2021-07-01 01:47:13 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
2022-06-28 09:22:30 +00:00
|
|
|
* HugeTLB Vmemmap Optimization (HVO)
|
2021-07-01 01:47:13 +00:00
|
|
|
*
|
2022-06-28 09:22:30 +00:00
|
|
|
* Copyright (c) 2020, ByteDance. All rights reserved.
|
2021-07-01 01:47:13 +00:00
|
|
|
*
|
|
|
|
* Author: Muchun Song <songmuchun@bytedance.com>
|
|
|
|
*
|
2022-06-27 06:00:26 +00:00
|
|
|
* See Documentation/mm/vmemmap_dedup.rst
|
2021-07-01 01:47:13 +00:00
|
|
|
*/
|
2021-07-01 01:47:25 +00:00
|
|
|
#define pr_fmt(fmt) "HugeTLB: " fmt
|
|
|
|
|
2022-06-28 09:22:31 +00:00
|
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <linux/bootmem_info.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include <asm/tlbflush.h>
|
2021-07-01 01:47:13 +00:00
|
|
|
#include "hugetlb_vmemmap.h"
|
|
|
|
|
2022-06-28 09:22:31 +00:00
|
|
|
/**
|
|
|
|
* struct vmemmap_remap_walk - walk vmemmap page table
|
|
|
|
*
|
|
|
|
* @remap_pte: called for each lowest-level entry (PTE).
|
|
|
|
* @nr_walked: the number of walked pte.
|
|
|
|
* @reuse_page: the page which is reused for the tail vmemmap pages.
|
|
|
|
* @reuse_addr: the virtual address of the @reuse_page page.
|
|
|
|
* @vmemmap_pages: the list head of the vmemmap pages that can be freed
|
|
|
|
* or is mapped from.
|
|
|
|
*/
|
|
|
|
struct vmemmap_remap_walk {
|
|
|
|
void (*remap_pte)(pte_t *pte, unsigned long addr,
|
|
|
|
struct vmemmap_remap_walk *walk);
|
|
|
|
unsigned long nr_walked;
|
|
|
|
struct page *reuse_page;
|
|
|
|
unsigned long reuse_addr;
|
|
|
|
struct list_head *vmemmap_pages;
|
|
|
|
};
|
|
|
|
|
2021-07-01 01:47:13 +00:00
|
|
|
/*
|
|
|
|
* There are a lot of struct page structures associated with each HugeTLB page.
|
|
|
|
* For tail pages, the value of compound_head is the same. So we can reuse first
|
mm: hugetlb: free the 2nd vmemmap page associated with each HugeTLB page
Patch series "Free the 2nd vmemmap page associated with each HugeTLB
page", v7.
This series can minimize the overhead of struct page for 2MB HugeTLB
pages significantly. It further reduces the overhead of struct page by
12.5% for a 2MB HugeTLB compared to the previous approach, which means
2GB per 1TB HugeTLB. It is a nice gain. Comments and reviews are
welcome. Thanks.
The main implementation and details can refer to the commit log of patch
1. In this series, I have changed the following four helpers, the
following table shows the impact of the overhead of those helpers.
+------------------+-----------------------+
| APIs | head page | tail page |
+------------------+-----------+-----------+
| PageHead() | Y | N |
+------------------+-----------+-----------+
| PageTail() | Y | N |
+------------------+-----------+-----------+
| PageCompound() | N | N |
+------------------+-----------+-----------+
| compound_head() | Y | N |
+------------------+-----------+-----------+
Y: Overhead is increased.
N: Overhead is _NOT_ increased.
It shows that the overhead of those helpers on a tail page don't change
between "hugetlb_free_vmemmap=on" and "hugetlb_free_vmemmap=off". But the
overhead on a head page will be increased when "hugetlb_free_vmemmap=on"
(except PageCompound()). So I believe that Matthew Wilcox's folio series
will help with this.
The users of PageHead() and PageTail() are much less than compound_head()
and most users of PageTail() are VM_BUG_ON(), so I have done some tests
about the overhead of compound_head() on head pages.
I have tested the overhead of calling compound_head() on a head page,
which is 2.11ns (Measure the call time of 10 million times
compound_head(), and then average).
For a head page whose address is not aligned with PAGE_SIZE or a
non-compound page, the overhead of compound_head() is 2.54ns which is
increased by 20%. For a head page whose address is aligned with
PAGE_SIZE, the overhead of compound_head() is 2.97ns which is increased by
40%. Most pages are the former. I do not think the overhead is
significant since the overhead of compound_head() itself is low.
This patch (of 5):
This patch minimizes the overhead of struct page for 2MB HugeTLB pages
significantly. It further reduces the overhead of struct page by 12.5%
for a 2MB HugeTLB compared to the previous approach, which means 2GB per
1TB HugeTLB (2MB type).
