linux/drivers/infiniband/hw/mthca/mthca_cq.c

982 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004, 2005 Topspin Communications. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2005 Mellanox Technologies. All rights reserved.
* Copyright (c) 2004 Voltaire, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <linux/hardirq.h>
#include <linux/sched.h>
#include <asm/io.h>
#include <rdma/ib_pack.h>
#include "mthca_dev.h"
#include "mthca_cmd.h"
#include "mthca_memfree.h"
enum {
MTHCA_MAX_DIRECT_CQ_SIZE = 4 * PAGE_SIZE
};
enum {
MTHCA_CQ_ENTRY_SIZE = 0x20
};
enum {
MTHCA_ATOMIC_BYTE_LEN = 8
};
/*
* Must be packed because start is 64 bits but only aligned to 32 bits.
*/
struct mthca_cq_context {
__be32 flags;
__be64 start;
__be32 logsize_usrpage;
__be32 error_eqn; /* Tavor only */
__be32 comp_eqn;
__be32 pd;
__be32 lkey;
__be32 last_notified_index;
__be32 solicit_producer_index;
__be32 consumer_index;
__be32 producer_index;
__be32 cqn;
__be32 ci_db; /* Arbel only */
__be32 state_db; /* Arbel only */
u32 reserved;
} __attribute__((packed));
#define MTHCA_CQ_STATUS_OK ( 0 << 28)
#define MTHCA_CQ_STATUS_OVERFLOW ( 9 << 28)
#define MTHCA_CQ_STATUS_WRITE_FAIL (10 << 28)
#define MTHCA_CQ_FLAG_TR ( 1 << 18)
#define MTHCA_CQ_FLAG_OI ( 1 << 17)
#define MTHCA_CQ_STATE_DISARMED ( 0 << 8)
#define MTHCA_CQ_STATE_ARMED ( 1 << 8)
#define MTHCA_CQ_STATE_ARMED_SOL ( 4 << 8)
#define MTHCA_EQ_STATE_FIRED (10 << 8)
enum {
MTHCA_ERROR_CQE_OPCODE_MASK = 0xfe
};
enum {
SYNDROME_LOCAL_LENGTH_ERR = 0x01,
SYNDROME_LOCAL_QP_OP_ERR = 0x02,
SYNDROME_LOCAL_EEC_OP_ERR = 0x03,
SYNDROME_LOCAL_PROT_ERR = 0x04,
SYNDROME_WR_FLUSH_ERR = 0x05,
SYNDROME_MW_BIND_ERR = 0x06,
SYNDROME_BAD_RESP_ERR = 0x10,
SYNDROME_LOCAL_ACCESS_ERR = 0x11,
SYNDROME_REMOTE_INVAL_REQ_ERR = 0x12,
SYNDROME_REMOTE_ACCESS_ERR = 0x13,
SYNDROME_REMOTE_OP_ERR = 0x14,
SYNDROME_RETRY_EXC_ERR = 0x15,
SYNDROME_RNR_RETRY_EXC_ERR = 0x16,
SYNDROME_LOCAL_RDD_VIOL_ERR = 0x20,
SYNDROME_REMOTE_INVAL_RD_REQ_ERR = 0x21,
SYNDROME_REMOTE_ABORTED_ERR = 0x22,
SYNDROME_INVAL_EECN_ERR = 0x23,
SYNDROME_INVAL_EEC_STATE_ERR = 0x24
};
struct mthca_cqe {
__be32 my_qpn;
__be32 my_ee;
__be32 rqpn;
u8 sl_ipok;
u8 g_mlpath;
__be16 rlid;
__be32 imm_etype_pkey_eec;
__be32 byte_cnt;
__be32 wqe;
u8 opcode;
u8 is_send;
u8 reserved;
u8 owner;
};
struct mthca_err_cqe {
__be32 my_qpn;
u32 reserved1[3];
u8 syndrome;
u8 vendor_err;
__be16 db_cnt;
u32 reserved2;
__be32 wqe;
u8 opcode;
u8 reserved3[2];
u8 owner;
};
#define MTHCA_CQ_ENTRY_OWNER_SW (0 << 7)
#define MTHCA_CQ_ENTRY_OWNER_HW (1 << 7)
#define MTHCA_TAVOR_CQ_DB_INC_CI (1 << 24)
#define MTHCA_TAVOR_CQ_DB_REQ_NOT (2 << 24)
#define MTHCA_TAVOR_CQ_DB_REQ_NOT_SOL (3 << 24)
#define MTHCA_TAVOR_CQ_DB_SET_CI (4 << 24)
#define MTHCA_TAVOR_CQ_DB_REQ_NOT_MULT (5 << 24)
#define MTHCA_ARBEL_CQ_DB_REQ_NOT_SOL (1 << 24)
#define MTHCA_ARBEL_CQ_DB_REQ_NOT (2 << 24)
#define MTHCA_ARBEL_CQ_DB_REQ_NOT_MULT (3 << 24)
static inline struct mthca_cqe *get_cqe_from_buf(struct mthca_cq_buf *buf,
int entry)
{
if (buf->is_direct)
return buf->queue.direct.buf + (entry * MTHCA_CQ_ENTRY_SIZE);
else
return buf->queue.page_list[entry * MTHCA_CQ_ENTRY_SIZE / PAGE_SIZE].buf
+ (entry * MTHCA_CQ_ENTRY_SIZE) % PAGE_SIZE;
}
static inline struct mthca_cqe *get_cqe(struct mthca_cq *cq, int entry)
{
return get_cqe_from_buf(&cq->buf, entry);
}
static inline struct mthca_cqe *cqe_sw(struct mthca_cqe *cqe)
{
return MTHCA_CQ_ENTRY_OWNER_HW & cqe->owner ? NULL : cqe;
}
static inline struct mthca_cqe *next_cqe_sw(struct mthca_cq *cq)
{
return cqe_sw(get_cqe(cq, cq->cons_index & cq->ibcq.cqe));
}
static inline void set_cqe_hw(struct mthca_cqe *cqe)
{
cqe->owner = MTHCA_CQ_ENTRY_OWNER_HW;
}
static void dump_cqe(struct mthca_dev *dev, void *cqe_ptr)
{
__be32 *cqe = cqe_ptr;
(void) cqe; /* avoid warning if mthca_dbg compiled away... */
mthca_dbg(dev, "CQE contents %08x %08x %08x %08x %08x %08x %08x %08x\n",
be32_to_cpu(cqe[0]), be32_to_cpu(cqe[1]), be32_to_cpu(cqe[2]),
be32_to_cpu(cqe[3]), be32_to_cpu(cqe[4]), be32_to_cpu(cqe[5]),
be32_to_cpu(cqe[6]), be32_to_cpu(cqe[7]));
}
/*
* incr is ignored in native Arbel (mem-free) mode, so cq->cons_index
* should be correct before calling update_cons_index().
