linux/drivers/gpu/drm/nouveau/nouveau_display.c

694 lines
18 KiB
C
Raw Normal View History

/*
* Copyright (C) 2008 Maarten Maathuis.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
#include <acpi/video.h>
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_helper.h>
drm: Split out drm_probe_helper.h Having the probe helper stuff (which pretty much everyone needs) in the drm_crtc_helper.h file (which atomic drivers should never need) is confusing. Split them out. To make sure I actually achieved the goal here I went through all drivers. And indeed, all atomic drivers are now free of drm_crtc_helper.h includes. v2: Make it compile. There was so much compile fail on arm drivers that I figured I'll better not include any of the acks on v1. v3: Massive rebase because i915 has lost a lot of drmP.h includes, but not all: Through drm_crtc_helper.h > drm_modeset_helper.h -> drmP.h there was still one, which this patch largely removes. Which means rolling out lots more includes all over. This will also conflict with ongoing drmP.h cleanup by others I expect. v3: Rebase on top of atomic bochs. v4: Review from Laurent for bridge/rcar/omap/shmob/core bits: - (re)move some of the added includes, use the better include files in other places (all suggested from Laurent adopted unchanged). - sort alphabetically v5: Actually try to sort them, and while at it, sort all the ones I touch. v6: Rebase onto i915 changes. v7: Rebase once more. Acked-by: Harry Wentland <harry.wentland@amd.com> Acked-by: Sam Ravnborg <sam@ravnborg.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Rodrigo Vivi <rodrigo.vivi@intel.com> Acked-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Acked-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com> Acked-by: CK Hu <ck.hu@mediatek.com> Acked-by: Alex Deucher <alexander.deucher@amd.com> Acked-by: Sam Ravnborg <sam@ravnborg.org> Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Liviu Dudau <liviu.dudau@arm.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Cc: linux-arm-kernel@lists.infradead.org Cc: virtualization@lists.linux-foundation.org Cc: etnaviv@lists.freedesktop.org Cc: linux-samsung-soc@vger.kernel.org Cc: intel-gfx@lists.freedesktop.org Cc: linux-mediatek@lists.infradead.org Cc: linux-amlogic@lists.infradead.org Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: nouveau@lists.freedesktop.org Cc: spice-devel@lists.freedesktop.org Cc: amd-gfx@lists.freedesktop.org Cc: linux-renesas-soc@vger.kernel.org Cc: linux-rockchip@lists.infradead.org Cc: linux-stm32@st-md-mailman.stormreply.com Cc: linux-tegra@vger.kernel.org Cc: xen-devel@lists.xen.org Link: https://patchwork.freedesktop.org/patch/msgid/20190117210334.13234-1-daniel.vetter@ffwll.ch
2019-01-17 21:03:34 +00:00
#include <drm/drm_probe_helper.h>
#include "nouveau_fbcon.h"
#include "nouveau_crtc.h"
#include "nouveau_gem.h"
#include "nouveau_connector.h"
#include "nv50_display.h"
#include <nvif/class.h>
#include <nvif/cl0046.h>
#include <nvif/event.h>
static int
nouveau_display_vblank_handler(struct nvif_notify *notify)
{
struct nouveau_crtc *nv_crtc =
container_of(notify, typeof(*nv_crtc), vblank);
drm_crtc_handle_vblank(&nv_crtc->base);
return NVIF_NOTIFY_KEEP;
}
int
nouveau_display_vblank_enable(struct drm_device *dev, unsigned int pipe)
{
struct drm_crtc *crtc;
struct nouveau_crtc *nv_crtc;
crtc = drm_crtc_from_index(dev, pipe);
if (!crtc)
return -EINVAL;
nv_crtc = nouveau_crtc(crtc);
nvif_notify_get(&nv_crtc->vblank);
return 0;
}
void
nouveau_display_vblank_disable(struct drm_device *dev, unsigned int pipe)
{
