING) {
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_9;
|
|
|
|
} else {
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
}
|
2012-02-02 08:58:12 +00:00
|
|
|
} else {
|
2014-10-09 19:57:43 +00:00
|
|
|
uint32_t dimm_c0, dimm_c1;
|
|
|
|
dimm_c0 = I915_READ(MAD_DIMM_C0);
|
|
|
|
dimm_c1 = I915_READ(MAD_DIMM_C1);
|
|
|
|
dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
|
|
|
|
dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
|
|
|
|
/* Enable swizzling when the channels are populated
|
|
|
|
* with identically sized dimms. We don't need to check
|
|
|
|
* the 3rd channel because no cpu with gpu attached
|
|
|
|
* ships in that configuration. Also, swizzling only
|
|
|
|
* makes sense for 2 channels anyway. */
|
|
|
|
if (dimm_c0 == dimm_c1) {
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_9;
|
|
|
|
} else {
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
}
|
2012-02-02 08:58:12 +00:00
|
|
|
}
|
2011-09-12 18:49:16 +00:00
|
|
|
} else if (IS_GEN5(dev)) {
|
2009-12-03 22:14:42 +00:00
|
|
|
/* On Ironlake whatever DRAM config, GPU always do
|
2009-09-02 02:57:52 +00:00
|
|
|
* same swizzling setup.
|
|
|
|
*/
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_9;
|
2010-09-16 23:32:17 +00:00
|
|
|
} else if (IS_GEN2(dev)) {
|
2008-07-30 19:06:12 +00:00
|
|
|
/* As far as we know, the 865 doesn't have these bit 6
|
|
|
|
* swizzling issues.
|
|
|
|
*/
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
|
2011-12-14 12:57:15 +00:00
|
|
|
} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
|
2008-07-30 19:06:12 +00:00
|
|
|
uint32_t dcc;
|
|
|
|
|
2011-12-14 12:57:15 +00:00
|
|
|
/* On 9xx chipsets, channel interleave by the CPU is
|
2009-03-12 23:27:11 +00:00
|
|
|
* determined by DCC. For single-channel, neither the CPU
|
|
|
|
* nor the GPU do swizzling. For dual channel interleaved,
|
|
|
|
* the GPU's interleave is bit 9 and 10 for X tiled, and bit
|
|
|
|
* 9 for Y tiled. The CPU's interleave is independent, and
|
|
|
|
* can be based on either bit 11 (haven't seen this yet) or
|
|
|
|
* bit 17 (common).
|
2008-07-30 19:06:12 +00:00
|
|
|
*/
|
|
|
|
dcc = I915_READ(DCC);
|
|
|
|
switch (dcc & DCC_ADDRESSING_MODE_MASK) {
|
|
|
|
case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
|
|
|
|
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
break;
|
|
|
|
case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
|
2009-03-12 23:27:11 +00:00
|
|
|
if (dcc & DCC_CHANNEL_XOR_DISABLE) {
|
|
|
|
/* This is the base swizzling by the GPU for
|
|
|
|
* tiled buffers.
|
|
|
|
*/
|
2008-07-30 19:06:12 +00:00
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_9;
|
2009-03-12 23:27:11 +00:00
|
|
|
} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
|
|
|
|
/* Bit 11 swizzling by the CPU in addition. */
|
2008-07-30 19:06:12 +00:00
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_9_11;
|
|
|
|
} else {
|
2009-03-12 23:27:11 +00:00
|
|
|
/* Bit 17 swizzling by the CPU in addition. */
|
2009-03-12 23:56:27 +00:00
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_9_17;
|
2008-07-30 19:06:12 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
2014-11-20 08:26:30 +00:00
|
|
|
|
|
|
|
/* check for L-shaped memory aka modified enhanced addressing */
|
|
|
|
if (IS_GEN4(dev)) {
|
|
|
|
uint32_t ddc2 = I915_READ(DCC2);
|
|
|
|
|
|
|
|
if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
|
|
|
|
dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
|
|
|
|
}
|
|
|
|
|
2008-07-30 19:06:12 +00:00
|
|
|
if (dcc == 0xffffffff) {
|
|
|
|
DRM_ERROR("Couldn't read from MCHBAR. "
|
|
|
|
"Disabling tiling.\n");
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* The 965, G33, and newer, have a very flexible memory
|
|
|
|
* configuration. It will enable dual-channel mode
|
|
|
|
* (interleaving) on as much memory as it can, and the GPU
|
|
|
|
* will additionally sometimes enable different bit 6
|
|
|
|
* swizzling for tiled objects from the CPU.
