linux/arch/blackfin/include/asm/cdef_LPBlackfin.h

310 lines
19 KiB
C
Raw Normal View History

/*
* Copyright 2005-2008 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
#ifndef _CDEF_LPBLACKFIN_H
#define _CDEF_LPBLACKFIN_H
/*#if !defined(__ADSPLPBLACKFIN__)
#warning cdef_LPBlackfin.h should only be included for 532 compatible chips.
#endif
*/
#include <asm/def_LPBlackfin.h>
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
/*Cache & SRAM Memory*/
#define bfin_read_SRAM_BASE_ADDRESS() bfin_read32(SRAM_BASE_ADDRESS)
#define bfin_write_SRAM_BASE_ADDRESS(val) bfin_write32(SRAM_BASE_ADDRESS,val)
#define bfin_read_DMEM_CONTROL() bfin_read32(DMEM_CONTROL)
#define bfin_write_DMEM_CONTROL(val) bfin_write32(DMEM_CONTROL,val)
#define bfin_read_DCPLB_STATUS() bfin_read32(DCPLB_STATUS)
#define bfin_write_DCPLB_STATUS(val) bfin_write32(DCPLB_STATUS,val)
#define bfin_read_DCPLB_FAULT_ADDR() bfin_read32(DCPLB_FAULT_ADDR)
#define bfin_write_DCPLB_FAULT_ADDR(val) bfin_write32(DCPLB_FAULT_ADDR,val)
/*
#define MMR_TIMEOUT 0xFFE00010
*/
#define bfin_read_DCPLB_ADDR0() bfin_read32(DCPLB_ADDR0)
#define bfin_write_DCPLB_ADDR0(val) bfin_write32(DCPLB_ADDR0,val)
#define bfin_read_DCPLB_ADDR1() bfin_read32(DCPLB_ADDR1)
#define bfin_write_DCPLB_ADDR1(val) bfin_write32(DCPLB_ADDR1,val)
#define bfin_read_DCPLB_ADDR2() bfin_read32(DCPLB_ADDR2)
#define bfin_write_DCPLB_ADDR2(val) bfin_write32(DCPLB_ADDR2,val)
#define bfin_read_DCPLB_ADDR3() bfin_read32(DCPLB_ADDR3)
#define bfin_write_DCPLB_ADDR3(val) bfin_write32(DCPLB_ADDR3,val)
#define bfin_read_DCPLB_ADDR4() bfin_read32(DCPLB_ADDR4)
#define bfin_write_DCPLB_ADDR4(val) bfin_write32(DCPLB_ADDR4,val)
#define bfin_read_DCPLB_ADDR5() bfin_read32(DCPLB_ADDR5)
#define bfin_write_DCPLB_ADDR5(val) bfin_write32(DCPLB_ADDR5,val)
#define bfin_read_DCPLB_ADDR6() bfin_read32(DCPLB_ADDR6)
#define bfin_write_DCPLB_ADDR6(val) bfin_write32(DCPLB_ADDR6,val)
#define bfin_read_DCPLB_ADDR7() bfin_read32(DCPLB_ADDR7)
#define bfin_write_DCPLB_ADDR7(val) bfin_write32(DCPLB_ADDR7,val)
#define bfin_read_DCPLB_ADDR8() bfin_read32(DCPLB_ADDR8)
#define bfin_write_DCPLB_ADDR8(val) bfin_write32(DCPLB_ADDR8,val)
#define bfin_read_DCPLB_ADDR9() bfin_read32(DCPLB_ADDR9)
#define bfin_write_DCPLB_ADDR9(val) bfin_write32(DCPLB_ADDR9,val)
#define bfin_read_DCPLB_ADDR10() bfin_read32(DCPLB_ADDR10)
#define bfin_write_DCPLB_ADDR10(val) bfin_write32(DCPLB_ADDR10,val)
#define bfin_read_DCPLB_ADDR11() bfin_read32(DCPLB_ADDR11)
#define bfin_write_DCPLB_ADDR11(val) bfin_write32(DCPLB_ADDR11,val)
#define bfin_read_DCPLB_ADDR12() bfin_read32(DCPLB_ADDR12)
#define bfin_write_DCPLB_ADDR12(val) bfin_write32(DCPLB_ADDR12,val)