After the feature of "Free sonme vmemmap pages of HugeTLB page" is
enabled, the mapping of the vmemmap addresses associated with a 2MB
HugeTLB page becomes the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | ----------------^ ^ ^ ^ ^ ^
| | +-----------+ | | | | |
| | | 3 | ------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | --------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | ----------------------+ | |
| | +-----------+ | |
| | | 6 | ------------------------+ |
| | +-----------+ |
| | | 7 | --------------------------+
| | +-----------+
| |
| |
| |
+-----------+
As we can see, the 2nd vmemmap page frame (indexed by 1) is reused and
remaped. However, the 2nd vmemmap page frame is also can be freed to
the buddy allocator, then we can change the mapping from the figure
above to the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | ---------------^ ^ ^ ^ ^ ^ ^
| | +-----------+ | | | | | |
| | | 2 | -----------------+ | | | | |
| | +-----------+ | | | | |
| | | 3 | -------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | ---------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | -----------------------+ | |
| | +-----------+ | |
| | | 6 | -------------------------+ |
| | +-----------+ |
| | | 7 | ---------------------------+
| | +-----------+
| |
| |
| |
+-----------+
After we do this, all tail vmemmap pages (1-7) are mapped to the head
vmemmap page frame (0). In other words, there are more than one page
struct with PG_head associated with each HugeTLB page. We __know__ that
there is only one head page struct, the tail page structs with PG_head are
fake head page structs. We need an approach to distinguish between those
two different types of page structs so that compound_head(), PageHead()
and PageTail() can work properly if the parameter is the tail page struct
but with PG_head.
The following code snippet describes how to distinguish between real and
fake head page struct.
if (test_bit(PG_head, &page->flags)) {
unsigned long head = READ_ONCE(page[1].compound_head);
if (head & 1) {
if (head == (unsigned long)page + 1)
==> head page struct
else
==> tail page struct
} else
==> head page struct
}
We can safely access the field of the @page[1] with PG_head because the
@page is a compound page composed with at least two contiguous pages.
[songmuchun@bytedance.com: restore lost comment changes]
Link: https://lkml.kernel.org/r/20211101031651.75851-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20211101031651.75851-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 21:45:00 +00:00
|
|
|
* page of head page structures. We map the virtual addresses of all the pages
|
|
|
|
* of tail page structures to the head page struct, and then free these page
|
|
|
|
* frames. Therefore, we need to reserve one pages as vmemmap areas.
|
2021-07-01 01:47:13 +00:00
|
|
|
*/
|
mm: hugetlb: free the 2nd vmemmap page associated with each HugeTLB page
Patch series "Free the 2nd vmemmap page associated with each HugeTLB
page", v7.
This series can minimize the overhead of struct page for 2MB HugeTLB
pages significantly. It further reduces the overhead of struct page by
12.5% for a 2MB HugeTLB compared to the previous approach, which means
2GB per 1TB HugeTLB. It is a nice gain. Comments and reviews are
welcome. Thanks.
The main implementation and details can refer to the commit log of patch
1. In this series, I have changed the following four helpers, the
following table shows the impact of the overhead of those helpers.
+------------------+-----------------------+
| APIs | head page | tail page |
+------------------+-----------+-----------+
| PageHead() | Y | N |
+------------------+-----------+-----------+
| PageTail() | Y | N |
+------------------+-----------+-----------+
| PageCompound() | N | N |
+------------------+-----------+-----------+
| compound_head() | Y | N |
+------------------+-----------+-----------+
Y: Overhead is increased.
N: Overhead is _NOT_ increased.
It shows that the overhead of those helpers on a tail page don't change
between "hugetlb_free_vmemmap=on" and "hugetlb_free_vmemmap=off". But the
overhead on a head page will be increased when "hugetlb_free_vmemmap=on"
(except PageCompound()). So I believe that Matthew Wilcox's folio series
will help with this.
The users of PageHead() and PageTail() are much less than compound_head()
and most users of PageTail() are VM_BUG_ON(), so I have done some tests
about the overhead of compound_head() on head pages.
I have tested the overhead of calling compound_head() on a head page,
which is 2.11ns (Measure the call time of 10 million times
compound_head(), and then average).
For a head page whose address is not aligned with PAGE_SIZE or a
non-compound page, the overhead of compound_head() is 2.54ns which is
increased by 20%. For a head page whose address is aligned with
PAGE_SIZE, the overhead of compound_head() is 2.97ns which is increased by
40%. Most pages are the former. I do not think the overhead is
significant since the overhead of compound_head() itself is low.
This patch (of 5):
This patch minimizes the overhead of struct page for 2MB HugeTLB pages
significantly. It further reduces the overhead of struct page by 12.5%
for a 2MB HugeTLB compared to the previous approach, which means 2GB per
1TB HugeTLB (2MB type).