*/
static inline void update_cons_index(struct mthca_dev *dev, struct mthca_cq *cq,
int incr)
{
if (mthca_is_memfree(dev)) {
*cq->set_ci_db = cpu_to_be32(cq->cons_index);
wmb();
} else {
mthca_write64(MTHCA_TAVOR_CQ_DB_INC_CI | cq->cqn, incr - 1,
dev->kar + MTHCA_CQ_DOORBELL,
MTHCA_GET_DOORBELL_LOCK(&dev->doorbell_lock));
/*
* Make sure doorbells don't leak out of CQ spinlock
* and reach the HCA out of order:
*/
mmiowb();
}
}
void mthca_cq_completion(struct mthca_dev *dev, u32 cqn)
{
struct mthca_cq *cq;
cq = mthca_array_get(&dev->cq_table.cq, cqn & (dev->limits.num_cqs - 1));
if (!cq) {
mthca_warn(dev, "Completion event for bogus CQ %08x\n", cqn);
return;
}
++cq->arm_sn;
cq->ibcq.comp_handler(&cq->ibcq, cq->ibcq.cq_context);
}
void mthca_cq_event(struct mthca_dev *dev, u32 cqn,
enum ib_event_type event_type)
{
struct mthca_cq *cq;
struct ib_event event;
spin_lock(&dev->cq_table.lock);
cq = mthca_array_get(&dev->cq_table.cq, cqn & (dev->limits.num_cqs - 1));
if (cq)
++cq->refcount;
spin_unlock(&dev->cq_table.lock);
if (!cq) {
mthca_warn(dev, "Async event for bogus CQ %08x\n", cqn);
return;
}
event.device = &dev->ib_dev;
event.event = event_type;
event.element.cq = &cq->ibcq;
if (cq->ibcq.event_handler)
cq->ibcq.event_handler(&event, cq->ibcq.cq_context);
spin_lock(&dev->cq_table.lock);
if (!--cq->refcount)
wake_up(&cq->wait);
spin_unlock(&dev->cq_table.lock);
}
static inline int is_recv_cqe(struct mthca_cqe *cqe)
{
if ((cqe->opcode & MTHCA_ERROR_CQE_OPCODE_MASK) ==
MTHCA_ERROR_CQE_OPCODE_MASK)
return !(cqe->opcode & 0x01);
else
return !(cqe->is_send & 0x80);
}
void mthca_cq_clean(struct mthca_dev *dev, struct mthca_cq *cq, u32 qpn,
struct mthca_srq *srq)
{
struct mthca_cqe *cqe;
u32 prod_index;
int i, nfreed = 0;
spin_lock_irq(&cq->lock);
/*
* First we need to find the current producer index, so we
* know where to start cleaning from. It doesn't matter if HW
* adds new entries after this loop -- the QP we're worried
* about is already in RESET, so the new entries won't come
* from our QP and therefore don't need to be checked.
*/
for (prod_index = cq->cons_index;
cqe_sw(get_cqe(cq, prod_index & cq->ibcq.cqe));
++prod_index)
if (prod_index == cq->cons_index + cq->ibcq.cqe)
break;
if (0)
mthca_dbg(dev, "Cleaning QPN %06x from CQN %06x; ci %d, pi %d\n",
qpn, cq->cqn, cq->cons_index, prod_index);
/*
* Now sweep backwards through the CQ, removing CQ entries
* that match our QP by copying older entries on top of them.
*/
while ((int) --prod_index - (int) cq->cons_index >= 0) {
cqe = get_cqe(cq, prod_index & cq->ibcq.cqe);
if (cqe->my_qpn == cpu_to_be32(qpn)) {
if (srq && is_recv_cqe(cqe))
mthca_free_srq_wqe(srq, be32_to_cpu(cqe->wqe));
++nfreed;
} else if (nfreed)
memcpy(get_cqe(cq, (prod_index + nfreed) & cq->ibcq.cqe),
cqe, MTHCA_CQ_ENTRY_SIZE);
}
if (nfreed) {
for (i = 0; i < nfreed; ++i)
set_cqe_hw(get_cqe(cq, (cq->cons_index + i) & cq->ibcq.cqe));
wmb();
cq->cons_index += nfreed;
update_cons_index(dev, cq, nfreed);
}
spin_unlock_irq(&cq->lock);
}
void mthca_cq_resize_copy_cqes(struct mthca_cq *cq)
{
int i;
/*
* In Tavor mode, the hardware keeps the consumer and producer
* indices mod the CQ size. Since we might be making the CQ
* bigger, we need to deal with the case where the producer
* index wrapped around before the CQ was resized.
*/
if (!mthca_is_memfree(to_mdev(cq->ibcq.device)) &&
cq->ibcq.cqe < cq->resize_buf->cqe) {
cq->cons_index &= cq->ibcq.cqe;
if (cqe_sw(get_cqe(cq, cq->ibcq.cqe)))
cq->cons_index -= cq->ibcq.cqe + 1;
}
for (i = cq->cons_index; cqe_sw(get_cqe(cq, i & cq->ibcq.cqe)); ++i)
memcpy(get_cqe_from_buf(&cq->resize_buf->buf,
i & cq->resize_buf->cqe),
get_cqe(cq, i & cq->ibcq.cqe), MTHCA_CQ_ENTRY_SIZE);
}
int mthca_alloc_cq_buf(struct mthca_dev *dev, struct mthca_cq_buf *buf, int nent)
{
int ret;
int i;
ret = mthca_buf_alloc(dev, nent * MTHCA_CQ_ENTRY_SIZE,
MTHCA_MAX_DIRECT_CQ_SIZE,
&buf->queue, &buf->is_direct,
&dev->driver_pd, 1, &buf->mr);
if (ret)
return ret;
for (i = 0; i < nent; ++i)
set_cqe_hw(get_cqe_from_buf(buf, i));
return 0;
}
void mthca_free_cq_buf(struct mthca_dev *dev, struct mthca_cq_buf *buf, int cqe)
{
mthca_buf_free(dev, (cqe + 1) * MTHCA_CQ_ENTRY_SIZE, &buf->queue,
buf->is_direct, &buf->mr);
}
static void handle_error_cqe(struct mthca_dev *dev, struct mthca_cq *cq,
struct mthca_qp *qp, int wqe_index, int is_send,
struct mthca_err_cqe *cqe,
struct ib_wc *entry, int *free_cqe)
{
int dbd;
__be32 new_wqe;
if (cqe->syndrome == SYNDROME_LOCAL_QP_OP_ERR) {
mthca_dbg(dev, "local QP operation err "
"(QPN %06x, WQE @ %08x, CQN %06x, index %d)\n",
be32_to_cpu(cqe->my_qpn), be32_to_cpu(cqe->wqe),
cq->cqn, cq->cons_index);
dump_cqe(dev, cqe);
}
/*
* For completions in error, only work request ID, status, vendor error
* (and freed resource count for RD) have to be set.