#define bfin_read_DCPLB_ADDR13() bfin_read32(DCPLB_ADDR13)
#define bfin_write_DCPLB_ADDR13(val) bfin_write32(DCPLB_ADDR13,val)
#define bfin_read_DCPLB_ADDR14() bfin_read32(DCPLB_ADDR14)
#define bfin_write_DCPLB_ADDR14(val) bfin_write32(DCPLB_ADDR14,val)
#define bfin_read_DCPLB_ADDR15() bfin_read32(DCPLB_ADDR15)
#define bfin_write_DCPLB_ADDR15(val) bfin_write32(DCPLB_ADDR15,val)
#define bfin_read_DCPLB_DATA0() bfin_read32(DCPLB_DATA0)
#define bfin_write_DCPLB_DATA0(val) bfin_write32(DCPLB_DATA0,val)
#define bfin_read_DCPLB_DATA1() bfin_read32(DCPLB_DATA1)
#define bfin_write_DCPLB_DATA1(val) bfin_write32(DCPLB_DATA1,val)
#define bfin_read_DCPLB_DATA2() bfin_read32(DCPLB_DATA2)
#define bfin_write_DCPLB_DATA2(val) bfin_write32(DCPLB_DATA2,val)
#define bfin_read_DCPLB_DATA3() bfin_read32(DCPLB_DATA3)
#define bfin_write_DCPLB_DATA3(val) bfin_write32(DCPLB_DATA3,val)
#define bfin_read_DCPLB_DATA4() bfin_read32(DCPLB_DATA4)
#define bfin_write_DCPLB_DATA4(val) bfin_write32(DCPLB_DATA4,val)
#define bfin_read_DCPLB_DATA5() bfin_read32(DCPLB_DATA5)
#define bfin_write_DCPLB_DATA5(val) bfin_write32(DCPLB_DATA5,val)
#define bfin_read_DCPLB_DATA6() bfin_read32(DCPLB_DATA6)
#define bfin_write_DCPLB_DATA6(val) bfin_write32(DCPLB_DATA6,val)
#define bfin_read_DCPLB_DATA7() bfin_read32(DCPLB_DATA7)
#define bfin_write_DCPLB_DATA7(val) bfin_write32(DCPLB_DATA7,val)
#define bfin_read_DCPLB_DATA8() bfin_read32(DCPLB_DATA8)
#define bfin_write_DCPLB_DATA8(val) bfin_write32(DCPLB_DATA8,val)
#define bfin_read_DCPLB_DATA9() bfin_read32(DCPLB_DATA9)
#define bfin_write_DCPLB_DATA9(val) bfin_write32(DCPLB_DATA9,val)
#define bfin_read_DCPLB_DATA10() bfin_read32(DCPLB_DATA10)
#define bfin_write_DCPLB_DATA10(val) bfin_write32(DCPLB_DATA10,val)
#define bfin_read_DCPLB_DATA11() bfin_read32(DCPLB_DATA11)
#define bfin_write_DCPLB_DATA11(val) bfin_write32(DCPLB_DATA11,val)
#define bfin_read_DCPLB_DATA12() bfin_read32(DCPLB_DATA12)
#define bfin_write_DCPLB_DATA12(val) bfin_write32(DCPLB_DATA12,val)
#define bfin_read_DCPLB_DATA13() bfin_read32(DCPLB_DATA13)
#define bfin_write_DCPLB_DATA13(val) bfin_write32(DCPLB_DATA13,val)
#define bfin_read_DCPLB_DATA14() bfin_read32(DCPLB_DATA14)
#define bfin_write_DCPLB_DATA14(val) bfin_write32(DCPLB_DATA14,val)
#define bfin_read_DCPLB_DATA15() bfin_read32(DCPLB_DATA15)
#define bfin_write_DCPLB_DATA15(val) bfin_write32(DCPLB_DATA15,val)
#define bfin_read_DTEST_COMMAND() bfin_read32(DTEST_COMMAND)
#define bfin_write_DTEST_COMMAND(val) bfin_write32(DTEST_COMMAND,val)
/*
#define DTEST_INDEX 0xFFE00304
*/
#define bfin_read_DTEST_DATA0() bfin_read32(DTEST_DATA0)