After the feature of "Free sonme vmemmap pages of HugeTLB page" is
enabled, the mapping of the vmemmap addresses associated with a 2MB
HugeTLB page becomes the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | ----------------^ ^ ^ ^ ^ ^
| | +-----------+ | | | | |
| | | 3 | ------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | --------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | ----------------------+ | |
| | +-----------+ | |
| | | 6 | ------------------------+ |
| | +-----------+ |
| | | 7 | --------------------------+
| | +-----------+
| |
| |
| |
+-----------+
As we can see, the 2nd vmemmap page frame (indexed by 1) is reused and
remaped. However, the 2nd vmemmap page frame is also can be freed to
the buddy allocator, then we can change the mapping from the figure
above to the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | ---------------^ ^ ^ ^ ^ ^ ^
| | +-----------+ | | | | | |
| | | 2 | -----------------+ | | | | |
| | +-----------+ | | | | |
| | | 3 | -------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | ---------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | -----------------------+ | |
| | +-----------+ | |
| | | 6 | -------------------------+ |
| | +-----------+ |
| | | 7 | ---------------------------+
| | +-----------+
| |
| |
| |
+-----------+
After we do this, all tail vmemmap pages (1-7) are mapped to the head
vmemmap page frame (0). In other words, there are more than one page
struct with PG_head associated with each HugeTLB page. We __know__ that
there is only one head page struct, the tail page structs with PG_head are
fake head page structs. We need an approach to distinguish between those
two different types of page structs so that compound_head(), PageHead()
and PageTail() can work properly if the parameter is the tail page struct
but with PG_head.
The following code snippet describes how to distinguish between real and
fake head page struct.
if (test_bit(PG_head, &page->flags)) {
unsigned long head = READ_ONCE(page[1].compound_head);
if (head & 1) {
if (head == (unsigned long)page + 1)
==> head page struct
else
==> tail page struct
} else
==> head page struct
}
We can safely access the field of the @page[1] with PG_head because the
@page is a compound page composed with at least two contiguous pages.
[songmuchun@bytedance.com: restore lost comment changes]
Link: https://lkml.kernel.org/r/20211101031651.75851-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20211101031651.75851-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 21:45:00 +00:00
|
|
|
#define RESERVE_VMEMMAP_NR 1U
|
2021-07-01 01:47:13 +00:00
|
|
|
#define RESERVE_VMEMMAP_SIZE (RESERVE_VMEMMAP_NR << PAGE_SHIFT)
|
|
|
|
|
2022-06-28 09:22:31 +00:00
|
|
|
static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
|
|
|
|
{
|
|
|
|
pmd_t __pmd;
|
|
|
|
int i;
|
|
|
|
unsigned long addr = start;
|
|
|
|
struct page *page = pmd_page(*pmd);
|
|
|
|
pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
|
|
|
|
|
|
|
|
if (!pgtable)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
pmd_populate_kernel(&init_mm, &__pmd, pgtable);
|
|
|
|
|
|
|
|
for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
|
|
|
|
pte_t entry, *pte;
|
|
|
|
pgprot_t pgprot = PAGE_KERNEL;
|
|
|
|
|
|
|
|
entry = mk_pte(page + i, pgprot);
|
|
|
|
pte = pte_offset_kernel(&__pmd, addr);
|
|
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
|
|
if (likely(pmd_leaf(*pmd))) {
|
|
|
|
/*
|
|
|
|
* Higher order allocations from buddy allocator must be able to
|
|
|
|
* be treated as indepdenent small pages (as they can be freed
|
|
|
|
* individually).
|
|
|
|
*/
|
|
|
|
if (!PageReserved(page))
|
|
|
|
split_page(page, get_order(PMD_SIZE));
|
|
|
|
|
|
|
|
/* Make pte visible before pmd. See comment in pmd_install(). */
|
|
|
|
smp_wmb();
|
|
|
|
pmd_populate_kernel(&init_mm, pmd, pgtable);
|
|
|
|
flush_tlb_kernel_range(start, start + PMD_SIZE);
|
|
|
|
} else {
|
|
|
|
pte_free_kernel(&init_mm, pgtable);
|
|
|
|
}
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
|
|
|
|
{
|
|
|
|
int leaf;
|
|
|
|
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
|
|
leaf = pmd_leaf(*pmd);
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
|
|
|
|
|
|
if (!leaf)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return __split_vmemmap_huge_pmd(pmd, start);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
|
|
|
|
unsigned long end,
|
|
|
|
struct vmemmap_remap_walk *walk)
|
|
|
|
{
|
|
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The reuse_page is found 'first' in table walk before we start
|
|
|
|
* remapping (which is calling @walk->remap_pte).
|
|
|
|
*/
|
|
|
|
if (!walk->reuse_page) {
|
|
|
|
walk->reuse_page = pte_page(*pte);
|
|
|
|
/*
|
|
|
|
* Because the reuse address is part of the range that we are
|
|
|
|
* walking, skip the reuse address range.