*/
switch (cqe->syndrome) {
case SYNDROME_LOCAL_LENGTH_ERR:
entry->status = IB_WC_LOC_LEN_ERR;
break;
case SYNDROME_LOCAL_QP_OP_ERR:
entry->status = IB_WC_LOC_QP_OP_ERR;
break;
case SYNDROME_LOCAL_EEC_OP_ERR:
entry->status = IB_WC_LOC_EEC_OP_ERR;
break;
case SYNDROME_LOCAL_PROT_ERR:
entry->status = IB_WC_LOC_PROT_ERR;
break;
case SYNDROME_WR_FLUSH_ERR:
entry->status = IB_WC_WR_FLUSH_ERR;
break;
case SYNDROME_MW_BIND_ERR:
entry->status = IB_WC_MW_BIND_ERR;
break;
case SYNDROME_BAD_RESP_ERR:
entry->status = IB_WC_BAD_RESP_ERR;
break;
case SYNDROME_LOCAL_ACCESS_ERR:
entry->status = IB_WC_LOC_ACCESS_ERR;
break;
case SYNDROME_REMOTE_INVAL_REQ_ERR:
entry->status = IB_WC_REM_INV_REQ_ERR;
break;
case SYNDROME_REMOTE_ACCESS_ERR:
entry->status = IB_WC_REM_ACCESS_ERR;
break;
case SYNDROME_REMOTE_OP_ERR:
entry->status = IB_WC_REM_OP_ERR;
break;
case SYNDROME_RETRY_EXC_ERR:
entry->status = IB_WC_RETRY_EXC_ERR;
break;
case SYNDROME_RNR_RETRY_EXC_ERR:
entry->status = IB_WC_RNR_RETRY_EXC_ERR;
break;
case SYNDROME_LOCAL_RDD_VIOL_ERR:
entry->status = IB_WC_LOC_RDD_VIOL_ERR;
break;
case SYNDROME_REMOTE_INVAL_RD_REQ_ERR:
entry->status = IB_WC_REM_INV_RD_REQ_ERR;
break;
case SYNDROME_REMOTE_ABORTED_ERR:
entry->status = IB_WC_REM_ABORT_ERR;
break;
case SYNDROME_INVAL_EECN_ERR:
entry->status = IB_WC_INV_EECN_ERR;
break;
case SYNDROME_INVAL_EEC_STATE_ERR:
entry->status = IB_WC_INV_EEC_STATE_ERR;
break;
default:
entry->status = IB_WC_GENERAL_ERR;
break;
}
entry->vendor_err = cqe->vendor_err;
/*
* Mem-free HCAs always generate one CQE per WQE, even in the
* error case, so we don't have to check the doorbell count, etc.
*/
if (mthca_is_memfree(dev))
return;
mthca_free_err_wqe(dev, qp, is_send, wqe_index, &dbd, &new_wqe);
/*
* If we're at the end of the WQE chain, or we've used up our
* doorbell count, free the CQE. Otherwise just update it for
* the next poll operation.
*/
if (!(new_wqe & cpu_to_be32(0x3f)) || (!cqe->db_cnt && dbd))
return;
be16_add_cpu(&cqe->db_cnt, -dbd);
cqe->wqe = new_wqe;
cqe->syndrome = SYNDROME_WR_FLUSH_ERR;
*free_cqe = 0;
}
static inline int mthca_poll_one(struct mthca_dev *dev,
struct mthca_cq *cq,
struct mthca_qp **cur_qp,
int *freed,
struct ib_wc *entry)
{
struct mthca_wq *wq;
struct mthca_cqe *cqe;
int wqe_index;
int is_error;
int is_send;
int free_cqe = 1;
int err = 0;
u16 checksum;
cqe = next_cqe_sw(cq);
if (!cqe)
return -EAGAIN;
/*
* Make sure we read CQ entry contents after we've checked the
* ownership bit.
*/
rmb();
if (0) {
mthca_dbg(dev, "%x/%d: CQE -> QPN %06x, WQE @ %08x\n",
cq->cqn, cq->cons_index, be32_to_cpu(cqe->my_qpn),
be32_to_cpu(cqe->wqe));
dump_cqe(dev, cqe);
}
is_error = (cqe->opcode & MTHCA_ERROR_CQE_OPCODE_MASK) ==
MTHCA_ERROR_CQE_OPCODE_MASK;
is_send = is_error ? cqe->opcode & 0x01 : cqe->is_send & 0x80;
if (!*cur_qp || be32_to_cpu(cqe->my_qpn) != (*cur_qp)->qpn) {
/*
* We do not have to take the QP table lock here,
* because CQs will be locked while QPs are removed
* from the table.
*/
*cur_qp = mthca_array_get(&dev->qp_table.qp,
be32_to_cpu(cqe->my_qpn) &
(dev->limits.num_qps - 1));
if (!*cur_qp) {
mthca_warn(dev, "CQ entry for unknown QP %06x\n",
be32_to_cpu(cqe->my_qpn) & 0xffffff);
err = -EINVAL;
goto out;
}
}
entry->qp = &(*cur_qp)->ibqp;
if (is_send) {
wq = &(*cur_qp)->sq;
wqe_index = ((be32_to_cpu(cqe->wqe) - (*cur_qp)->send_wqe_offset)
>> wq->wqe_shift);
entry->wr_id = (*cur_qp)->wrid[wqe_index +
(*cur_qp)->rq.max];
} else if ((*cur_qp)->ibqp.srq) {
struct mthca_srq *srq = to_msrq((*cur_qp)->ibqp.srq);
u32 wqe = be32_to_cpu(cqe->wqe);
wq = NULL;
wqe_index = wqe >> srq->wqe_shift;
entry->wr_id = srq->wrid[wqe_index];
mthca_free_srq_wqe(srq, wqe);
} else {
s32 wqe;
wq = &(*cur_qp)->rq;
wqe = be32_to_cpu(cqe->wqe);
wqe_index = wqe >> wq->wqe_shift;
/*
* WQE addr == base - 1 might be reported in receive completion
* with error instead of (rq size - 1) by Sinai FW 1.0.800 and
* Arbel FW 5.1.400. This bug should be fixed in later FW revs.