|
|
|
|
*
|
|
|
|
* Here's what I found on the G965:
|
|
|
|
* slot fill memory size swizzling
|
|
|
|
* 0A 0B 1A 1B 1-ch 2-ch
|
|
|
|
* 512 0 0 0 512 0 O
|
|
|
|
* 512 0 512 0 16 1008 X
|
|
|
|
* 512 0 0 512 16 1008 X
|
|
|
|
* 0 512 0 512 16 1008 X
|
|
|
|
* 1024 1024 1024 0 2048 1024 O
|
|
|
|
*
|
|
|
|
* We could probably detect this based on either the DRB
|
|
|
|
* matching, which was the case for the swizzling required in
|
|
|
|
* the table above, or from the 1-ch value being less than
|
|
|
|
* the minimum size of a rank.
|
|
|
|
*/
|
|
|
|
if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
} else {
|
|
|
|
swizzle_x = I915_BIT_6_SWIZZLE_9_10;
|
|
|
|
swizzle_y = I915_BIT_6_SWIZZLE_9;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
dev_priv->mm.bit_6_swizzle_x = swizzle_x;
|
|
|
|
dev_priv->mm.bit_6_swizzle_y = swizzle_y;
|
|
|
|
}
|
|
|
|
|
2009-01-27 01:10:45 +00:00
|
|
|
/* Check pitch constriants for all chips & tiling formats */
|
2010-09-24 20:15:47 +00:00
|
|
|
static bool
|
2009-01-27 01:10:45 +00:00
|
|
|
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
|
|
|
|
{
|
2011-03-06 09:03:16 +00:00
|
|
|
int tile_width;
|
2009-01-27 01:10:45 +00:00
|
|
|
|
|
|
|
/* Linear is always fine */
|
|
|
|
if (tiling_mode == I915_TILING_NONE)
|
|
|
|
return true;
|
|
|
|
|
2010-09-16 23:32:17 +00:00
|
|
|
if (IS_GEN2(dev) ||
|
2009-05-27 00:44:56 +00:00
|
|
|
(tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
|
2009-01-27 01:10:45 +00:00
|
|
|
tile_width = 128;
|
|
|
|
else
|
|
|
|
tile_width = 512;
|
|
|
|
|
2009-03-29 12:09:41 +00:00
|
|
|
/* check maximum stride & object size */
|
2013-04-09 08:45:05 +00:00
|
|
|
/* i965+ stores the end address of the gtt mapping in the fence
|
|
|
|
* reg, so dont bother to check the size */
|
|
|
|
if (INTEL_INFO(dev)->gen >= 7) {
|
|
|
|
if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
|
|
|
|
return false;
|
|
|
|
} else if (INTEL_INFO(dev)->gen >= 4) {
|
2009-03-29 12:09:41 +00:00
|
|
|
if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
|
|
|
|
return false;
|
2010-09-16 23:32:17 +00:00
|
|
|
} else {
|
2010-04-17 13:12:03 +00:00
|
|
|
if (stride > 8192)
|
2009-03-29 12:09:41 +00:00
|
|
|
return false;
|
2009-05-27 00:44:56 +00:00
|
|
|
|
2010-04-17 13:12:03 +00:00
|
|
|
if (IS_GEN3(dev)) {
|
|
|
|
if (size > I830_FENCE_MAX_SIZE_VAL << 20)
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
if (size > I830_FENCE_MAX_SIZE_VAL << 19)
|
|
|
|
return false;
|
|
|
|
}
|
2009-03-29 12:09:41 +00:00
|
|
|
}
|
|
|
|
|
2013-04-09 17:09:13 +00:00
|
|
|
if (stride < tile_width)
|
|
|
|
return false;
|
|
|
|
|
2009-01-27 01:10:45 +00:00
|
|
|
/* 965+ just needs multiples of tile width */
|
2010-09-16 23:32:17 +00:00
|
|
|
if (INTEL_INFO(dev)->gen >= 4) {
|
2009-01-27 01:10:45 +00:00
|
|
|
if (stride & (tile_width - 1))
|
|
|
|
return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Pre-965 needs power of two tile widths */
|
|
|
|
if (stride & (stride - 1))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2010-09-24 20:15:47 +00:00
|
|
|
/* Is the current GTT allocation valid for the change in tiling? */
|
|
|
|
static bool
|
2010-11-08 19:18:58 +00:00
|
|
|
i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
|
2009-06-06 08:46:01 +00:00