struct drm_crtc *crtc;
struct nouveau_crtc *nv_crtc;
crtc = drm_crtc_from_index(dev, pipe);
if (!crtc)
return;
nv_crtc = nouveau_crtc(crtc);
nvif_notify_put(&nv_crtc->vblank);
}
static inline int
calc(int blanks, int blanke, int total, int line)
{
if (blanke >= blanks) {
if (line >= blanks)
line -= total;
} else {
if (line >= blanks)
line -= total;
line -= blanke + 1;
}
return line;
}
drm/vblank: drop the mode argument from drm_calc_vbltimestamp_from_scanoutpos If we restrict this helper to only kms drivers (which is the case) we can look up the correct mode easily ourselves. But it's a bit tricky: - All legacy drivers look at crtc->hwmode. But that is updated already at the beginning of the modeset helper, which means when we disable a pipe. Hence the final timestamps might be a bit off. But since this is an existing bug I'm not going to change it, but just try to be bug-for-bug compatible with the current code. This only applies to radeon&amdgpu. - i915 tries to get it perfect by updating crtc->hwmode when the pipe is off (i.e. vblank->enabled = false). - All other atomic drivers look at crtc->state->adjusted_mode. Those that look at state->requested_mode simply don't adjust their mode, so it's the same. That has two problems: Accessing crtc->state from interrupt handling code is unsafe, and it's updated before we shut down the pipe. For nonblocking modesets it's even worse. For atomic drivers try to implement what i915 does. To do that we add a new hwmode field to the vblank structure, and update it from drm_calc_timestamping_constants(). For atomic drivers that's called from the right spot by the helper library already, so all fine. But for safety let's enforce that. For legacy driver this function is only called at the end (oh the fun), which is broken, so again let's not bother and just stay bug-for-bug compatible. The benefit is that we can use drm_calc_vbltimestamp_from_scanoutpos directly to implement ->get_vblank_timestamp in every driver, deleting a lot of code. v2: Completely new approach, trying to mimick the i915 solution. v3: Fixup kerneldoc. v4: Drop the WARN_ON to check that the vblank is off, atomic helpers currently unconditionally call this. Recomputing the same stuff should be harmless. v5: Fix typos and move misplaced hunks to the right patches (Neil). v6: Undo hunk movement (kbuild). Cc: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Cc: Eric Anholt <eric@anholt.net> Cc: Rob Clark <robdclark@gmail.com> Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170509140329.24114-4-daniel.vetter@ffwll.ch
2017-05-09 14:03:28 +00:00
static bool
nouveau_display_scanoutpos_head(struct drm_crtc *crtc, int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime)
{
struct {
struct nv04_disp_mthd_v0 base;
struct nv04_disp_scanoutpos_v0 scan;
} args = {
.base.method = NV04_DISP_SCANOUTPOS,
.base.head = nouveau_crtc(crtc)->index,
};
struct nouveau_display *disp = nouveau_display(crtc->dev);
struct drm_vblank_crtc *vblank = &crtc->dev->vblank[drm_crtc_index(crtc)];
drm/vblank: drop the mode argument from drm_calc_vbltimestamp_from_scanoutpos If we restrict this helper to only kms drivers (which is the case) we can look up the correct mode easily ourselves. But it's a bit tricky: - All legacy drivers look at crtc->hwmode. But that is updated already at the beginning of the modeset helper, which means when we disable a pipe. Hence the final timestamps might be a bit off. But since this is an existing bug I'm not going to change it, but just try to be bug-for-bug compatible with the current code. This only