|
|
|
|
*/
|
|
|
|
addr += PAGE_SIZE;
|
|
|
|
pte++;
|
|
|
|
walk->nr_walked++;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (; addr != end; addr += PAGE_SIZE, pte++) {
|
|
|
|
walk->remap_pte(pte, addr, walk);
|
|
|
|
walk->nr_walked++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
|
|
unsigned long end,
|
|
|
|
struct vmemmap_remap_walk *walk)
|
|
|
|
{
|
|
|
|
pmd_t *pmd;
|
|
|
|
unsigned long next;
|
|
|
|
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
|
|
do {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
vmemmap_pte_range(pmd, addr, next, walk);
|
|
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
|
|
|
|
unsigned long end,
|
|
|
|
struct vmemmap_remap_walk *walk)
|
|
|
|
{
|
|
|
|
pud_t *pud;
|
|
|
|
unsigned long next;
|
|
|
|
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
|
|
do {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
next = pud_addr_end(addr, end);
|
|
|
|
ret = vmemmap_pmd_range(pud, addr, next, walk);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
|
|
|
|
unsigned long end,
|
|
|
|
struct vmemmap_remap_walk *walk)
|
|
|
|
{
|
|
|
|
p4d_t *p4d;
|
|
|
|
unsigned long next;
|
|
|
|
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
|
|
do {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
next = p4d_addr_end(addr, end);
|
|
|
|
ret = vmemmap_pud_range(p4d, addr, next, walk);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vmemmap_remap_range(unsigned long start, unsigned long end,
|
|
|
|
struct vmemmap_remap_walk *walk)
|
|
|
|
{
|
|
|
|
unsigned long addr = start;
|
|
|
|
unsigned long next;
|
|
|
|
pgd_t *pgd;
|
|
|
|
|
|
|
|
VM_BUG_ON(!PAGE_ALIGNED(start));
|
|
|
|
VM_BUG_ON(!PAGE_ALIGNED(end));
|
|
|
|
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
|
|
do {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
ret = vmemmap_p4d_range(pgd, addr, next, walk);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We only change the mapping of the vmemmap virtual address range
|
|
|
|
* [@start + PAGE_SIZE, end), so we only need to flush the TLB which
|
|
|
|
* belongs to the range.
|
|
|
|
*/
|
|
|
|
flush_tlb_kernel_range(start + PAGE_SIZE, end);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Free a vmemmap page. A vmemmap page can be allocated from the memblock
|
|
|
|
* allocator or buddy allocator. If the PG_reserved flag is set, it means
|
|
|
|
* that it allocated from the memblock allocator, just free it via the
|
|
|
|
* free_bootmem_page(). Otherwise, use __free_page().
|
|
|
|
*/
|
|
|
|
static inline void free_vmemmap_page(struct page *page)
|
|
|
|
{
|
|
|
|
if (PageReserved(page))
|
|
|
|
free_bootmem_page(page);
|
|
|
|
else
|
|
|
|
__free_page(page);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free a list of the vmemmap pages */
|
|
|
|
static void free_vmemmap_page_list(struct list_head *list)
|
|
|
|
{
|
|
|
|
struct page *page, *next;
|
|
|
|
|
|
|
|
list_for_each_entry_safe(page, next, list, lru) {
|
|
|
|
list_del(&page->lru);
|
|
|
|
free_vmemmap_page(page);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
|
|
|
|
struct vmemmap_remap_walk *walk)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Remap the tail pages as read-only to catch illegal write operation
|
|
|
|
* to the tail pages.
|
|
|
|
*/
|
|
|
|
pgprot_t pgprot = PAGE_KERNEL_RO;
|
|
|
|
pte_t entry = mk_pte(walk->reuse_page, pgprot);
|
|
|
|
struct page *page = pte_page(*pte);
|
|
|
|
|
|
|
|
list_add_tail(&page->lru, walk->vmemmap_pages);
|
|
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* How many struct page structs need to be reset. When we reuse the head
|
|
|
|
* struct page, the special metadata (e.g. page->flags or page->mapping)
|
|
|
|
* cannot copy to the tail struct page structs. The invalid value will be
|
|
|
|
* checked in the free_tail_pages_check(). In order to avoid the message
|
|
|
|
* of "corrupted mapping in tail page". We need to reset at least 3 (one
|
|
|
|
* head struct page struct and two tail struct page structs) struct page
|
|
|
|
* structs.
|
|
|
|
*/
|
|
|
|
#define NR_RESET_STRUCT_PAGE 3
|
|
|
|
|
|
|
|
static inline void reset_struct_pages(struct page *start)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
struct page *from = start + NR_RESET_STRUCT_PAGE;
|
|
|
|
|
|
|
|
for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
|
|
|
|
memcpy(start + i, from, sizeof(*from));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
|
|
|
|
struct vmemmap_remap_walk *walk)
|
|
|
|
{
|
|
|
|
pgprot_t pgprot = PAGE_KERNEL;
|
|
|
|
struct page *page;
|
|
|
|
void *to;
|
|
|
|
|
|
|
|
BUG_ON(pte_page(*pte) != walk->reuse_page);
|
|
|
|
|
|
|
|
page = list_first_entry(walk->vmemmap_pages, struct page, lru);
|
|
|
|
list_del(&page->lru);
|
|
|
|
to = page_to_virt(page);
|
|
|
|
copy_page(to, (void *)walk->reuse_addr);
|
|
|
|
reset_struct_pages(to);
|
|
|
|
|
|
|
|
set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
|
|
|
|
* to the page which @reuse is mapped to, then free vmemmap
|
|
|
|
* which the range are mapped to.
|
|
|
|
* @start: start address of the vmemmap virtual address range that we want
|
|
|
|
* to remap.
|
|
|
|
* @end: end address of the vmemmap virtual address range that we want to
|
|
|
|
* remap.