#define bfin_write_DTEST_DATA0(val) bfin_write32(DTEST_DATA0,val)
#define bfin_read_DTEST_DATA1() bfin_read32(DTEST_DATA1)
#define bfin_write_DTEST_DATA1(val) bfin_write32(DTEST_DATA1,val)
/*
#define DTEST_DATA2 0xFFE00408
#define DTEST_DATA3 0xFFE0040C
*/
#define bfin_read_IMEM_CONTROL() bfin_read32(IMEM_CONTROL)
#define bfin_write_IMEM_CONTROL(val) bfin_write32(IMEM_CONTROL,val)
#define bfin_read_ICPLB_STATUS() bfin_read32(ICPLB_STATUS)
#define bfin_write_ICPLB_STATUS(val) bfin_write32(ICPLB_STATUS,val)
#define bfin_read_ICPLB_FAULT_ADDR() bfin_read32(ICPLB_FAULT_ADDR)
#define bfin_write_ICPLB_FAULT_ADDR(val) bfin_write32(ICPLB_FAULT_ADDR,val)
#define bfin_read_ICPLB_ADDR0() bfin_read32(ICPLB_ADDR0)
#define bfin_write_ICPLB_ADDR0(val) bfin_write32(ICPLB_ADDR0,val)
#define bfin_read_ICPLB_ADDR1() bfin_read32(ICPLB_ADDR1)
#define bfin_write_ICPLB_ADDR1(val) bfin_write32(ICPLB_ADDR1,val)
#define bfin_read_ICPLB_ADDR2() bfin_read32(ICPLB_ADDR2)
#define bfin_write_ICPLB_ADDR2(val) bfin_write32(ICPLB_ADDR2,val)
#define bfin_read_ICPLB_ADDR3() bfin_read32(ICPLB_ADDR3)
#define bfin_write_ICPLB_ADDR3(val) bfin_write32(ICPLB_ADDR3,val)
#define bfin_read_ICPLB_ADDR4() bfin_read32(ICPLB_ADDR4)
#define bfin_write_ICPLB_ADDR4(val) bfin_write32(ICPLB_ADDR4,val)
#define bfin_read_ICPLB_ADDR5() bfin_read32(ICPLB_ADDR5)
#define bfin_write_ICPLB_ADDR5(val) bfin_write32(ICPLB_ADDR5,val)
#define bfin_read_ICPLB_ADDR6() bfin_read32(ICPLB_ADDR6)
#define bfin_write_ICPLB_ADDR6(val) bfin_write32(ICPLB_ADDR6,val)
#define bfin_read_ICPLB_ADDR7() bfin_read32(ICPLB_ADDR7)
#define bfin_write_ICPLB_ADDR7(val) bfin_write32(ICPLB_ADDR7,val)
#define bfin_read_ICPLB_ADDR8() bfin_read32(ICPLB_ADDR8)
#define bfin_write_ICPLB_ADDR8(val) bfin_write32(ICPLB_ADDR8,val)
#define bfin_read_ICPLB_ADDR9() bfin_read32(ICPLB_ADDR9)
#define bfin_write_ICPLB_ADDR9(val) bfin_write32(ICPLB_ADDR9,val)
#define bfin_read_ICPLB_ADDR10() bfin_read32(ICPLB_ADDR10)
#define bfin_write_ICPLB_ADDR10(val) bfin_write32(ICPLB_ADDR10,val)
#define bfin_read_ICPLB_ADDR11() bfin_read32(ICPLB_ADDR11)
#define bfin_write_ICPLB_ADDR11(val) bfin_write32(ICPLB_ADDR11,val)
#define bfin_read_ICPLB_ADDR12() bfin_read32(ICPLB_ADDR12)
#define bfin_write_ICPLB_ADDR12(val) bfin_write32(ICPLB_ADDR12,val)
#define bfin_read_ICPLB_ADDR13() bfin_read32(ICPLB_ADDR13)
#define bfin_write_ICPLB_ADDR13(val) bfin_write32(ICPLB_ADDR13,val)
#define bfin_read_ICPLB_ADDR14() bfin_read32(ICPLB_ADDR14)
#define bfin_write_ICPLB_ADDR14(val) bfin_write32(ICPLB_ADDR14,val)
#define bfin_read_ICPLB_ADDR15() bfin_read32(ICPLB_ADDR15)
#define bfin_write_ICPLB_ADDR15(val) bfin_write32(ICPLB_ADDR15,val)