applies to radeon&amdgpu. - i915 tries to get it perfect by updating crtc->hwmode when the pipe is off (i.e. vblank->enabled = false). - All other atomic drivers look at crtc->state->adjusted_mode. Those that look at state->requested_mode simply don't adjust their mode, so it's the same. That has two problems: Accessing crtc->state from interrupt handling code is unsafe, and it's updated before we shut down the pipe. For nonblocking modesets it's even worse. For atomic drivers try to implement what i915 does. To do that we add a new hwmode field to the vblank structure, and update it from drm_calc_timestamping_constants(). For atomic drivers that's called from the right spot by the helper library already, so all fine. But for safety let's enforce that. For legacy driver this function is only called at the end (oh the fun), which is broken, so again let's not bother and just stay bug-for-bug compatible. The benefit is that we can use drm_calc_vbltimestamp_from_scanoutpos directly to implement ->get_vblank_timestamp in every driver, deleting a lot of code. v2: Completely new approach, trying to mimick the i915 solution. v3: Fixup kerneldoc. v4: Drop the WARN_ON to check that the vblank is off, atomic helpers currently unconditionally call this. Recomputing the same stuff should be harmless. v5: Fix typos and move misplaced hunks to the right patches (Neil). v6: Undo hunk movement (kbuild). Cc: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Cc: Eric Anholt <eric@anholt.net> Cc: Rob Clark <robdclark@gmail.com> Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170509140329.24114-4-daniel.vetter@ffwll.ch
2017-05-09 14:03:28 +00:00
int retry = 20;
bool ret = false;
do {
ret = nvif_mthd(&disp->disp.object, 0, &args, sizeof(args));
if (ret != 0)
drm/vblank: drop the mode argument from drm_calc_vbltimestamp_from_scanoutpos If we restrict this helper to only kms drivers (which is the case) we can look up the correct mode easily ourselves. But it's a bit tricky: - All legacy drivers look at crtc->hwmode. But that is updated already at the beginning of the modeset helper, which means when we disable a pipe. Hence the final timestamps might be a bit off. But since this is an existing bug I'm not going to change it, but just try to be bug-for-bug compatible with the current code. This only applies to radeon&amdgpu. - i915 tries to get it perfect by updating crtc->hwmode when the pipe is off (i.e. vblank->enabled = false). - All other atomic drivers look at crtc->state->adjusted_mode. Those that look at state->requested_mode simply don't adjust their mode, so it's the same. That has two problems: Accessing crtc->state from interrupt handling code is unsafe, and it's updated before we shut down the pipe. For nonblocking modesets it's even worse. For atomic drivers try to implement what i915 does. To do that we add a new hwmode field to the vblank structure, and update it from drm_calc_timestamping_constants(). For atomic drivers that's called from the right spot by the helper library already, so all fine. But for safety let's enforce that. For legacy driver this function is only called at the end (oh the fun), which is broken, so again let's not bother and just stay bug-for-bug compatible. The benefit is that we can use drm_calc_vbltimestamp_from_scanoutpos directly to implement ->get_vblank_timestamp in every driver, deleting a lot of code. v2: Completely new approach, trying to mimick the i915 solution. v3: Fixup kerneldoc. v4: Drop the WARN_ON to check that the vblank is off, atomic helpers currently unconditionally call this. Recomputing the same stuff should be harmless. v5: Fix typos and move misplaced hunks to the right patches (Neil). v6: Undo hunk movement (kbuild). Cc: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Cc: Eric Anholt <eric@anholt.net> Cc: Rob Clark <robdclark@gmail.com> Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170509140329.24114-4-daniel.vetter@ffwll.ch