|
|
|
|
* @reuse: reuse address.
|
|
|
|
*
|
|
|
|
* Return: %0 on success, negative error code otherwise.
|
|
|
|
*/
|
|
|
|
static int vmemmap_remap_free(unsigned long start, unsigned long end,
|
|
|
|
unsigned long reuse)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
LIST_HEAD(vmemmap_pages);
|
|
|
|
struct vmemmap_remap_walk walk = {
|
|
|
|
.remap_pte = vmemmap_remap_pte,
|
|
|
|
.reuse_addr = reuse,
|
|
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In order to make remapping routine most efficient for the huge pages,
|
|
|
|
* the routine of vmemmap page table walking has the following rules
|
|
|
|
* (see more details from the vmemmap_pte_range()):
|
|
|
|
*
|
|
|
|
* - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
|
|
|
|
* should be continuous.
|
|
|
|
* - The @reuse address is part of the range [@reuse, @end) that we are
|
|
|
|
* walking which is passed to vmemmap_remap_range().
|
|
|
|
* - The @reuse address is the first in the complete range.
|
|
|
|
*
|
|
|
|
* So we need to make sure that @start and @reuse meet the above rules.
|
|
|
|
*/
|
|
|
|
BUG_ON(start - reuse != PAGE_SIZE);
|
|
|
|
|
|
|
|
mmap_read_lock(&init_mm);
|
|
|
|
ret = vmemmap_remap_range(reuse, end, &walk);
|
|
|
|
if (ret && walk.nr_walked) {
|
|
|
|
end = reuse + walk.nr_walked * PAGE_SIZE;
|
|
|
|
/*
|
|
|
|
* vmemmap_pages contains pages from the previous
|
|
|
|
* vmemmap_remap_range call which failed. These
|
|
|
|
* are pages which were removed from the vmemmap.
|
|
|
|
* They will be restored in the following call.
|
|
|
|
*/
|
|
|
|
walk = (struct vmemmap_remap_walk) {
|
|
|
|
.remap_pte = vmemmap_restore_pte,
|
|
|
|
.reuse_addr = reuse,
|
|
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
|
|
};
|
|
|
|
|
|
|
|
vmemmap_remap_range(reuse, end, &walk);
|
|
|
|
}
|
|
|
|
mmap_read_unlock(&init_mm);
|
|
|
|
|
|
|
|
free_vmemmap_page_list(&vmemmap_pages);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
|
|
|
|
gfp_t gfp_mask, struct list_head *list)
|
|
|
|
{
|
|
|
|
unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
|
|
|
|
int nid = page_to_nid((struct page *)start);
|
|
|
|
struct page *page, *next;
|
|
|
|
|
|
|
|
while (nr_pages--) {
|
|
|
|
page = alloc_pages_node(nid, gfp_mask, 0);
|
|
|
|
if (!page)
|
|
|
|
goto out;
|
|
|
|
list_add_tail(&page->lru, list);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
out:
|
|
|
|
list_for_each_entry_safe(page, next, list, lru)
|
|
|
|
__free_pages(page, 0);
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
|
|
|
|
* to the page which is from the @vmemmap_pages
|
|
|
|
* respectively.
|
|
|
|
* @start: start address of the vmemmap virtual address range that we want
|
|
|
|
* to remap.
|
|
|
|
* @end: end address of the vmemmap virtual address range that we want to
|
|
|
|
* remap.
|
|
|
|
* @reuse: reuse address.
|
|
|
|
* @gfp_mask: GFP flag for allocating vmemmap pages.
|
|
|
|
*
|
|
|
|
* Return: %0 on success, negative error code otherwise.
|
|
|
|
*/
|
|
|
|
static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
|
|
|
|
unsigned long reuse, gfp_t gfp_mask)
|
|
|
|
{
|
|
|
|
LIST_HEAD(vmemmap_pages);
|
|
|
|
struct vmemmap_remap_walk walk = {
|
|
|
|
.remap_pte = vmemmap_restore_pte,
|
|
|
|
.reuse_addr = reuse,
|
|
|
|
.vmemmap_pages = &vmemmap_pages,
|
|
|
|
};
|
|
|
|
|
|
|
|
/* See the comment in the vmemmap_remap_free(). */
|
|
|
|
BUG_ON(start - reuse != PAGE_SIZE);
|
|
|
|
|
|
|
|
if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
mmap_read_lock(&init_mm);
|
|
|
|
vmemmap_remap_range(reuse, end, &walk);
|
|
|
|
mmap_read_unlock(&init_mm);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2022-06-28 09:22:29 +00:00
|
|
|
DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
|
2022-04-29 06:16:15 +00:00
|
|
|
EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
|
2021-07-01 01:47:25 +00:00
|
|
|
|
2022-06-28 09:22:29 +00:00
|
|
|
static bool vmemmap_optimize_enabled =
|
2022-05-27 08:19:48 +00:00
|
|
|
IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
|
2022-05-13 23:48:56 +00:00
|
|
|
|
2022-04-29 06:16:14 +00:00
|
|
|
static int __init hugetlb_vmemmap_early_param(char *buf)
|
2021-07-01 01:47:25 +00:00
|
|
|
{
|
2022-06-28 09:22:29 +00:00
|
|
|
return kstrtobool(buf, &vmemmap_optimize_enabled);
|
2021-07-01 01:47:25 +00:00
|
|
|
}
|
2022-04-29 06:16:14 +00:00
|
|
|
early_param("hugetlb_free_vmemmap", hugetlb_vmemmap_early_param);
|
2021-07-01 01:47:13 +00:00
|
|
|
|
2021-07-01 01:47:21 +00:00
|
|
|
/*
|
|
|
|
* Previously discarded vmemmap pages will be allocated and remapping
|
|
|
|
* after this function returns zero.