*/
if (unlikely(wqe_index < 0))
wqe_index = wq->max - 1;
entry->wr_id = (*cur_qp)->wrid[wqe_index];
}
if (wq) {
if (wq->last_comp < wqe_index)
wq->tail += wqe_index - wq->last_comp;
else
wq->tail += wqe_index + wq->max - wq->last_comp;
wq->last_comp = wqe_index;
}
if (is_error) {
handle_error_cqe(dev, cq, *cur_qp, wqe_index, is_send,
(struct mthca_err_cqe *) cqe,
entry, &free_cqe);
goto out;
}
if (is_send) {
entry->wc_flags = 0;
switch (cqe->opcode) {
case MTHCA_OPCODE_RDMA_WRITE:
entry->opcode = IB_WC_RDMA_WRITE;
break;
case MTHCA_OPCODE_RDMA_WRITE_IMM:
entry->opcode = IB_WC_RDMA_WRITE;
entry->wc_flags |= IB_WC_WITH_IMM;
break;
case MTHCA_OPCODE_SEND:
entry->opcode = IB_WC_SEND;
break;
case MTHCA_OPCODE_SEND_IMM:
entry->opcode = IB_WC_SEND;
entry->wc_flags |= IB_WC_WITH_IMM;
break;
case MTHCA_OPCODE_RDMA_READ:
entry->opcode = IB_WC_RDMA_READ;
entry->byte_len = be32_to_cpu(cqe->byte_cnt);
break;
case MTHCA_OPCODE_ATOMIC_CS:
entry->opcode = IB_WC_COMP_SWAP;
entry->byte_len = MTHCA_ATOMIC_BYTE_LEN;
break;
case MTHCA_OPCODE_ATOMIC_FA:
entry->opcode = IB_WC_FETCH_ADD;
entry->byte_len = MTHCA_ATOMIC_BYTE_LEN;
break;
default:
entry->opcode = MTHCA_OPCODE_INVALID;
break;
}
} else {
entry->byte_len = be32_to_cpu(cqe->byte_cnt);
switch (cqe->opcode & 0x1f) {
case IB_OPCODE_SEND_LAST_WITH_IMMEDIATE:
case IB_OPCODE_SEND_ONLY_WITH_IMMEDIATE:
entry->wc_flags = IB_WC_WITH_IMM;
RDMA/core: Add memory management extensions support This patch adds support for the IB "base memory management extension" (BMME) and the equivalent iWARP operations (which the iWARP verbs mandates all devices must implement). The new operations are: - Allocate an ib_mr for use in fast register work requests. - Allocate/free a physical buffer lists for use in fast register work requests. This allows device drivers to allocate this memory as needed for use in posting send requests (eg via dma_alloc_coherent). - New send queue work requests: * send with remote invalidate * fast register memory region * local invalidate memory region * RDMA read with invalidate local memory region (iWARP only) Consumer interface details: - A new device capability flag IB_DEVICE_MEM_MGT_EXTENSIONS is added to indicate device support for these features. - New send work request opcodes IB_WR_FAST_REG_MR, IB_WR_LOCAL_INV, IB_WR_RDMA_READ_WITH_INV are added. - A new consumer API function, ib_alloc_mr() is added to allocate fast register memory regions. - New consumer API functions, ib_alloc_fast_reg_page_list() and ib_free_fast_reg_page_list() are added to allocate and free device-specific memory for fast registration page lists. - A new consumer API function, ib_update_fast_reg_key(), is added to allow the key portion of the R_Key and L_Key of a fast registration MR to be updated. Consumers call this if desired before posting a IB_WR_FAST_REG_MR work request. Consumers can use this as follows: - MR is allocated with ib_alloc_mr(). - Page list memory is allocated with ib_alloc_fast_reg_page_list(). - MR R_Key/L_Key "key" field is updated with ib_update_fast_reg_key(). - MR made VALID and bound to a specific page list via ib_post_send(IB_WR_FAST_REG_MR) - MR made INVALID via ib_post_send(IB_WR_LOCAL_INV), ib_post_send(IB_WR_RDMA_READ_WITH_INV) or an incoming send with invalidate operation. - MR is deallocated with ib_dereg_mr() - page lists dealloced via ib_free_fast_reg_page_list(). Applications can allocate a fast register MR once, and then can repeatedly bind the MR to different physical block lists (PBLs) via posting work requests to a send queue (SQ). For each outstanding MR-to-PBL binding in the SQ pipe, a fast_reg_page_list needs to be allocated (the fast_reg_page_list is owned by the low-level driver from the consumer posting a work request until the request completes). Thus pipelining can be achieved while still allowing device-specific page_list processing. The 32-bit fast register memory key/STag is composed of a 24-bit index and an 8-bit key. The application can change the key each time it fast registers thus allowing more control over the peer's use of the key/STag (ie it can effectively be changed each time the rkey is rebound to a page list). Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-07-15 06:48:45 +00:00
entry->ex.imm_data = cqe->imm_etype_pkey_eec;
entry->opcode = IB_WC_RECV;
break;
case IB_OPCODE_RDMA_WRITE_LAST_WITH_IMMEDIATE:
case IB_OPCODE_RDMA_WRITE_ONLY_WITH_IMMEDIATE:
entry->wc_flags = IB_WC_WITH_IMM;
RDMA/core: Add memory management extensions support This patch adds support for the IB "base memory management extension" (BMME) and the equivalent iWARP operations (which the iWARP verbs mandates all devices must implement). The new operations are: - Allocate an ib_mr for use in fast register work requests. - Allocate/free a physical buffer lists for use in fast register work requests. This allows device drivers to allocate this memory as needed for use in posting send requests (eg via dma_alloc_coherent). - New send queue work requests: * send with remote invalidate * fast register memory region * local invalidate memory region * RDMA read with invalidate local memory region (iWARP only) Consumer interface details: - A new device capability flag IB_DEVICE_MEM_MGT_EXTENSIONS is added to indicate device support for these features. - New send work request opcodes IB_WR_FAST_REG_MR, IB_WR_LOCAL_INV, IB_WR_RDMA_READ_WITH_INV are added. - A new consumer API function, ib_alloc_mr() is added to allocate fast register memory regions. - New consumer API functions, ib_alloc_fast_reg_page_list() and ib_free_fast_reg_page_list() are added to allocate and free device-specific memory for fast registration page lists. - A new consumer API function, ib_update_fast_reg_key(), is added to allow the key portion of the R_Key and L_Key of a fast registration MR to be updated. Consumers call this if desired before posting a IB_WR_FAST_REG_MR work request. Consumers can use this as follows: - MR is allocated with ib_alloc_mr(). - Page list memory is allocated with ib_alloc_fast_reg_page_list(). - MR R_Key/L_Key "key" field is updated with ib_update_fast_reg_key(). - MR made VALID and bound to a specific page list via ib_post_send(IB_WR_FAST_REG_MR) - MR made INVALID via ib_post_send(IB_WR_LOCAL_INV), ib_post_send(IB_WR_RDMA_READ_WITH_INV) or an incoming