2017-05-09 14:03:28 +00:00
return false;
if (args.scan.vline) {
drm/vblank: drop the mode argument from drm_calc_vbltimestamp_from_scanoutpos If we restrict this helper to only kms drivers (which is the case) we can look up the correct mode easily ourselves. But it's a bit tricky: - All legacy drivers look at crtc->hwmode. But that is updated already at the beginning of the modeset helper, which means when we disable a pipe. Hence the final timestamps might be a bit off. But since this is an existing bug I'm not going to change it, but just try to be bug-for-bug compatible with the current code. This only applies to radeon&amdgpu. - i915 tries to get it perfect by updating crtc->hwmode when the pipe is off (i.e. vblank->enabled = false). - All other atomic drivers look at crtc->state->adjusted_mode. Those that look at state->requested_mode simply don't adjust their mode, so it's the same. That has two problems: Accessing crtc->state from interrupt handling code is unsafe, and it's updated before we shut down the pipe. For nonblocking modesets it's even worse. For atomic drivers try to implement what i915 does. To do that we add a new hwmode field to the vblank structure, and update it from drm_calc_timestamping_constants(). For atomic drivers that's called from the right spot by the helper library already, so all fine. But for safety let's enforce that. For legacy driver this function is only called at the end (oh the fun), which is broken, so again let's not bother and just stay bug-for-bug compatible. The benefit is that we can use drm_calc_vbltimestamp_from_scanoutpos directly to implement ->get_vblank_timestamp in every driver, deleting a lot of code. v2: Completely new approach, trying to mimick the i915 solution. v3: Fixup kerneldoc. v4: Drop the WARN_ON to check that the vblank is off, atomic helpers currently unconditionally call this. Recomputing the same stuff should be harmless. v5: Fix typos and move misplaced hunks to the right patches (Neil). v6: Undo hunk movement (kbuild). Cc: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Cc: Eric Anholt <eric@anholt.net> Cc: Rob Clark <robdclark@gmail.com> Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170509140329.24114-4-daniel.vetter@ffwll.ch
2017-05-09 14:03:28 +00:00
ret = true;
break;
}
if (retry) ndelay(vblank->linedur_ns);
} while (retry--);
*hpos = args.scan.hline;
*vpos = calc(args.scan.vblanks, args.scan.vblanke,
args.scan.vtotal, args.scan.vline);
if (stime) *stime = ns_to_ktime(args.scan.time[0]);
if (etime) *etime = ns_to_ktime(args.scan.time[1]);
return ret;
}
drm/vblank: drop the mode argument from drm_calc_vbltimestamp_from_scanoutpos If we restrict this helper to only kms drivers (which is the case) we can look up the correct mode easily ourselves. But it's a bit tricky: - All legacy drivers look at crtc->hwmode. But that is updated already at the beginning of the modeset helper, which means when we disable a pipe. Hence the final timestamps might be a bit off. But since this is an existing bug I'm not going to change it, but just try to be bug-for-bug compatible with the current code. This only applies to radeon&amdgpu. - i915 tries to get it perfect by updating