|
|
|
|
*/
|
2022-04-29 06:16:14 +00:00
|
|
|
int hugetlb_vmemmap_alloc(struct hstate *h, struct page *head)
|
2021-07-01 01:47:21 +00:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
unsigned long vmemmap_addr = (unsigned long)head;
|
2022-04-29 06:16:14 +00:00
|
|
|
unsigned long vmemmap_end, vmemmap_reuse, vmemmap_pages;
|
2021-07-01 01:47:21 +00:00
|
|
|
|
|
|
|
if (!HPageVmemmapOptimized(head))
|
|
|
|
return 0;
|
|
|
|
|
2022-04-29 06:16:14 +00:00
|
|
|
vmemmap_addr += RESERVE_VMEMMAP_SIZE;
|
|
|
|
vmemmap_pages = hugetlb_optimize_vmemmap_pages(h);
|
|
|
|
vmemmap_end = vmemmap_addr + (vmemmap_pages << PAGE_SHIFT);
|
|
|
|
vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
|
|
|
|
|
2021-07-01 01:47:21 +00:00
|
|
|
/*
|
|
|
|
* The pages which the vmemmap virtual address range [@vmemmap_addr,
|
|
|
|
* @vmemmap_end) are mapped to are freed to the buddy allocator, and
|
|
|
|
* the range is mapped to the page which @vmemmap_reuse is mapped to.
|
|
|
|
* When a HugeTLB page is freed to the buddy allocator, previously
|
|
|
|
* discarded vmemmap pages must be allocated and remapping.
|
|
|
|
*/
|
|
|
|
ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
|
|
|
|
GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
|
2022-05-13 23:48:56 +00:00
|
|
|
if (!ret) {
|
2021-07-01 01:47:21 +00:00
|
|
|
ClearHPageVmemmapOptimized(head);
|
2022-05-13 23:48:56 +00:00
|
|
|
static_branch_dec(&hugetlb_optimize_vmemmap_key);
|
|
|
|
}
|
2021-07-01 01:47:21 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2022-06-17 13:56:50 +00:00
|
|
|
static unsigned int vmemmap_optimizable_pages(struct hstate *h,
|
|
|
|
struct page *head)
|
|
|
|
{
|
2022-06-28 09:22:29 +00:00
|
|
|
if (!READ_ONCE(vmemmap_optimize_enabled))
|
2022-06-17 13:56:50 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
|
|
|
|
pmd_t *pmdp, pmd;
|
|
|
|
struct page *vmemmap_page;
|
|
|
|
unsigned long vaddr = (unsigned long)head;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Only the vmemmap page's vmemmap page can be self-hosted.
|
|
|
|
* Walking the page tables to find the backing page of the
|
|
|
|
* vmemmap page.
|
|
|
|
*/
|
|
|
|
pmdp = pmd_off_k(vaddr);
|
|
|
|
/*
|
|
|
|
* The READ_ONCE() is used to stabilize *pmdp in a register or
|
|
|
|
* on the stack so that it will stop changing under the code.
|
|
|
|
* The only concurrent operation where it can be changed is
|
|
|
|
* split_vmemmap_huge_pmd() (*pmdp will be stable after this
|
|
|
|
* operation).
|
|
|
|
*/
|
|
|
|
pmd = READ_ONCE(*pmdp);
|
|
|
|
if (pmd_leaf(pmd))
|
|
|
|
vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
|
|
|
|
else
|
|
|
|
vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
|
|
|
|
/*
|
|
|
|
* Due to HugeTLB alignment requirements and the vmemmap pages
|
|
|
|
* being at the start of the hotplugged memory region in
|
|
|
|
* memory_hotplug.memmap_on_memory case. Checking any vmemmap
|
|
|
|
* page's vmemmap page if it is marked as VmemmapSelfHosted is
|
|
|
|
* sufficient.