|
|
|
{
|
2010-09-24 20:15:47 +00:00
|
|
|
u32 size;
|
2009-06-06 08:46:01 +00:00
|
|
|
|
|
|
|
if (tiling_mode == I915_TILING_NONE)
|
|
|
|
return true;
|
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
if (INTEL_INFO(obj->base.dev)->gen >= 4)
|
2010-09-16 23:32:17 +00:00
|
|
|
return true;
|
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
if (INTEL_INFO(obj->base.dev)->gen == 3) {
|
2013-07-05 21:41:04 +00:00
|
|
|
if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
|
2010-11-15 05:25:58 +00:00
|
|
|
return false;
|
|
|
|
} else {
|
2013-07-05 21:41:04 +00:00
|
|
|
if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
|
2010-11-15 05:25:58 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2013-01-07 19:47:35 +00:00
|
|
|
size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
|
2013-07-05 21:41:04 +00:00
|
|
|
if (i915_gem_obj_ggtt_size(obj) != size)
|
2010-09-16 23:32:17 +00:00
|
|
|
return false;
|
|
|
|
|
2013-07-05 21:41:04 +00:00
|
|
|
if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
|
2010-11-15 05:25:58 +00:00
|
|
|
return false;
|
2009-06-06 08:46:01 +00:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2008-07-30 19:06:12 +00:00
|
|
|
/**
|
|
|
|
* Sets the tiling mode of an object, returning the required swizzling of
|
|
|
|
* bit 6 of addresses in the object.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
i915_gem_set_tiling(struct drm_device *dev, void *data,
|
2010-11-08 19:18:58 +00:00
|
|
|
struct drm_file *file)
|
2008-07-30 19:06:12 +00:00
|
|
|
{
|
|
|
|
struct drm_i915_gem_set_tiling *args = data;
|
2014-03-31 11:27:21 +00:00
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
2010-11-08 19:18:58 +00:00
|
|
|
struct drm_i915_gem_object *obj;
|
2011-03-07 12:32:44 +00:00
|
|
|
int ret = 0;
|
2008-07-30 19:06:12 +00:00
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
2011-02-19 11:31:06 +00:00
|
|
|
if (&obj->base == NULL)
|
2010-08-04 13:19:46 +00:00
|
|
|
return -ENOENT;
|
2008-07-30 19:06:12 +00:00
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
if (!i915_tiling_ok(dev,
|
|
|
|
args->stride, obj->base.size, args->tiling_mode)) {
|
|
|
|
drm_gem_object_unreference_unlocked(&obj->base);
|
2009-01-27 01:10:45 +00:00
|
|
|
return -EINVAL;
|
2009-01-30 21:10:22 +00:00
|
|
|
}
|
2009-01-27 01:10:45 +00:00
|
|
|
|
2015-02-12 07:53:18 +00:00
|
|
|
mutex_lock(&dev->struct_mutex);
|
2015-04-15 15:39:59 +00:00
|
|
|
if (obj->pin_display || obj->framebuffer_references) {
|
2015-02-12 07:53:18 +00:00
|
|
|
ret = -EBUSY;
|
|
|
|
goto err;
|
2010-04-23 21:01:01 +00:00
|
|
|
}
|
|
|
|
|
2008-07-30 19:06:12 +00:00
|
|
|
if (args->tiling_mode == I915_TILING_NONE) {
|
|
|
|
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
|
2009-06-06 08:46:01 +00:00
|
|
|
args->stride = 0;
|
2008-07-30 19:06:12 +00:00
|
|
|
} else {
|
|
|
|
if (args->tiling_mode == I915_TILING_X)
|
|
|
|
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
|
|
|
|
else
|
|
|
|
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
|
2009-03-12 23:56:27 +00:00
|
|
|
|
|
|
|
/* Hide bit 17 swizzling from the user. This prevents old Mesa
|
|
|
|
* from aborting the application on sw fallbacks to bit 17,
|
|
|
|
* and we use the pread/pwrite bit17 paths to swizzle for it.