crtc->hwmode when the pipe is off (i.e. vblank->enabled = false). - All other atomic drivers look at crtc->state->adjusted_mode. Those that look at state->requested_mode simply don't adjust their mode, so it's the same. That has two problems: Accessing crtc->state from interrupt handling code is unsafe, and it's updated before we shut down the pipe. For nonblocking modesets it's even worse. For atomic drivers try to implement what i915 does. To do that we add a new hwmode field to the vblank structure, and update it from drm_calc_timestamping_constants(). For atomic drivers that's called from the right spot by the helper library already, so all fine. But for safety let's enforce that. For legacy driver this function is only called at the end (oh the fun), which is broken, so again let's not bother and just stay bug-for-bug compatible. The benefit is that we can use drm_calc_vbltimestamp_from_scanoutpos directly to implement ->get_vblank_timestamp in every driver, deleting a lot of code. v2: Completely new approach, trying to mimick the i915 solution. v3: Fixup kerneldoc. v4: Drop the WARN_ON to check that the vblank is off, atomic helpers currently unconditionally call this. Recomputing the same stuff should be harmless. v5: Fix typos and move misplaced hunks to the right patches (Neil). v6: Undo hunk movement (kbuild). Cc: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Cc: Eric Anholt <eric@anholt.net> Cc: Rob Clark <robdclark@gmail.com> Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170509140329.24114-4-daniel.vetter@ffwll.ch
2017-05-09 14:03:28 +00:00
bool
nouveau_display_scanoutpos(struct drm_device *dev, unsigned int pipe,
drm/vblank: drop the mode argument from drm_calc_vbltimestamp_from_scanoutpos If we restrict this helper to only kms drivers (which is the case) we can look up the correct mode easily ourselves. But it's a bit tricky: - All legacy drivers look at crtc->hwmode. But that is updated already at the beginning of the modeset helper, which means when we disable a pipe. Hence the final timestamps might be a bit off. But since this is an existing bug I'm not going to change it, but just try to be bug-for-bug compatible with the current code. This only applies to radeon&amdgpu. - i915 tries to get it perfect by updating crtc->hwmode when the pipe is off (i.e. vblank->enabled = false). - All other atomic drivers look at crtc->state->adjusted_mode. Those that look at state->requested_mode simply don't adjust their mode, so it's the same. That has two problems: Accessing crtc->state from interrupt handling code is unsafe, and it's updated before we shut down the pipe. For nonblocking modesets it's even worse. For atomic drivers try to implement what i915 does. To do that we add a new hwmode field to the vblank structure, and update it from drm_calc_timestamping_constants(). For atomic drivers that's called from the right spot by the helper library already, so all fine. But for safety let's enforce that. For legacy driver this function is only called at the end (oh the fun), which is broken, so again let's not bother and just stay bug-for-bug compatible. The benefit is that we can use drm_calc_vbltimestamp_from_scanoutpos directly to implement ->get_vblank_timestamp in every driver, deleting a lot of code. v2: Completely new approach, trying to mimick the i915 solution. v3: Fixup kerneldoc. v4: Drop the WARN_ON to check that the vblank is off, atomic helpers currently unconditionally call this. Recomputing the same stuff should be harmless. v5: Fix typos and move misplaced hunks to the right patches (Neil). v6: Undo hunk movement (kbuild). Cc: Mario Kleiner <mario.kleiner@tuebingen.mpg.de> Cc: Eric Anholt <eric@anholt.net> Cc: Rob Clark <robdclark@gmail.com> Cc: linux-arm-msm@vger.kernel.org Cc: freedreno@lists.freedesktop.org Cc: Alex Deucher <alexander.deucher@amd.com> Cc: Christian König <christian.koenig@amd.com> Cc: Ben Skeggs <bskeggs@redhat.com> Reviewed-by: Neil Armstrong <narmstrong@baylibre.com> Acked-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/20170509140329.24114-4-daniel.vetter@ffwll.ch