|
|
|
|
*
|
|
|
|
* [ hotplugged memory ]
|
|
|
|
* [ section ][...][ section ]
|
|
|
|
* [ vmemmap ][ usable memory ]
|
|
|
|
* ^ | | |
|
|
|
|
* +---+ | |
|
|
|
|
* ^ | |
|
|
|
|
* +-------+ |
|
|
|
|
* ^ |
|
|
|
|
* +-------------------------------------------+
|
|
|
|
*/
|
|
|
|
if (PageVmemmapSelfHosted(vmemmap_page))
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return hugetlb_optimize_vmemmap_pages(h);
|
|
|
|
}
|
|
|
|
|
2022-04-29 06:16:14 +00:00
|
|
|
void hugetlb_vmemmap_free(struct hstate *h, struct page *head)
|
2021-07-01 01:47:13 +00:00
|
|
|
{
|
|
|
|
unsigned long vmemmap_addr = (unsigned long)head;
|
2022-04-29 06:16:14 +00:00
|
|
|
unsigned long vmemmap_end, vmemmap_reuse, vmemmap_pages;
|
2021-07-01 01:47:13 +00:00
|
|
|
|
2022-06-17 13:56:50 +00:00
|
|
|
vmemmap_pages = vmemmap_optimizable_pages(h, head);
|
2022-04-29 06:16:14 +00:00
|
|
|
if (!vmemmap_pages)
|
2021-07-01 01:47:13 +00:00
|
|
|
return;
|
|
|
|
|
2022-05-13 23:48:56 +00:00
|
|
|
static_branch_inc(&hugetlb_optimize_vmemmap_key);
|
|
|
|
|
2022-04-29 06:16:14 +00:00
|
|
|
vmemmap_addr += RESERVE_VMEMMAP_SIZE;
|
|
|
|
vmemmap_end = vmemmap_addr + (vmemmap_pages << PAGE_SHIFT);
|
|
|
|
vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
|
2021-07-01 01:47:13 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end)
|
|
|
|
* to the page which @vmemmap_reuse is mapped to, then free the pages
|
|
|
|
* which the range [@vmemmap_addr, @vmemmap_end] is mapped to.
|
|
|
|
*/
|
2022-05-13 23:48:56 +00:00
|
|
|
if (vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse))
|
|
|
|
static_branch_dec(&hugetlb_optimize_vmemmap_key);
|
|
|
|
else
|
2021-07-01 01:48:22 +00:00
|
|
|
SetHPageVmemmapOptimized(head);
|
2021-07-01 01:47:13 +00:00
|
|
|
}
|
2021-07-01 01:47:33 +00:00
|
|
|
|
|
|
|
void __init hugetlb_vmemmap_init(struct hstate *h)
|
|
|
|
{
|
|
|
|
unsigned int nr_pages = pages_per_huge_page(h);
|
|
|
|
unsigned int vmemmap_pages;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct
|
2022-06-28 09:22:30 +00:00
|
|
|
* page structs that can be used when HVO is enabled, add a BUILD_BUG_ON
|
|
|
|
* to catch invalid usage of the tail page structs.
|
2021-07-01 01:47:33 +00:00
|
|
|
*/
|
|
|
|
BUILD_BUG_ON(__NR_USED_SUBPAGE >=
|
|
|
|
RESERVE_VMEMMAP_SIZE / sizeof(struct page));
|
|
|
|
|
2022-05-13 23:48:56 +00:00
|
|
|
if (!is_power_of_2(sizeof(struct page))) {
|
|
|
|
pr_warn_once("cannot optimize vmemmap pages because \"struct page\" crosses page boundaries\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2021-07-01 01:47:33 +00:00
|
|
|
vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT;
|
|
|
|
/*
|
mm: hugetlb: free the 2nd vmemmap page associated with each HugeTLB page
Patch series "Free the 2nd vmemmap page associated with each HugeTLB
page", v7.
This series can minimize the overhead of struct page for 2MB HugeTLB
pages significantly. It further reduces the overhead of struct page by
12.5% for a 2MB HugeTLB compared to the previous approach, which means
2GB per 1TB HugeTLB. It is a nice gain. Comments and reviews are
welcome. Thanks.
The main implementation and details can refer to the commit log of patch
1. In this series, I have changed the following four helpers, the
following table shows the impact of the overhead of those helpers.
+------------------+-----------------------+
| APIs | head page | tail page |
+------------------+-----------+-----------+
| PageHead() | Y | N |
+------------------+-----------+-----------+
| PageTail() | Y | N |
+------------------+-----------+-----------+
| PageCompound() | N | N |
+------------------+-----------+-----------+
| compound_head() | Y | N |
+------------------+-----------+-----------+
Y: Overhead is increased.
N: Overhead is _NOT_ increased.
It shows that the overhead of those helpers on a tail page don't change
between "hugetlb_free_vmemmap=on" and "hugetlb_free_vmemmap=off". But the
overhead on a head page will be increased when "hugetlb_free_vmemmap=on"
(except PageCompound()). So I believe that Matthew Wilcox's folio series
will help with this.
The users of PageHead() and PageTail() are much less than compound_head()
and most users of PageTail() are VM_BUG_ON(), so I have done some tests
about the overhead of compound_head() on head pages.
I have tested the overhead of calling compound_head() on a head page,
which is 2.11ns (Measure the call time of 10 million times
compound_head(), and then average).
For a head page whose address is not aligned with PAGE_SIZE or a
non-compound page, the overhead of compound_head() is 2.54ns which is
increased by 20%. For a head page whose address is aligned with
PAGE_SIZE, the overhead of compound_head() is 2.97ns which is increased by
40%. Most pages are the former. I do not think the overhead is
significant since the overhead of compound_head() itself is low.
