2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Alpha specific irq code.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/kernel_stat.h>
|
|
|
|
|
|
|
|
#include <asm/machvec.h>
|
|
|
|
#include <asm/dma.h>
|
|
|
|
|
|
|
|
#include "proto.h"
|
|
|
|
#include "irq_impl.h"
|
|
|
|
|
|
|
|
/* Hack minimum IPL during interrupt processing for broken hardware. */
|
|
|
|
#ifdef CONFIG_ALPHA_BROKEN_IRQ_MASK
|
|
|
|
int __min_ipl;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Performance counter hook. A module can override this to
|
|
|
|
* do something useful.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
dummy_perf(unsigned long vector, struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
irq_err_count++;
|
|
|
|
printk(KERN_CRIT "Performance counter interrupt!\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
void (*perf_irq)(unsigned long, struct pt_regs *) = dummy_perf;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The main interrupt entry point.
|
|
|
|
*/
|
|
|
|
|
|
|
|
asmlinkage void
|
|
|
|
do_entInt(unsigned long type, unsigned long vector,
|
|
|
|
unsigned long la_ptr, struct pt_regs *regs)
|
|
|
|
{
|
2006-10-08 13:36:08 +00:00
|
|
|
struct pt_regs *old_regs;
|
2005-04-16 22:20:36 +00:00
|
|
|
switch (type) {
|
|
|
|
case 0:
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
handle_ipi(regs);
|
|
|
|
return;
|
|
|
|
#else
|
|
|
|
irq_err_count++;
|
|
|
|
printk(KERN_CRIT "Interprocessor interrupt? "
|
|
|
|
"You must be kidding!\n");
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
case 1:
|
2006-10-08 13:37:32 +00:00
|
|
|
old_regs = set_irq_regs(regs);
|
2005-04-16 22:20:36 +00:00
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
{
|
|
|
|
long cpu;
|
2005-07-01 12:46:26 +00:00
|
|
|
|
|
|
|
local_irq_disable();
|
2005-04-16 22:20:36 +00:00
|
|
|
smp_percpu_timer_interrupt(regs);
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
if (cpu != boot_cpuid) {
|
|
|
|
kstat_cpu(cpu).irqs[RTC_IRQ]++;
|
|
|
|
} else {
|
2006-10-08 13:37:32 +00:00
|
|
|
handle_irq(RTC_IRQ);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
#else
|
2006-10-08 13:37:32 +00:00
|
|
|
handle_irq(RTC_IRQ);
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
2006-10-08 13:37:32 +00:00
|
|
|
set_irq_regs(old_regs);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
case 2:
|
2006-10-08 13:44:38 +00:00
|
|
|
old_regs = set_irq_regs(regs);
|
|
|
|
alpha_mv.machine_check(vector, la_ptr);
|
|
|
|
set_irq_regs(old_regs);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
case 3:
|
2006-10-08 13:36:08 +00:00
|
|
|
old_regs = set_irq_regs(regs);
|
|
|
|
alpha_mv.device_interrupt(vector);
|
|
|
|
set_irq_regs(old_regs);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
|
|
|
case 4:
|
|
|
|
perf_irq(la_ptr, regs);
|
|
|
|
return;
|
|
|
|
default:
|
|
|
|
printk(KERN_CRIT "Hardware intr %ld %lx? Huh?\n",
|
|
|
|
type, vector);
|
|
|
|
}
|
|
|
|
printk(KERN_CRIT "PC = %016lx PS=%04lx\n", regs->pc, regs->ps);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init
|
|
|
|
common_init_isa_dma(void)
|
|
|
|
{
|
|
|
|
outb(0, DMA1_RESET_REG);
|
|
|
|
outb(0, DMA2_RESET_REG);
|
|
|
|
outb(0, DMA1_CLR_MASK_REG);
|
|
|
|
outb(0, DMA2_CLR_MASK_REG);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __init
|
|
|
|
init_IRQ(void)
|
|
|
|
{
|
|
|
|
/* Just in case the platform init_irq() causes interrupts/mchecks
|
|
|
|
(as is the case with RAWHIDE, at least). */
|
|
|
|
wrent(entInt, 0);
|
|
|
|
|
|
|
|
alpha_mv.init_irq();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* machine error checks
|
|
|
|
*/
|
|
|
|
#define MCHK_K_TPERR 0x0080
|
|
|
|
#define MCHK_K_TCPERR 0x0082
|
|
|
|
#define MCHK_K_HERR 0x0084
|
|
|
|
#define MCHK_K_ECC_C 0x0086
|
|
|
|
#define MCHK_K_ECC_NC 0x0088
|
|
|
|
#define MCHK_K_OS_BUGCHECK 0x008A
|
|
|
|
#define MCHK_K_PAL_BUGCHECK 0x0090
|
|
|
|
|
|
|
|
#ifndef CONFIG_SMP
|
|
|
|