2017-05-09 14:03:28 +00:00
bool in_vblank_irq, int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime,
const struct drm_display_mode *mode)
{
struct drm_crtc *crtc;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (nouveau_crtc(crtc)->index == pipe) {
return nouveau_display_scanoutpos_head(crtc, vpos, hpos,
stime, etime);
}
}
return false;
}
static void
nouveau_display_vblank_fini(struct drm_device *dev)
{
struct drm_crtc *crtc;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nvif_notify_fini(&nv_crtc->vblank);
}
}
static int
nouveau_display_vblank_init(struct drm_device *dev)
{
struct nouveau_display *disp = nouveau_display(dev);
struct drm_crtc *crtc;
int ret;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
ret = nvif_notify_init(&disp->disp.object,
nouveau_display_vblank_handler, false,
NV04_DISP_NTFY_VBLANK,
&(struct nvif_notify_head_req_v0) {
.head = nv_crtc->index,
},
sizeof(struct nvif_notify_head_req_v0),
sizeof(struct nvif_notify_head_rep_v0),
&nv_crtc->vblank);
if (ret) {
nouveau_display_vblank_fini(dev);
return ret;
}
}
ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
if (ret) {
nouveau_display_vblank_fini(dev);
return ret;
}
return 0;
}
static void
nouveau_user_framebuffer_destroy(struct drm_framebuffer *drm_fb)
{
struct nouveau_framebuffer *fb = nouveau_framebuffer(drm_fb);
if (fb->nvbo)
drm_gem_object_put_unlocked(&fb->nvbo->gem);
drm_framebuffer_cleanup(drm_fb);
kfree(fb);
}
static int
nouveau_user_framebuffer_create_handle(struct drm_framebuffer *drm_fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct nouveau_framebuffer *fb = nouveau_framebuffer(drm_fb);
return drm_gem_handle_create(file_priv, &fb->nvbo->gem, handle);
}
static const struct drm_framebuffer_funcs nouveau_framebuffer_funcs = {
.destroy = nouveau_user_framebuffer_destroy,
.create_handle = nouveau_user_framebuffer_create_handle,
};
int
nouveau_framebuffer_new(struct drm_device *dev,
const struct drm_mode_fb_cmd2 *mode_cmd,
struct nouveau_bo *nvbo,
struct nouveau_framebuffer **pfb)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_framebuffer *fb;
int ret;
/* YUV overlays have special requirements pre-NV50 */
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA &&
(mode_cmd->pixel_format == DRM_FORMAT_YUYV ||
mode_cmd->pixel_format == DRM_FORMAT_UYVY ||
mode_cmd->pixel_format == DRM_FORMAT_NV12 ||
mode_cmd->pixel_format == DRM_FORMAT_NV21) &&
(mode_cmd->pitches[0] & 0x3f || /* align 64 */
mode_cmd->pitches[0] >= 0x10000 || /* at most 64k pitch */
(mode_cmd->pitches[1] && /* pitches for planes must match */
mode_cmd->pitches[0] != mode_cmd->pitches[1]))) {
struct drm_format_name_buf format_name;
DRM_DEBUG_KMS("Unsuitable framebuffer: format: %s; pitches: 0x%x\n 0x%x\n",
drm_get_format_name(mode_cmd->pixel_format,
&format_name),
mode_cmd->pitches[0],
mode_cmd->pitches[1]);
return -EINVAL;
}
if (!(fb = *pfb = kzalloc(sizeof(*fb), GFP_KERNEL)))
return -ENOMEM;
drm_helper_mode_fill_fb_struct(dev, &fb->base, mode_cmd);
fb->nvbo = nvbo;
ret = drm_framebuffer_init(dev, &fb->base, &nouveau_framebuffer_funcs);