|
|
|
|
* If there was a user that was relying on the swizzle
|
|
|
|
* information for drm_intel_bo_map()ed reads/writes this would
|
|
|
|
* break it, but we don't have any of those.
|
|
|
|
*/
|
|
|
|
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
|
|
|
|
args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
|
|
|
|
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
|
|
|
|
args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
|
|
|
|
|
2008-07-30 19:06:12 +00:00
|
|
|
/* If we can't handle the swizzling, make it untiled. */
|
|
|
|
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
|
|
|
|
args->tiling_mode = I915_TILING_NONE;
|
|
|
|
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
|
2009-06-06 08:46:01 +00:00
|
|
|
args->stride = 0;
|
2008-07-30 19:06:12 +00:00
|
|
|
}
|
|
|
|
}
|
2009-01-27 01:10:45 +00:00
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
if (args->tiling_mode != obj->tiling_mode ||
|
|
|
|
args->stride != obj->stride) {
|
2009-06-06 08:46:01 +00:00
|
|
|
/* We need to rebind the object if its current allocation
|
|
|
|
* no longer meets the alignment restrictions for its new
|
|
|
|
* tiling mode. Otherwise we can just leave it alone, but
|
2012-04-21 15:23:24 +00:00
|
|
|
* need to ensure that any fence register is updated before
|
|
|
|
* the next fenced (either through the GTT or by the BLT unit
|
|
|
|
* on older GPUs) access.
|
2012-04-21 15:23:23 +00:00
|
|
|
*
|
|
|
|
* After updating the tiling parameters, we then flag whether
|
|
|
|
* we need to update an associated fence register. Note this
|
|
|
|
* has to also include the unfenced register the GPU uses
|
|
|
|
* whilst executing a fenced command for an untiled object.