This patch (of 5):
This patch minimizes the overhead of struct page for 2MB HugeTLB pages
significantly. It further reduces the overhead of struct page by 12.5%
for a 2MB HugeTLB compared to the previous approach, which means 2GB per
1TB HugeTLB (2MB type).
After the feature of "Free sonme vmemmap pages of HugeTLB page" is
enabled, the mapping of the vmemmap addresses associated with a 2MB
HugeTLB page becomes the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | ----------------^ ^ ^ ^ ^ ^
| | +-----------+ | | | | |
| | | 3 | ------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | --------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | ----------------------+ | |
| | +-----------+ | |
| | | 6 | ------------------------+ |
| | +-----------+ |
| | | 7 | --------------------------+
| | +-----------+
| |
| |
| |
+-----------+
As we can see, the 2nd vmemmap page frame (indexed by 1) is reused and
remaped. However, the 2nd vmemmap page frame is also can be freed to
the buddy allocator, then we can change the mapping from the figure
above to the figure below.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+---> PG_head
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | ---------------^ ^ ^ ^ ^ ^ ^
| | +-----------+ | | | | | |
| | | 2 | -----------------+ | | | | |
| | +-----------+ | | | | |
| | | 3 | -------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | ---------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | -----------------------+ | |
| | +-----------+ | |
| | | 6 | -------------------------+ |
| | +-----------+ |
| | | 7 | ---------------------------+
| | +-----------+
| |
| |
| |
+-----------+
After we do this, all tail vmemmap pages (1-7) are mapped to the head
vmemmap page frame (0). In other words, there are more than one page
struct with PG_head associated with each HugeTLB page. We __know__ that
there is only one head page struct, the tail page structs with PG_head are
fake head page structs. We need an approach to distinguish between those
two different types of page structs so that compound_head(), PageHead()
and PageTail() can work properly if the parameter is the tail page struct
but with PG_head.
The following code snippet describes how to distinguish between real and
fake head page struct.
if (test_bit(PG_head, &page->flags)) {
unsigned long head = READ_ONCE(page[1].compound_head);
if (head & 1) {
if (head == (unsigned long)page + 1)
==> head page struct
else
==> tail page struct
} else
==> head page struct
}
We can safely access the field of the @page[1] with PG_head because the
@page is a compound page composed with at least two contiguous pages.
[songmuchun@bytedance.com: restore lost comment changes]
Link: https://lkml.kernel.org/r/20211101031651.75851-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20211101031651.75851-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 21:45:00 +00:00
|
|
|
* The head page is not to be freed to buddy allocator, the other tail
|
|
|
|
* pages will map to the head page, so they can be freed.
|
2021-07-01 01:47:33 +00:00
|
|
|
*
|
|
|
|
* Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true
|
|
|
|
* on some architectures (e.g. aarch64). See Documentation/arm64/
|
|
|
|
* hugetlbpage.rst for more details.
|
|
|
|
*/
|
|
|
|
if (likely(vmemmap_pages > RESERVE_VMEMMAP_NR))
|
2022-04-29 06:16:14 +00:00
|
|
|
h->optimize_vmemmap_pages = vmemmap_pages - RESERVE_VMEMMAP_NR;
|
2021-07-01 01:47:33 +00:00
|
|
|
|
2022-04-29 06:16:14 +00:00
|
|
|
pr_info("can optimize %d vmemmap pages for %s\n",
|
|
|
|
h->optimize_vmemmap_pages, h->name);
|
2021-07-01 01:47:33 +00:00
|
|
|
}
|
2022-05-13 23:48:56 +00:00
|
|
|
|
|
|
|
#ifdef CONFIG_PROC_SYSCTL
|
|
|
|
static struct ctl_table hugetlb_vmemmap_sysctls[] = {
|
|
|
|
{
|
|
|
|
.procname = "hugetlb_optimize_vmemmap",
|
2022-06-28 09:22:29 +00:00
|
|
|
.data = &vmemmap_optimize_enabled,
|
|
|
|
.maxlen = sizeof(int),
|
2022-05-13 23:48:56 +00:00
|
|
|
.mode = 0644,
|
2022-06-28 09:22:29 +00:00
|
|
|
.proc_handler = proc_dobool,
|
2022-05-13 23:48:56 +00:00
|
|
|
},
|
|
|
|
{ }
|
|
|
|
};
|
|
|
|
|
|
|
|
static __init int hugetlb_vmemmap_sysctls_init(void)
|
|
|
|
{
|
|
|
|
/*
|
2022-06-17 13:56:50 +00:00
|
|
|
* If "struct page" crosses page boundaries, the vmemmap pages cannot
|
|
|
|
* be optimized.
|
2022-05-13 23:48:56 +00:00
|
|
|
*/
|
2022-06-17 13:56:50 +00:00
|
|
|
if (is_power_of_2(sizeof(struct page)))
|
2022-05-13 23:48:56 +00:00
|
|
|
register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
late_initcall(hugetlb_vmemmap_sysctls_init);
|
|
|
|
#endif /* CONFIG_PROC_SYSCTL */
|