send with invalidate operation. - MR is deallocated with ib_dereg_mr() - page lists dealloced via ib_free_fast_reg_page_list(). Applications can allocate a fast register MR once, and then can repeatedly bind the MR to different physical block lists (PBLs) via posting work requests to a send queue (SQ). For each outstanding MR-to-PBL binding in the SQ pipe, a fast_reg_page_list needs to be allocated (the fast_reg_page_list is owned by the low-level driver from the consumer posting a work request until the request completes). Thus pipelining can be achieved while still allowing device-specific page_list processing. The 32-bit fast register memory key/STag is composed of a 24-bit index and an 8-bit key. The application can change the key each time it fast registers thus allowing more control over the peer's use of the key/STag (ie it can effectively be changed each time the rkey is rebound to a page list). Signed-off-by: Steve Wise <swise@opengridcomputing.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
2008-07-15 06:48:45 +00:00
entry->ex.imm_data = cqe->imm_etype_pkey_eec;
entry->opcode = IB_WC_RECV_RDMA_WITH_IMM;
break;
default:
entry->wc_flags = 0;
entry->opcode = IB_WC_RECV;
break;
}
entry->slid = be16_to_cpu(cqe->rlid);
entry->sl = cqe->sl_ipok >> 4;
entry->src_qp = be32_to_cpu(cqe->rqpn) & 0xffffff;
entry->dlid_path_bits = cqe->g_mlpath & 0x7f;
entry->pkey_index = be32_to_cpu(cqe->imm_etype_pkey_eec) >> 16;
entry->wc_flags |= cqe->g_mlpath & 0x80 ? IB_WC_GRH : 0;
checksum = (be32_to_cpu(cqe->rqpn) >> 24) |
((be32_to_cpu(cqe->my_ee) >> 16) & 0xff00);
entry->wc_flags |= (cqe->sl_ipok & 1 && checksum == 0xffff) ?
IB_WC_IP_CSUM_OK : 0;
}
entry->status = IB_WC_SUCCESS;
out:
if (likely(free_cqe)) {
set_cqe_hw(cqe);
++(*freed);
++cq->cons_index;
}
return err;
}
int mthca_poll_cq(struct ib_cq *ibcq, int num_entries,
struct ib_wc *entry)
{
struct mthca_dev *dev = to_mdev(ibcq->device);
struct mthca_cq *cq = to_mcq(ibcq);
struct mthca_qp *qp = NULL;
unsigned long flags;
int err = 0;
int freed = 0;
int npolled;
spin_lock_irqsave(&cq->lock, flags);
npolled = 0;
repoll:
while (npolled < num_entries) {
err = mthca_poll_one(dev, cq, &qp,
&freed, entry + npolled);
if (err)
break;
++npolled;
}
if (freed) {
wmb();
update_cons_index(dev, cq, freed);
}
/*
* If a CQ resize is in progress and we discovered that the
* old buffer is empty, then peek in the new buffer, and if
* it's not empty, switch to the new buffer and continue
* polling there.
*/
if (unlikely(err == -EAGAIN && cq->resize_buf &&
cq->resize_buf->state == CQ_RESIZE_READY)) {
/*
* In Tavor mode, the hardware keeps the producer
* index modulo the CQ size. Since we might be making
* the CQ bigger, we need to mask our consumer index
* using the size of the old CQ buffer before looking
* in the new CQ buffer.
*/
if (!mthca_is_memfree(dev))
cq->cons_index &= cq->ibcq.cqe;
if (cqe_sw(get_cqe_from_buf(&cq->resize_buf->buf,
cq->cons_index & cq->resize_buf->cqe))) {
struct mthca_cq_buf tbuf;
int tcqe;
tbuf = cq->buf;
tcqe = cq->ibcq.cqe;
cq->buf = cq->resize_buf->buf;
cq->ibcq.cqe = cq->resize_buf->cqe;
cq->resize_buf->buf = tbuf;
cq->resize_buf->cqe = tcqe;
cq->resize_buf->state = CQ_RESIZE_SWAPPED;
goto repoll;
}
}
spin_unlock_irqrestore(&cq->lock, flags);
return err == 0 || err == -EAGAIN ? npolled : err;
}
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 04:02:48 +00:00
int mthca_tavor_arm_cq(struct ib_cq *cq, enum ib_cq_notify_flags flags)
{
u32 dbhi = ((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED ?
MTHCA_TAVOR_CQ_DB_REQ_NOT_SOL :
MTHCA_TAVOR_CQ_DB_REQ_NOT) |
to_mcq(cq)->cqn;
mthca_write64(dbhi, 0xffffffff, to_mdev(cq->device)->kar + MTHCA_CQ_DOORBELL,
MTHCA_GET_DOORBELL_LOCK(&to_mdev(cq->device)->doorbell_lock));
return 0;
}
IB: Return "maybe missed event" hint from ib_req_notify_cq() The semantics defined by the InfiniBand specification say that completion events are only generated when a completions is added to a completion queue (CQ) after completion notification is requested. In other words, this means that the following race is possible: while (CQ is not empty) ib_poll_cq(CQ); // new completion is added after while loop is exited ib_req_notify_cq(CQ); // no event is generated for the existing completion To close this race, the IB spec recommends doing another poll of the CQ after requesting notification. However, it is not always possible to arrange code this way (for example, we have found that NAPI for IPoIB cannot poll after requesting notification). Also, some hardware (eg Mellanox HCAs) actually will generate an event for completions added before the call to ib_req_notify_cq() -- which is allowed by the spec, since there's no way for any upper-layer consumer to know exactly when a completion was really added -- so the extra poll of the CQ is just a waste. Motivated by this, we add a new flag "IB_CQ_REPORT_MISSED_EVENTS" for ib_req_notify_cq() so that it can return a hint about whether the a completion may have been added before the request for notification. The return value of ib_req_notify_cq() is extended so: < 0 means an error occurred while requesting notification == 0 means notification was requested successfully, and if IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events were missed and it is safe to wait for another event. > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed in. It means that the consumer must poll the CQ again to make sure it is empty to avoid the race described above. We add a flag to enable this behavior rather than turning it on unconditionally, because checking for missed events may incur significant overhead for some low-level drivers, and consumers that don't care about the results of this test shouldn't be forced to pay for the test. Signed-off-by: Roland Dreier <rolandd@cisco.com>
2007-05-07 04:02:48 +00:00
int mthca_arbel_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
{
struct mthca_cq *cq = to_mcq(ibcq);
__be32 db_rec[2];
u32 dbhi;
u32 sn = cq->arm_sn & 3;
db_rec[0] = cpu_to_be32(cq->cons_index);
db_rec[1] = cpu_to_be32((cq->cqn << 8) | (2 << 5) | (sn << 3) |
((flags & IB_CQ_SOLICITED_MASK) ==
IB_CQ_SOLICITED ? 1 : 2));
mthca_write_db_rec(db_rec, cq->arm_db);
/*
* Make sure that the doorbell record in host memory is
* written before ringing the doorbell via PCI MMIO.