struct mcheck_info __mcheck_info;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void
|
|
|
|
process_mcheck_info(unsigned long vector, unsigned long la_ptr,
|
2006-10-08 13:44:38 +00:00
|
|
|
const char *machine, int expected)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct el_common *mchk_header;
|
|
|
|
const char *reason;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* See if the machine check is due to a badaddr() and if so,
|
|
|
|
* ignore it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef CONFIG_VERBOSE_MCHECK
|
|
|
|
if (alpha_verbose_mcheck > 1) {
|
|
|
|
printk(KERN_CRIT "%s machine check %s\n", machine,
|
|
|
|
expected ? "expected." : "NOT expected!!!");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (expected) {
|
|
|
|
int cpu = smp_processor_id();
|
|
|
|
mcheck_expected(cpu) = 0;
|
|
|
|
mcheck_taken(cpu) = 1;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
mchk_header = (struct el_common *)la_ptr;
|
|
|
|
|
|
|
|
printk(KERN_CRIT "%s machine check: vector=0x%lx pc=0x%lx code=0x%x\n",
|
2006-10-08 13:44:38 +00:00
|
|
|
machine, vector, get_irq_regs()->pc, mchk_header->code);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
switch (mchk_header->code) {
|
|
|
|
/* Machine check reasons. Defined according to PALcode sources. */
|
|
|
|
case 0x80: reason = "tag parity error"; break;
|
|
|
|
case 0x82: reason = "tag control parity error"; break;
|
|
|
|
case 0x84: reason = "generic hard error"; break;
|
|
|
|
case 0x86: reason = "correctable ECC error"; break;
|
|
|
|
case 0x88: reason = "uncorrectable ECC error"; break;
|
|
|
|
case 0x8A: reason = "OS-specific PAL bugcheck"; break;
|
|
|
|
case 0x90: reason = "callsys in kernel mode"; break;
|
|
|
|
case 0x96: reason = "i-cache read retryable error"; break;
|
|
|
|
case 0x98: reason = "processor detected hard error"; break;
|
|
|
|
|
|
|
|
/* System specific (these are for Alcor, at least): */
|
|
|
|
case 0x202: reason = "system detected hard error"; break;
|
|
|
|
case 0x203: reason = "system detected uncorrectable ECC error"; break;
|
|
|
|
case 0x204: reason = "SIO SERR occurred on PCI bus"; break;
|
|
|
|
case 0x205: reason = "parity error detected by core logic"; break;
|
|
|
|
case 0x206: reason = "SIO IOCHK occurred on ISA bus"; break;
|
|
|
|
case 0x207: reason = "non-existent memory error"; break;
|
|
|
|
case 0x208: reason = "MCHK_K_DCSR"; break;
|
|
|
|
case 0x209: reason = "PCI SERR detected"; break;
|
|
|
|
case 0x20b: reason = "PCI data parity error detected"; break;
|
|
|
|
case 0x20d: reason = "PCI address parity error detected"; break;
|
|
|
|
case 0x20f: reason = "PCI master abort error"; break;
|
|
|
|
case 0x211: reason = "PCI target abort error"; break;
|
|
|
|
case 0x213: reason = "scatter/gather PTE invalid error"; break;
|
|
|
|
case 0x215: reason = "flash ROM write error"; break;
|
|
|
|
case 0x217: reason = "IOA timeout detected"; break;
|
|
|
|
case 0x219: reason = "IOCHK#, EISA add-in board parity or other catastrophic error"; break;
|
|
|
|
case 0x21b: reason = "EISA fail-safe timer timeout"; break;
|
|
|
|
case 0x21d: reason = "EISA bus time-out"; break;
|
|
|
|
case 0x21f: reason = "EISA software generated NMI"; break;
|
|
|
|
case 0x221: reason = "unexpected ev5 IRQ[3] interrupt"; break;
|
|
|
|
default: reason = "unknown"; break;
|
|
|
|
}
|
|
|
|
|
|
|
|
printk(KERN_CRIT "machine check type: %s%s\n",
|
|
|
|
reason, mchk_header->retry ? " (retryable)" : "");
|
|
|
|
|
2006-10-08 13:44:38 +00:00
|
|
|
dik_show_regs(get_irq_regs(), NULL);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_VERBOSE_MCHECK
|
|
|
|
if (alpha_verbose_mcheck > 1) {
|
|
|
|
/* Dump the logout area to give all info. */
|
|
|
|
unsigned long *ptr = (unsigned long *)la_ptr;
|
|
|
|
long i;
|
|
|
|
for (i = 0; i < mchk_header->size / sizeof(long); i += 2) {
|
|
|
|
printk(KERN_CRIT " +%8lx %016lx %016lx\n",
|
|
|
|
i*sizeof(long), ptr[i], ptr[i+1]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_VERBOSE_MCHECK */