if (ret)
kfree(fb);
return ret;
}
struct drm_framebuffer *
nouveau_user_framebuffer_create(struct drm_device *dev,
struct drm_file *file_priv,
const struct drm_mode_fb_cmd2 *mode_cmd)
{
struct nouveau_framebuffer *fb;
struct nouveau_bo *nvbo;
struct drm_gem_object *gem;
int ret;
gem = drm_gem_object_lookup(file_priv, mode_cmd->handles[0]);
if (!gem)
return ERR_PTR(-ENOENT);
nvbo = nouveau_gem_object(gem);
ret = nouveau_framebuffer_new(dev, mode_cmd, nvbo, &fb);
if (ret == 0)
return &fb->base;
drm_gem_object_put_unlocked(gem);
return ERR_PTR(ret);
}
static const struct drm_mode_config_funcs nouveau_mode_config_funcs = {
.fb_create = nouveau_user_framebuffer_create,
drm/nouveau/drm/nouveau: Fix deadlock with fb_helper with async RPM requests Currently, nouveau uses the generic drm_fb_helper_output_poll_changed() function provided by DRM as it's output_poll_changed callback. Unfortunately however, this function doesn't grab runtime PM references early enough and even if it did-we can't block waiting for the device to resume in output_poll_changed() since it's very likely that we'll need to grab the fb_helper lock at some point during the runtime resume process. This currently results in deadlocking like so: [ 246.669625] INFO: task kworker/4:0:37 blocked for more than 120 seconds. [ 246.673398] Not tainted 4.18.0-rc5Lyude-Test+ #2 [ 246.675271] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 246.676527] kworker/4:0 D 0 37 2 0x80000000 [ 246.677580] Workqueue: events output_poll_execute [drm_kms_helper] [ 246.678704] Call Trace: [ 246.679753] __schedule+0x322/0xaf0 [ 246.680916] schedule+0x33/0x90 [ 246.681924] schedule_preempt_disabled+0x15/0x20 [ 246.683023] __mutex_lock+0x569/0x9a0 [ 246.684035] ? kobject_uevent_env+0x117/0x7b0 [ 246.685132] ? drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper] [ 246.686179] mutex_lock_nested+0x1b/0x20 [ 246.687278] ? mutex_lock_nested+0x1b/0x20 [ 246.688307] drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper] [ 246.689420] drm_fb_helper_output_poll_changed+0x23/0x30 [drm_kms_helper] [ 246.690462] drm_kms_helper_hotplug_event+0x2a/0x30 [drm_kms_helper] [ 246.691570] output_poll_execute+0x198/0x1c0 [drm_kms_helper] [ 246.692611] process_one_work+0x231/0x620 [ 246.693725] worker_thread+0x214/0x3a0 [ 246.694756] kthread+0x12b/0x150 [ 246.695856] ? wq_pool_ids_show+0x140/0x140 [ 246.696888] ? kthread_create_worker_on_cpu+0x70/0x70 [ 246.697998] ret_from_fork+0x3a/0x50 [ 246.699034] INFO: task kworker/0:1:60 blocked for more than 120 seconds. [ 246.700153] Not tainted 4.18.0-rc5Lyude-Test+ #2 [ 246.701182] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 246.702278] kworker/0:1 D 0 60 2 0x80000000 [ 246.703293] Workqueue: pm pm_runtime_work [ 246.704393] Call Trace: [ 246.705403] __schedule+0x322/0xaf0 [ 246.706439] ? wait_for_completion+0x104/0x190 [ 246.707393] schedule+0x33/0x90 [ 246.708375] schedule_timeout+0x3a5/0x590 [ 246.709289] ? mark_held_locks+0x58/0x80 [ 246.710208] ? _raw_spin_unlock_irq+0x2c/0x40 [ 246.711222] ? wait_for_completion+0x104/0x190 [ 246.712134] ? trace_hardirqs_on_caller+0xf4/0x190 [ 246.713094] ? wait_for_completion+0x104/0x190 [ 246.713964] wait_for_completion+0x12c/0x190 [ 246.714895] ? wake_up_q+0x80/0x80 [ 246.715727] ? get_work_pool+0x90/0x90 [ 246.716649] flush_work+0x1c9/0x280 [ 246.717483] ? flush_workqueue_prep_pwqs+0x1b0/0x1b0 [ 246.718442] __cancel_work_timer+0x146/0x1d0 [ 246.719247] cancel_delayed_work_sync+0x13/0x20 [ 246.720043] drm_kms_helper_poll_disable+0x1f/0x30 [drm_kms_helper] [ 