#define bfin_read_ICPLB_DATA0() bfin_read32(ICPLB_DATA0)
#define bfin_write_ICPLB_DATA0(val) bfin_write32(ICPLB_DATA0,val)
#define bfin_read_ICPLB_DATA1() bfin_read32(ICPLB_DATA1)
#define bfin_write_ICPLB_DATA1(val) bfin_write32(ICPLB_DATA1,val)
#define bfin_read_ICPLB_DATA2() bfin_read32(ICPLB_DATA2)
#define bfin_write_ICPLB_DATA2(val) bfin_write32(ICPLB_DATA2,val)
#define bfin_read_ICPLB_DATA3() bfin_read32(ICPLB_DATA3)
#define bfin_write_ICPLB_DATA3(val) bfin_write32(ICPLB_DATA3,val)
#define bfin_read_ICPLB_DATA4() bfin_read32(ICPLB_DATA4)
#define bfin_write_ICPLB_DATA4(val) bfin_write32(ICPLB_DATA4,val)
#define bfin_read_ICPLB_DATA5() bfin_read32(ICPLB_DATA5)
#define bfin_write_ICPLB_DATA5(val) bfin_write32(ICPLB_DATA5,val)
#define bfin_read_ICPLB_DATA6() bfin_read32(ICPLB_DATA6)
#define bfin_write_ICPLB_DATA6(val) bfin_write32(ICPLB_DATA6,val)
#define bfin_read_ICPLB_DATA7() bfin_read32(ICPLB_DATA7)
#define bfin_write_ICPLB_DATA7(val) bfin_write32(ICPLB_DATA7,val)
#define bfin_read_ICPLB_DATA8() bfin_read32(ICPLB_DATA8)
#define bfin_write_ICPLB_DATA8(val) bfin_write32(ICPLB_DATA8,val)
#define bfin_read_ICPLB_DATA9() bfin_read32(ICPLB_DATA9)
#define bfin_write_ICPLB_DATA9(val) bfin_write32(ICPLB_DATA9,val)
#define bfin_read_ICPLB_DATA10() bfin_read32(ICPLB_DATA10)
#define bfin_write_ICPLB_DATA10(val) bfin_write32(ICPLB_DATA10,val)
#define bfin_read_ICPLB_DATA11() bfin_read32(ICPLB_DATA11)
#define bfin_write_ICPLB_DATA11(val) bfin_write32(ICPLB_DATA11,val)
#define bfin_read_ICPLB_DATA12() bfin_read32(ICPLB_DATA12)
#define bfin_write_ICPLB_DATA12(val) bfin_write32(ICPLB_DATA12,val)
#define bfin_read_ICPLB_DATA13() bfin_read32(ICPLB_DATA13)
#define bfin_write_ICPLB_DATA13(val) bfin_write32(ICPLB_DATA13,val)
#define bfin_read_ICPLB_DATA14() bfin_read32(ICPLB_DATA14)
#define bfin_write_ICPLB_DATA14(val) bfin_write32(ICPLB_DATA14,val)
#define bfin_read_ICPLB_DATA15() bfin_read32(ICPLB_DATA15)
#define bfin_write_ICPLB_DATA15(val) bfin_write32(ICPLB_DATA15,val)
#define bfin_write_ITEST_COMMAND(val) bfin_write32(ITEST_COMMAND,val)
#if 0
#define ITEST_INDEX 0xFFE01304 /* Instruction Test Index Register */
#endif
#define bfin_write_ITEST_DATA0(val) bfin_write32(ITEST_DATA0,val)
#define bfin_write_ITEST_DATA1(val) bfin_write32(ITEST_DATA1,val)
#if !ANOMALY_05000481
#define bfin_read_ITEST_COMMAND() bfin_read32(ITEST_COMMAND)
#define bfin_read_ITEST_DATA0() bfin_read32(ITEST_DATA0)
#define bfin_read_ITEST_DATA1() bfin_read32(ITEST_DATA1)
#endif
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
/* Event/Interrupt Registers*/
#define bfin_read_EVT0() bfin_read32(EVT0)