|
2009-01-27 01:10:45 +00:00
|
|
|
*/
|
2014-11-06 08:40:35 +00:00
|
|
|
if (obj->map_and_fenceable &&
|
|
|
|
!i915_gem_object_fence_ok(obj, args->tiling_mode))
|
|
|
|
ret = i915_gem_object_ggtt_unbind(obj);
|
2011-03-07 10:42:03 +00:00
|
|
|
|
|
|
|
if (ret == 0) {
|
2014-11-20 08:26:30 +00:00
|
|
|
if (obj->pages &&
|
|
|
|
obj->madv == I915_MADV_WILLNEED &&
|
|
|
|
dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
|
|
|
|
if (args->tiling_mode == I915_TILING_NONE)
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
|
|
if (obj->tiling_mode == I915_TILING_NONE)
|
|
|
|
i915_gem_object_pin_pages(obj);
|
|
|
|
}
|
|
|
|
|
2012-04-21 15:23:23 +00:00
|
|
|
obj->fence_dirty =
|
2014-11-24 18:49:26 +00:00
|
|
|
obj->last_fenced_req ||
|
2012-04-21 15:23:23 +00:00
|
|
|
obj->fence_reg != I915_FENCE_REG_NONE;
|
|
|
|
|
2011-03-07 10:42:03 +00:00
|
|
|
obj->tiling_mode = args->tiling_mode;
|
|
|
|
obj->stride = args->stride;
|
2012-04-21 15:23:24 +00:00
|
|
|
|
|
|
|
/* Force the fence to be reacquired for GTT access */
|
|
|
|
i915_gem_release_mmap(obj);
|
2011-03-07 10:42:03 +00:00
|
|
|
}
|
2009-01-27 01:10:45 +00:00
|
|
|
}
|
2011-03-07 10:42:03 +00:00
|
|
|
/* we have to maintain this existing ABI... */
|
|
|
|
args->stride = obj->stride;
|
|
|
|
args->tiling_mode = obj->tiling_mode;
|
2012-12-03 21:03:14 +00:00
|
|
|
|
|
|
|
/* Try to preallocate memory required to save swizzling on put-pages */
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj)) {
|
|
|
|
if (obj->bit_17 == NULL) {
|
2013-09-20 22:35:38 +00:00
|
|
|
obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
|
2012-12-03 21:03:14 +00:00
|
|
|
sizeof(long), GFP_KERNEL);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
kfree(obj->bit_17);
|
|
|
|
obj->bit_17 = NULL;
|
|
|
|
}
|
|
|
|
|
2015-02-12 07:53:18 +00:00
|
|
|
err:
|
2010-11-08 19:18:58 +00:00
|
|
|
drm_gem_object_unreference(&obj->base);
|
2009-02-08 19:07:51 +00:00
|
|
|
mutex_unlock(&dev->struct_mutex);
|
2008-07-30 19:06:12 +00:00
|
|
|
|
2011-03-07 10:42:03 +00:00
|
|
|
return ret;
|
2008-07-30 19:06:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the current tiling mode and required bit 6 swizzling for the object.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
i915_gem_get_tiling(struct drm_device *dev, void *data,
|
2010-11-08 19:18:58 +00:00
|
|
|
struct drm_file *file)
|
2008-07-30 19:06:12 +00:00
|
|
|
{
|
|
|
|
struct drm_i915_gem_get_tiling *args = data;
|
2014-03-31 11:27:21 +00:00
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
2010-11-08 19:18:58 +00:00
|
|
|
struct drm_i915_gem_object *obj;
|
2008-07-30 19:06:12 +00:00
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
|
2011-02-19 11:31:06 +00:00
|
|
|
if (&obj->base == NULL)
|
2010-08-04 13:19:46 +00:00
|
|
|
return -ENOENT;
|
2008-07-30 19:06:12 +00:00
|
|
|
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
args->tiling_mode = obj->tiling_mode;
|
|
|
|
switch (obj->tiling_mode) {
|
2008-07-30 19:06:12 +00:00
|
|
|
case I915_TILING_X:
|
|
|
|
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
|
|
|
|
break;
|
|
|
|
case I915_TILING_Y:
|
|
|
|
args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
|
|
|
|
break;
|
|
|
|
case I915_TILING_NONE:
|
|
|
|
args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
DRM_ERROR("unknown tiling mode\n");
|
|
|
|
}
|
|
|
|
|
2009-03-12 23:56:27 +00:00
|
|
|
/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
|
2014-10-24 11:11:11 +00:00
|
|
|
args->phys_swizzle_mode = args->swizzle_mode;
|
2009-03-12 23:56:27 +00:00
|
|
|
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
|
|
|
|
args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
|
|
|
|
if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
|
|
|
|
args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
|
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
drm_gem_object_unreference(&obj->base);
|
2009-02-08 19:07:51 +00:00
|
|
|
mutex_unlock(&dev->struct_mutex);
|
2008-07-30 19:06:12 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2009-03-12 23:56:27 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Swap every 64 bytes of this page around, to account for it having a new
|
|
|
|
* bit 17 of its physical address and therefore being interpreted differently
|
|
|
|
* by the GPU.