*/
wmb();
dbhi = (sn << 28) |
((flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED ?
MTHCA_ARBEL_CQ_DB_REQ_NOT_SOL :
MTHCA_ARBEL_CQ_DB_REQ_NOT) | cq->cqn;
mthca_write64(dbhi, cq->cons_index,
to_mdev(ibcq->device)->kar + MTHCA_CQ_DOORBELL,
MTHCA_GET_DOORBELL_LOCK(&to_mdev(ibcq->device)->doorbell_lock));
return 0;
}
int mthca_init_cq(struct mthca_dev *dev, int nent,
struct mthca_ucontext *ctx, u32 pdn,
struct mthca_cq *cq)
{
struct mthca_mailbox *mailbox;
struct mthca_cq_context *cq_context;
int err = -ENOMEM;
cq->ibcq.cqe = nent - 1;
cq->is_kernel = !ctx;
cq->cqn = mthca_alloc(&dev->cq_table.alloc);
if (cq->cqn == -1)
return -ENOMEM;
if (mthca_is_memfree(dev)) {
err = mthca_table_get(dev, dev->cq_table.table, cq->cqn);
if (err)
goto err_out;
if (cq->is_kernel) {
cq->arm_sn = 1;
err = -ENOMEM;
cq->set_ci_db_index = mthca_alloc_db(dev, MTHCA_DB_TYPE_CQ_SET_CI,
cq->cqn, &cq->set_ci_db);
if (cq->set_ci_db_index < 0)
goto err_out_icm;
cq->arm_db_index = mthca_alloc_db(dev, MTHCA_DB_TYPE_CQ_ARM,
cq->cqn, &cq->arm_db);
if (cq->arm_db_index < 0)
goto err_out_ci;
}
}
mailbox = mthca_alloc_mailbox(dev, GFP_KERNEL);
if (IS_ERR(mailbox))
goto err_out_arm;
cq_context = mailbox->buf;
if (cq->is_kernel) {
err = mthca_alloc_cq_buf(dev, &cq->buf, nent);
if (err)
goto err_out_mailbox;
}
spin_lock_init(&cq->lock);
cq->refcount = 1;
init_waitqueue_head(&cq->wait);
mutex_init(&cq->mutex);
memset(cq_context, 0, sizeof *cq_context);
cq_context->flags = cpu_to_be32(MTHCA_CQ_STATUS_OK |
MTHCA_CQ_STATE_DISARMED |
MTHCA_CQ_FLAG_TR);
cq_context->logsize_usrpage = cpu_to_be32((ffs(nent) - 1) << 24);
if (ctx)
cq_context->logsize_usrpage |= cpu_to_be32(ctx->uar.index);
else
cq_context->logsize_usrpage |= cpu_to_be32(dev->driver_uar.index);
cq_context->error_eqn = cpu_to_be32(dev->eq_table.eq[MTHCA_EQ_ASYNC].eqn);
cq_context->comp_eqn = cpu_to_be32(dev->eq_table.eq[MTHCA_EQ_COMP].eqn);
cq_context->pd = cpu_to_be32(pdn);
cq_context->lkey = cpu_to_be32(cq->buf.mr.ibmr.lkey);
cq_context->cqn = cpu_to_be32(cq->cqn);
if (mthca_is_memfree(dev)) {
cq_context->ci_db = cpu_to_be32(cq->set_ci_db_index);
cq_context->state_db = cpu_to_be32(cq->arm_db_index);
}
IB/mthca: Stop returning separate error and status from FW commands Instead of having firmware command functions return an error and also a status, leading to code like: err = mthca_FW_COMMAND(..., &status); if (err) goto out; if (status) { err = -E...; goto out; } all over the place, just handle the FW status inside the FW command handling code (the way mlx4 does it), so we can simply write: err = mthca_FW_COMMAND(...); if (err) goto out; In addition to simplifying the source code, this also saves a healthy chunk of text: add/remove: 0/0 grow/shrink: 10/88 up/down: 510/-3357 (-2847) function old new delta static.trans_table 324 584 +260 mthca_cmd_poll 352 477 +125 mthca_cmd_wait 511 567 +56 mthca_table_put 213 240 +27 mthca_cleanup_db_tab 372 387 +15 __mthca_remove_one 314 323 +9 mthca_cleanup_user_db_tab 275 283 +8 __mthca_init_one 1738 1746 +8 mthca_cleanup 20 21 +1 mthca_MAD_IFC 1081 1082 +1 mthca_MGID_HASH 43 40 -3 mthca_MAP_ICM_AUX 23 20 -3 mthca_MAP_ICM 19 16 -3 mthca_MAP_FA 23 20 -3 mthca_READ_MGM 43 38 -5 mthca_QUERY_SRQ 43 38 -5 mthca_QUERY_QP 59 54 -5 mthca_HW2SW_SRQ 43 38 -5 mthca_HW2SW_MPT 60 55 -5 mthca_HW2SW_EQ 43 38 -5 mthca_HW2SW_CQ 43 38 -5 mthca_free_icm_table 120 114 -6 mthca_query_srq 214 206 -8 mthca_free_qp 662 654 -8 mthca_cmd 38 28 -10 mthca_alloc_db 1321 1311 -10 mthca_setup_hca 1067 1055 -12 mthca_WRITE_MTT 35 22 -13 mthca_WRITE_MGM 40 27 -13 mthca_UNMAP_ICM_AUX 36 23 -13 mthca_UNMAP_FA 36 23 -13 mthca_SYS_DIS 36 23 -13 mthca_SYNC_TPT 36 23 -13 mthca_SW2HW_SRQ 35 22 -13 mthca_SW2HW_MPT 35 22 -13 mthca_SW2HW_EQ 35 22 -13 mthca_SW2HW_CQ 35 22 -13 mthca_RUN_FW 36 23 -13 mthca_DISABLE_LAM 36 23 -13 mthca_CLOSE_IB 36 23 -13 mthca_CLOSE_HCA 38 25 -13 mthca_ARM_SRQ 39 26 -13 mthca_free_icms 178 164 -14 mthca_QUERY_DDR 389 375 -14 mthca_resize_cq 1063 1048 -15 mthca_unmap_eq_icm 