#define bfin_write_EVT0(val) bfin_write32(EVT0,val)
#define bfin_read_EVT1() bfin_read32(EVT1)
#define bfin_write_EVT1(val) bfin_write32(EVT1,val)
#define bfin_read_EVT2() bfin_read32(EVT2)
#define bfin_write_EVT2(val) bfin_write32(EVT2,val)
#define bfin_read_EVT3() bfin_read32(EVT3)
#define bfin_write_EVT3(val) bfin_write32(EVT3,val)
#define bfin_read_EVT4() bfin_read32(EVT4)
#define bfin_write_EVT4(val) bfin_write32(EVT4,val)
#define bfin_read_EVT5() bfin_read32(EVT5)
#define bfin_write_EVT5(val) bfin_write32(EVT5,val)
#define bfin_read_EVT6() bfin_read32(EVT6)
#define bfin_write_EVT6(val) bfin_write32(EVT6,val)
#define bfin_read_EVT7() bfin_read32(EVT7)
#define bfin_write_EVT7(val) bfin_write32(EVT7,val)
#define bfin_read_EVT8() bfin_read32(EVT8)
#define bfin_write_EVT8(val) bfin_write32(EVT8,val)
#define bfin_read_EVT9() bfin_read32(EVT9)
#define bfin_write_EVT9(val) bfin_write32(EVT9,val)
#define bfin_read_EVT10() bfin_read32(EVT10)
#define bfin_write_EVT10(val) bfin_write32(EVT10,val)
#define bfin_read_EVT11() bfin_read32(EVT11)
#define bfin_write_EVT11(val) bfin_write32(EVT11,val)
#define bfin_read_EVT12() bfin_read32(EVT12)
#define bfin_write_EVT12(val) bfin_write32(EVT12,val)
#define bfin_read_EVT13() bfin_read32(EVT13)
#define bfin_write_EVT13(val) bfin_write32(EVT13,val)
#define bfin_read_EVT14() bfin_read32(EVT14)
#define bfin_write_EVT14(val) bfin_write32(EVT14,val)
#define bfin_read_EVT15() bfin_read32(EVT15)
#define bfin_write_EVT15(val) bfin_write32(EVT15,val)
#define bfin_read_EVT_OVERRIDE() bfin_read32(EVT_OVERRIDE)
#define bfin_write_EVT_OVERRIDE(val) bfin_write32(EVT_OVERRIDE,val)
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
#define bfin_read_IMASK() bfin_read32(IMASK)
#define bfin_write_IMASK(val) bfin_write32(IMASK,val)
#define bfin_read_IPEND() bfin_read32(IPEND)
#define bfin_write_IPEND(val) bfin_write32(IPEND,val)
#define bfin_read_ILAT() bfin_read32(ILAT)
#define bfin_write_ILAT(val) bfin_write32(ILAT,val)
#define bfin_read_IPRIO() bfin_read32(IPRIO)
#define bfin_write_IPRIO(val) bfin_write32(IPRIO,val)
blackfin architecture This adds support for the Analog Devices Blackfin processor architecture, and currently supports the BF533, BF532, BF531, BF537, BF536, BF534, and BF561 (Dual Core) devices, with a variety of development platforms including those avaliable from Analog Devices (BF533-EZKit, BF533-STAMP, BF537-STAMP, BF561-EZKIT), and Bluetechnix! Tinyboards. The Blackfin architecture was jointly developed by Intel and Analog Devices Inc. (ADI) as the Micro Signal Architecture (MSA) core and introduced it in December of 2000. Since then ADI