|
|
|
|
*/
|
2010-09-04 11:59:16 +00:00
|
|
|
static void
|
2009-03-12 23:56:27 +00:00
|
|
|
i915_gem_swizzle_page(struct page *page)
|
|
|
|
{
|
2010-09-04 11:59:16 +00:00
|
|
|
char temp[64];
|
2009-03-12 23:56:27 +00:00
|
|
|
char *vaddr;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
vaddr = kmap(page);
|
|
|
|
|
|
|
|
for (i = 0; i < PAGE_SIZE; i += 128) {
|
|
|
|
memcpy(temp, &vaddr[i], 64);
|
|
|
|
memcpy(&vaddr[i], &vaddr[i + 64], 64);
|
|
|
|
memcpy(&vaddr[i + 64], temp, 64);
|
|
|
|
}
|
|
|
|
|
|
|
|
kunmap(page);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-11-08 19:18:58 +00:00
|
|
|
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
|
2009-03-12 23:56:27 +00:00
|
|
|
{
|
2013-02-18 17:28:02 +00:00
|
|
|
struct sg_page_iter sg_iter;
|
2009-03-12 23:56:27 +00:00
|
|
|
int i;
|
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
if (obj->bit_17 == NULL)
|
2009-03-12 23:56:27 +00:00
|
|
|
return;
|
|
|
|
|
2013-02-18 17:28:02 +00:00
|
|
|
i = 0;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
|
2013-03-26 13:14:18 +00:00
|
|
|
struct page *page = sg_page_iter_page(&sg_iter);
|
2012-06-01 14:20:22 +00:00
|
|
|
char new_bit_17 = page_to_phys(page) >> 17;
|
2009-03-12 23:56:27 +00:00
|
|
|
if ((new_bit_17 & 0x1) !=
|
2010-11-08 19:18:58 +00:00
|
|
|
(test_bit(i, obj->bit_17) != 0)) {
|
2012-06-01 14:20:22 +00:00
|
|
|
i915_gem_swizzle_page(page);
|
|
|
|
set_page_dirty(page);
|
2009-03-12 23:56:27 +00:00
|
|
|
}
|
2013-02-18 17:28:02 +00:00
|
|
|
i++;
|
2009-03-12 23:56:27 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-11-08 19:18:58 +00:00
|
|
|
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
|
2009-03-12 23:56:27 +00:00
|
|
|
{
|
2013-02-18 17:28:02 +00:00
|
|
|
struct sg_page_iter sg_iter;
|
2010-11-08 19:18:58 +00:00
|
|
|
int page_count = obj->base.size >> PAGE_SHIFT;
|
2009-03-12 23:56:27 +00:00
|
|
|
int i;
|
|
|
|
|
2010-11-08 19:18:58 +00:00
|
|
|
if (obj->bit_17 == NULL) {
|
2013-09-20 22:35:38 +00:00
|
|
|
obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
|
|
|
|
sizeof(long), GFP_KERNEL);
|
2010-11-08 19:18:58 +00:00
|
|
|
if (obj->bit_17 == NULL) {
|
2009-03-12 23:56:27 +00:00
|
|
|
DRM_ERROR("Failed to allocate memory for bit 17 "
|
|
|
|
"record\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-02-18 17:28:02 +00:00
|
|
|
i = 0;
|
|
|
|
for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
|
2013-03-26 13:14:18 +00:00
|
|
|
if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
|
2010-11-08 19:18:58 +00:00
|
|
|
__set_bit(i, obj->bit_17);
|
2009-03-12 23:56:27 +00:00
|
|
|
else
|
2010-11-08 19:18:58 +00:00
|
|
|
__clear_bit(i, obj->bit_17);
|
2013-02-18 17:28:02 +00:00
|
|
|
i++;
|
2009-03-12 23:56:27 +00:00
|
|
|
}
|
|
|
|
}
|