123 107 -16 mthca_map_eq_icm 396 380 -16 mthca_cmd_box 90 74 -16 mthca_SET_IB 433 417 -16 mthca_RESIZE_CQ 369 353 -16 mthca_MAP_ICM_page 240 224 -16 mthca_MAP_EQ 183 167 -16 mthca_INIT_IB 473 457 -16 mthca_INIT_HCA 745 729 -16 mthca_map_user_db 816 798 -18 mthca_SYS_EN 157 139 -18 mthca_cleanup_qp_table 78 59 -19 mthca_cleanup_eq_table 168 149 -19 mthca_UNMAP_ICM 143 121 -22 mthca_modify_srq 172 149 -23 mthca_unmap_fmr 198 174 -24 mthca_query_qp 814 790 -24 mthca_query_pkey 343 319 -24 mthca_SET_ICM_SIZE 34 10 -24 mthca_QUERY_DEV_LIM 1870 1846 -24 mthca_map_cmd 1130 1105 -25 mthca_ENABLE_LAM 401 375 -26 mthca_modify_port 247 220 -27 mthca_query_device 884 850 -34 mthca_NOP 75 41 -34 mthca_table_get 287 249 -38 mthca_init_qp_table 333 293 -40 mthca_MODIFY_QP 348 308 -40 mthca_close_hca 131 89 -42 mthca_free_eq 435 390 -45 mthca_query_port 755 705 -50 mthca_free_cq 581 528 -53 mthca_alloc_icm_table 578 524 -54 mthca_multicast_attach 1041 986 -55 mthca_init_hca 326 271 -55 mthca_query_gid 487 431 -56 mthca_free_srq 524 468 -56 mthca_free_mr 168 111 -57 mthca_create_eq 1560 1501 -59 mthca_multicast_detach 790 728 -62 mthca_write_mtt 918 854 -64 mthca_register_device 1406 1342 -64 mthca_fmr_alloc 947 883 -64 mthca_mr_alloc 652 582 -70 mthca_process_mad 1242 1164 -78 mthca_dev_lim 910 830 -80 find_mgm 482 400 -82 mthca_modify_qp 3852 3753 -99 mthca_init_cq 1281 1181 -100 mthca_alloc_srq 1719 1610 -109 mthca_init_eq_table 1807 1679 -128 mthca_init_tavor 761 491 -270 mthca_init_arbel 2617 2098 -519 Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
2011-07-07 17:20:40 +00:00
err = mthca_SW2HW_CQ(dev, mailbox, cq->cqn);
if (err) {
mthca_warn(dev, "SW2HW_CQ failed (%d)\n", err);
goto err_out_free_mr;
}
spin_lock_irq(&dev->cq_table.lock);
if (mthca_array_set(&dev->cq_table.cq,
cq->cqn & (dev->limits.num_cqs - 1),
cq)) {
spin_unlock_irq(&dev->cq_table.lock);
goto err_out_free_mr;
}
spin_unlock_irq(&dev->cq_table.lock);
cq->cons_index = 0;
mthca_free_mailbox(dev, mailbox);
return 0;
err_out_free_mr:
if (cq->is_kernel)
mthca_free_cq_buf(dev, &cq->buf, cq->ibcq.cqe);
err_out_mailbox:
mthca_free_mailbox(dev, mailbox);
err_out_arm:
if (cq->is_kernel && mthca_is_memfree(dev))
mthca_free_db(dev, MTHCA_DB_TYPE_CQ_ARM, cq->arm_db_index);
err_out_ci:
if (cq->is_kernel && mthca_is_memfree(dev))
mthca_free_db(dev, MTHCA_DB_TYPE_CQ_SET_CI, cq->set_ci_db_index);
err_out_icm:
mthca_table_put(dev, dev->cq_table.table, cq->cqn);
err_out:
mthca_free(&dev->cq_table.alloc, cq->cqn);
return err;
}
static inline int get_cq_refcount(struct mthca_dev *dev, struct mthca_cq *cq)
{
int c;
spin_lock_irq(&dev->cq_table.lock);
c = cq->refcount;
spin_unlock_irq(&dev->cq_table.lock);
return c;
}
void mthca_free_cq(struct mthca_dev *dev,
struct mthca_cq *cq)
{
struct mthca_mailbox *mailbox;
int err;
mailbox = mthca_alloc_mailbox(dev, GFP_KERNEL);
if (IS_ERR(mailbox)) {
mthca_warn(dev, "No memory for mailbox to free CQ.\n");
return;
}
IB/mthca: Stop returning separate error and status from FW commands Instead of having firmware command functions return an error and also a status, leading to code like: err = mthca_FW_COMMAND(..., &status); if (err) goto out; if (status) { err = -E...; goto out; } all over the place, just handle the FW status inside the FW command handling code (the way mlx4 does it), so we can simply write: err = mthca_FW_COMMAND(...); if (err) goto out; In addition to simplifying the source code, this also saves a healthy chunk of text: add/remove: 0/0 grow/shrink: 10/88 up/down: 510/-3357 (-2847) function old new delta static.trans_table 324 584 +260 mthca_cmd_poll 352 477 +125 mthca_cmd_wait 511 567 +56 mthca_table_put 213 240 +27 mthca_cleanup_db_tab 372 387 +15 __mthca_remove_one 314 323 +9 mthca_cleanup_user_db_tab 275 283 +8 __mthca_init_one 1738 1746 +8 mthca_cleanup 20 21 +1 mthca_MAD_IFC 1081 1082 +1 mthca_MGID_HASH 43 40 -3 mthca_MAP_ICM_AUX 23 20 -3 mthca_MAP_ICM 19 16 -3 mthca_MAP_FA 23 20 -3 mthca_READ_MGM 43 38 -5 