has put this core into its Blackfin processor family of devices. The Blackfin core has the advantages of a clean, orthogonal,RISC-like microprocessor instruction set. It combines a dual-MAC (Multiply/Accumulate), state-of-the-art signal processing engine and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. The Blackfin architecture, including the instruction set, is described by the ADSP-BF53x/BF56x Blackfin Processor Programming Reference http://blackfin.uclinux.org/gf/download/frsrelease/29/2549/Blackfin_PRM.pdf The Blackfin processor is already supported by major releases of gcc, and there are binary and source rpms/tarballs for many architectures at: http://blackfin.uclinux.org/gf/project/toolchain/frs There is complete documentation, including "getting started" guides available at: http://docs.blackfin.uclinux.org/ which provides links to the sources and patches you will need in order to set up a cross-compiling environment for bfin-linux-uclibc This patch, as well as the other patches (toolchain, distribution, uClibc) are actively supported by Analog Devices Inc, at: http://blackfin.uclinux.org/ We have tested this on LTP, and our test plan (including pass/fails) can be found at: http://docs.blackfin.uclinux.org/doku.php?id=testing_the_linux_kernel [m.kozlowski@tuxland.pl: balance parenthesis in blackfin header files] Signed-off-by: Bryan Wu <bryan.wu@analog.com> Signed-off-by: Mariusz Kozlowski <m.kozlowski@tuxland.pl> Signed-off-by: Aubrey Li <aubrey.li@analog.com> Signed-off-by: Jie Zhang <jie.zhang@analog.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-06 21:50:22 +00:00
/*Core Timer Registers*/
#define bfin_read_TCNTL() bfin_read32(TCNTL)
#define bfin_write_TCNTL(val) bfin_write32(TCNTL,val)
#define bfin_read_TPERIOD() bfin_read32(TPERIOD)
#define bfin_write_TPERIOD(val) bfin_write32(TPERIOD,val)
#define bfin_read_TSCALE() bfin_read32(TSCALE)
#define bfin_write_TSCALE(val) bfin_write32(TSCALE,val)
#define bfin_read_TCOUNT() bfin_read32(TCOUNT)
#define bfin_write_TCOUNT(val) bfin_write32(TCOUNT,val)
/*Debug/MP/Emulation Registers*/
#define bfin_read_DSPID() bfin_read32(DSPID)
#define bfin_write_DSPID(val) bfin_write32(DSPID,val)
#define bfin_read_DBGCTL() bfin_read32(DBGCTL)
#define bfin_write_DBGCTL(val) bfin_write32(DBGCTL,val)
#define bfin_read_DBGSTAT() bfin_read32(DBGSTAT)
#define bfin_write_DBGSTAT(val) bfin_write32(DBGSTAT,val)
#define bfin_read_EMUDAT() bfin_read32(EMUDAT)
#define bfin_write_EMUDAT(val) bfin_write32(EMUDAT,val)
/*Trace Buffer Registers*/
#define bfin_read_TBUFCTL() bfin_read32(TBUFCTL)
#define bfin_write_TBUFCTL(val) bfin_write32(TBUFCTL,val)