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The special RTC interrupt type. The interrupt itself was
|
|
|
|
* processed by PALcode, and comes in via entInt vector 1.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static void rtc_enable_disable(unsigned int irq) { }
|
|
|
|
static unsigned int rtc_startup(unsigned int irq) { return 0; }
|
|
|
|
|
|
|
|
struct irqaction timer_irqaction = {
|
|
|
|
.handler = timer_interrupt,
|
2006-07-02 02:29:11 +00:00
|
|
|
.flags = IRQF_DISABLED,
|
2005-04-16 22:20:36 +00:00
|
|
|
.name = "timer",
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct hw_interrupt_type rtc_irq_type = {
|
|
|
|
.typename = "RTC",
|
|
|
|
.startup = rtc_startup,
|
|
|
|
.shutdown = rtc_enable_disable,
|
|
|
|
.enable = rtc_enable_disable,
|
|
|
|
.disable = rtc_enable_disable,
|
|
|
|
.ack = rtc_enable_disable,
|
|
|
|
.end = rtc_enable_disable,
|
|
|
|
};
|
|
|
|
|
|
|
|
void __init
|
|
|
|
init_rtc_irq(void)
|
|
|
|
{
|
|
|
|
irq_desc[RTC_IRQ].status = IRQ_DISABLED;
|
[PATCH] genirq: rename desc->handler to desc->chip
This patch-queue improves the generic IRQ layer to be truly generic, by adding
various abstractions and features to it, without impacting existing
functionality.
While the queue can be best described as "fix and improve everything in the
generic IRQ layer that we could think of", and thus it consists of many
smaller features and lots of cleanups, the one feature that stands out most is
the new 'irq chip' abstraction.
The irq-chip abstraction is about describing and coding and IRQ controller
driver by mapping its raw hardware capabilities [and quirks, if needed] in a
straightforward way, without having to think about "IRQ flow"
(level/edge/etc.) type of details.
This stands in contrast with the current 'irq-type' model of genirq
architectures, which 'mixes' raw hardware capabilities with 'flow' details.
The patchset supports both types of irq controller designs at once, and
converts i386 and x86_64 to the new irq-chip design.
As a bonus side-effect of the irq-chip approach, chained interrupt controllers
(master/slave PIC constructs, etc.) are now supported by design as well.
The end result of this patchset intends to be simpler architecture-level code
and more consolidation between architectures.
We reused many bits of code and many concepts from Russell King's ARM IRQ
layer, the merging of which was one of the motivations for this patchset.
This patch:
rename desc->handler to desc->chip.
Originally i did not want to do this, because it's a big patch. But having
both "desc->handler", "desc->handle_irq" and "action->handler" caused a
large degree of confusion and made the code appear alot less clean than it
truly is.
I have also attempted a dual approach as well by introducing a
desc->chip alias - but that just wasnt robust enough and broke
frequently.
So lets get over with this quickly. The conversion was done automatically
via scripts and converts all the code in the kernel.
This renaming patch is the first one amongst the patches, so that the
remaining patches can stay flexible and can be merged and split up
without having some big monolithic patch act as a merge barrier.
[akpm@osdl.org: build fix]
[akpm@osdl.org: another build fix]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-06-29 09:24:36 +00:00
|
|
|
irq_desc[RTC_IRQ].chip = &rtc_irq_type;
|
2005-04-16 22:20:36 +00:00
|
|
|
setup_irq(RTC_IRQ, &timer_irqaction);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Dummy irqactions. */
|
|
|
|
struct irqaction isa_cascade_irqaction = {
|
|
|
|
.handler = no_action,
|
|
|
|
.name = "isa-cascade"
|
|
|
|
};
|
|
|
|
|
|
|
|
struct irqaction timer_cascade_irqaction = {
|
|
|
|
.handler = no_action,
|
|
|
|
.name = "timer-cascade"
|
|
|
|
};
|
|
|
|
|
|
|
|
struct irqaction halt_switch_irqaction = {
|
|
|
|
.handler = no_action,
|
|
|
|
.name = "halt-switch"
|
|
|
|
};
|