mthca_QUERY_SRQ 43 38 -5 mthca_QUERY_QP 59 54 -5 mthca_HW2SW_SRQ 43 38 -5 mthca_HW2SW_MPT 60 55 -5 mthca_HW2SW_EQ 43 38 -5 mthca_HW2SW_CQ 43 38 -5 mthca_free_icm_table 120 114 -6 mthca_query_srq 214 206 -8 mthca_free_qp 662 654 -8 mthca_cmd 38 28 -10 mthca_alloc_db 1321 1311 -10 mthca_setup_hca 1067 1055 -12 mthca_WRITE_MTT 35 22 -13 mthca_WRITE_MGM 40 27 -13 mthca_UNMAP_ICM_AUX 36 23 -13 mthca_UNMAP_FA 36 23 -13 mthca_SYS_DIS 36 23 -13 mthca_SYNC_TPT 36 23 -13 mthca_SW2HW_SRQ 35 22 -13 mthca_SW2HW_MPT 35 22 -13 mthca_SW2HW_EQ 35 22 -13 mthca_SW2HW_CQ 35 22 -13 mthca_RUN_FW 36 23 -13 mthca_DISABLE_LAM 36 23 -13 mthca_CLOSE_IB 36 23 -13 mthca_CLOSE_HCA 38 25 -13 mthca_ARM_SRQ 39 26 -13 mthca_free_icms 178 164 -14 mthca_QUERY_DDR 389 375 -14 mthca_resize_cq 1063 1048 -15 mthca_unmap_eq_icm 123 107 -16 mthca_map_eq_icm 396 380 -16 mthca_cmd_box 90 74 -16 mthca_SET_IB 433 417 -16 mthca_RESIZE_CQ 369 353 -16 mthca_MAP_ICM_page 240 224 -16 mthca_MAP_EQ 183 167 -16 mthca_INIT_IB 473 457 -16 mthca_INIT_HCA 745 729 -16 mthca_map_user_db 816 798 -18 mthca_SYS_EN 157 139 -18 mthca_cleanup_qp_table 78 59 -19 mthca_cleanup_eq_table 168 149 -19 mthca_UNMAP_ICM 143 121 -22 mthca_modify_srq 172 149 -23 mthca_unmap_fmr 198 174 -24 mthca_query_qp 814 790 -24 mthca_query_pkey 343 319 -24 mthca_SET_ICM_SIZE 34 10 -24 mthca_QUERY_DEV_LIM 1870 1846 -24 mthca_map_cmd 1130 1105 -25 mthca_ENABLE_LAM 401 375 -26 mthca_modify_port 247 220 -27 mthca_query_device 884 850 -34 mthca_NOP 75 41 -34 mthca_table_get 287 249 -38 mthca_init_qp_table 333 293 -40 mthca_MODIFY_QP 348 308 -40 mthca_close_hca 131 89 -42 mthca_free_eq 435 390 -45 mthca_query_port 755 705 -50 mthca_free_cq 581 528 -53 mthca_alloc_icm_table 578 524 -54 mthca_multicast_attach 1041 986 -55 mthca_init_hca 326 271 -55 mthca_query_gid 487 431 -56 mthca_free_srq 524 468 -56 mthca_free_mr 168 111 -57 mthca_create_eq 1560 1501 -59 mthca_multicast_detach 790 728 -62 mthca_write_mtt 918 854 -64 mthca_register_device 1406 1342 -64 mthca_fmr_alloc 947 883 -64 mthca_mr_alloc 652 582 -70 mthca_process_mad 1242 1164 -78 mthca_dev_lim 910 830 -80 find_mgm 482 400 -82 mthca_modify_qp 3852 3753 -99 mthca_init_cq 1281 1181 -100 mthca_alloc_srq 1719 1610 -109 mthca_init_eq_table 1807 1679 -128 mthca_init_tavor 761 491 -270 mthca_init_arbel 2617 2098 -519 Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.de>
2011-07-07 17:20:40 +00:00
err = mthca_HW2SW_CQ(dev, mailbox, cq->cqn);
if (err)
mthca_warn(dev, "HW2SW_CQ failed (%d)\n", err);
if (0) {
__be32 *ctx = mailbox->buf;
int j;
printk(KERN_ERR "context for CQN %x (cons index %x, next sw %d)\n",
cq->cqn, cq->cons_index,
cq->is_kernel ? !!next_cqe_sw(cq) : 0);
for (j = 0; j < 16; ++j)
printk(KERN_ERR "[%2x] %08x\n", j * 4, be32_to_cpu(ctx[j]));
}
spin_lock_irq(&dev->cq_table.lock);
mthca_array_clear(&dev->cq_table.cq,
cq->cqn & (dev->limits.num_cqs - 1));
--cq->refcount;
spin_unlock_irq(&dev->cq_table.lock);
if (dev->mthca_flags & MTHCA_FLAG_MSI_X)
synchronize_irq(dev->eq_table.eq[MTHCA_EQ_COMP].msi_x_vector);
else
synchronize_irq(dev->pdev->irq);
wait_event(cq->wait, !get_cq_refcount(dev, cq));
if (cq->is_kernel) {
mthca_free_cq_buf(dev, &cq->buf, cq->ibcq.cqe);
if (mthca_is_memfree(dev)) {
mthca_free_db(dev, MTHCA_DB_TYPE_CQ_ARM, cq->arm_db_index);
mthca_free_db(dev, MTHCA_DB_TYPE_CQ_SET_CI, cq->set_ci_db_index);
}
}
mthca_table_put(dev, dev->cq_table.table, cq->cqn);
mthca_free(&dev->cq_table.alloc, cq->cqn);
mthca_free_mailbox(dev, mailbox);
}
int mthca_init_cq_table(struct mthca_dev *dev)
{
int err;
spin_lock_init(&dev->cq_table.lock);
err = mthca_alloc_init(&dev->cq_table.alloc,
dev->limits.num_cqs,
(1 << 24) - 1,
dev->limits.reserved_cqs);
if (err)
return err;
err = mthca_array_init(&dev->cq_table.cq,
dev->limits.num_cqs);
if (err)
mthca_alloc_cleanup(&dev->cq_table.alloc);
return err;
}
void mthca_cleanup_cq_table(struct mthca_dev *dev)
{
mthca_array_cleanup(&dev->cq_table.cq, dev->limits.num_cqs);
mthca_alloc_cleanup(&dev->cq_table.alloc);
}