#define bfin_read_TBUFSTAT() bfin_read32(TBUFSTAT)
#define bfin_write_TBUFSTAT(val) bfin_write32(TBUFSTAT,val)
#define bfin_read_TBUF() bfin_read32(TBUF)
#define bfin_write_TBUF(val) bfin_write32(TBUF,val)
/*Watch Point Control Registers*/
#define bfin_read_WPIACTL() bfin_read32(WPIACTL)
#define bfin_write_WPIACTL(val) bfin_write32(WPIACTL,val)
#define bfin_read_WPIA0() bfin_read32(WPIA0)
#define bfin_write_WPIA0(val) bfin_write32(WPIA0,val)
#define bfin_read_WPIA1() bfin_read32(WPIA1)
#define bfin_write_WPIA1(val) bfin_write32(WPIA1,val)
#define bfin_read_WPIA2() bfin_read32(WPIA2)
#define bfin_write_WPIA2(val) bfin_write32(WPIA2,val)
#define bfin_read_WPIA3() bfin_read32(WPIA3)
#define bfin_write_WPIA3(val) bfin_write32(WPIA3,val)
#define bfin_read_WPIA4() bfin_read32(WPIA4)
#define bfin_write_WPIA4(val) bfin_write32(WPIA4,val)
#define bfin_read_WPIA5() bfin_read32(WPIA5)
#define bfin_write_WPIA5(val) bfin_write32(WPIA5,val)
#define bfin_read_WPIACNT0() bfin_read32(WPIACNT0)
#define bfin_write_WPIACNT0(val) bfin_write32(WPIACNT0,val)
#define bfin_read_WPIACNT1() bfin_read32(WPIACNT1)
#define bfin_write_WPIACNT1(val) bfin_write32(WPIACNT1,val)
#define bfin_read_WPIACNT2() bfin_read32(WPIACNT2)
#define bfin_write_WPIACNT2(val) bfin_write32(WPIACNT2,val)
#define bfin_read_WPIACNT3() bfin_read32(WPIACNT3)
#define bfin_write_WPIACNT3(val) bfin_write32(WPIACNT3,val)
#define bfin_read_WPIACNT4() bfin_read32(WPIACNT4)
#define bfin_write_WPIACNT4(val) bfin_write32(WPIACNT4,val)
#define bfin_read_WPIACNT5() bfin_read32(WPIACNT5)
#define bfin_write_WPIACNT5(val) bfin_write32(WPIACNT5,val)
#define bfin_read_WPDACTL() bfin_read32(WPDACTL)
#define bfin_write_WPDACTL(val) bfin_write32(WPDACTL,val)
#define bfin_read_WPDA0() bfin_read32(WPDA0)
#define bfin_write_WPDA0(val) bfin_write32(WPDA0,val)
#define bfin_read_WPDA1() bfin_read32(WPDA1)
#define bfin_write_WPDA1(val) bfin_write32(WPDA1,val)
#define bfin_read_WPDACNT0() bfin_read32(WPDACNT0)
#define bfin_write_WPDACNT0(val) bfin_write32(WPDACNT0,val)
#define bfin_read_WPDACNT1() bfin_read32(WPDACNT1)
#define bfin_write_WPDACNT1(val) bfin_write32(WPDACNT1,val)
#define bfin_read_WPSTAT() bfin_read32(WPSTAT)
#define bfin_write_WPSTAT(val) bfin_write32(WPSTAT,val)
/*Performance Monitor Registers*/
#define bfin_read_PFCTL() bfin_read32(PFCTL)
#define bfin_write_PFCTL(val) bfin_write32(PFCTL,val)
#define bfin_read_PFCNTR0() bfin_read32(PFCNTR0)
#define bfin_write_PFCNTR0(val) bfin_write32(PFCNTR0,val)
#define bfin_read_PFCNTR1() bfin_read32(PFCNTR1)
#define bfin_write_PFCNTR1(val) bfin_write32(PFCNTR1,val)
#endif /* _CDEF_LPBLACKFIN_H */