246.721123] nouveau_pmops_runtime_suspend+0x3d/0xb0 [nouveau] [ 246.721897] pci_pm_runtime_suspend+0x6b/0x190 [ 246.722825] ? pci_has_legacy_pm_support+0x70/0x70 [ 246.723737] __rpm_callback+0x7a/0x1d0 [ 246.724721] ? pci_has_legacy_pm_support+0x70/0x70 [ 246.725607] rpm_callback+0x24/0x80 [ 246.726553] ? pci_has_legacy_pm_support+0x70/0x70 [ 246.727376] rpm_suspend+0x142/0x6b0 [ 246.728185] pm_runtime_work+0x97/0xc0 [ 246.728938] process_one_work+0x231/0x620 [ 246.729796] worker_thread+0x44/0x3a0 [ 246.730614] kthread+0x12b/0x150 [ 246.731395] ? wq_pool_ids_show+0x140/0x140 [ 246.732202] ? kthread_create_worker_on_cpu+0x70/0x70 [ 246.732878] ret_from_fork+0x3a/0x50 [ 246.733768] INFO: task kworker/4:2:422 blocked for more than 120 seconds. [ 246.734587] Not tainted 4.18.0-rc5Lyude-Test+ #2 [ 246.735393] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 246.736113] kworker/4:2 D 0 422 2 0x80000080 [ 246.736789] Workqueue: events_long drm_dp_mst_link_probe_work [drm_kms_helper] [ 246.737665] Call Trace: [ 246.738490] __schedule+0x322/0xaf0 [ 246.739250] schedule+0x33/0x90 [ 246.739908] rpm_resume+0x19c/0x850 [ 246.740750] ? finish_wait+0x90/0x90 [ 246.741541] __pm_runtime_resume+0x4e/0x90 [ 246.742370] nv50_disp_atomic_commit+0x31/0x210 [nouveau] [ 246.743124] drm_atomic_commit+0x4a/0x50 [drm] [ 246.743775] restore_fbdev_mode_atomic+0x1c8/0x240 [drm_kms_helper] [ 246.744603] restore_fbdev_mode+0x31/0x140 [drm_kms_helper] [ 246.745373] drm_fb_helper_restore_fbdev_mode_unlocked+0x54/0xb0 [drm_kms_helper] [ 246.746220] drm_fb_helper_set_par+0x2d/0x50 [drm_kms_helper] [ 246.746884] drm_fb_helper_hotplug_event.part.28+0x96/0xb0 [drm_kms_helper] [ 246.747675] drm_fb_helper_output_poll_changed+0x23/0x30 [drm_kms_helper] [ 246.748544] drm_kms_helper_hotplug_event+0x2a/0x30 [drm_kms_helper] [ 246.749439] nv50_mstm_hotplug+0x15/0x20 [nouveau] [ 246.750111] drm_dp_send_link_address+0x177/0x1c0 [drm_kms_helper] [ 246.750764] drm_dp_check_and_send_link_address+0xa8/0xd0 [drm_kms_helper] [ 246.751602] drm_dp_mst_link_probe_work+0x51/0x90 [drm_kms_helper] [ 246.752314] process_one_work+0x231/0x620 [ 246.752979] worker_thread+0x44/0x3a0 [ 246.753838] kthread+0x12b/0x150 [ 246.754619] ? wq_pool_ids_show+0x140/0x140 [ 246.755386] ? kthread_create_worker_on_cpu+0x70/0x70 [ 246.756162] ret_from_fork+0x3a/0x50 [ 246.756847] Showing all locks held in the system: [ 246.758261] 3 locks held by kworker/4:0/37: [ 246.759016] #0: 00000000f8df4d2d ((wq_completion)"events"){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.759856] #1: 00000000e6065461 ((work_completion)(&(&dev->mode_config.output_poll_work)->work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.760670] #2: 00000000cb66735f (&helper->lock){+.+.}, at: drm_fb_helper_hotplug_event.part.28+0x20/0xb0 [drm_kms_helper] [ 246.761516] 2 locks held by kworker/0:1/60: [ 246.762274] #0: 00000000fff6be0f ((wq_completion)"pm"){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.762982] #1: 000000005ab44fb4 ((work_completion)(&dev->power.work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.763890] 1 lock held by khungtaskd/64: [ 246.764664] #0: 000000008cb8b5c3 (rcu_read_lock){....}, at: debug_show_all_locks+0x23/0x185 [ 246.765588] 5 locks held by kworker/4:2/422: [ 246.766440] #0: 00000000232f0959 ((wq_completion)"events_long"){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.767390] #1: 00000000bb59b134 ((work_completion)(&mgr->work)){+.+.}, at: process_one_work+0x1b3/0x620 [ 246.768154] #2: 00000000cb66735f (&helper->lock){+.+.}, at: drm_fb_helper_restore_fbdev_mode_unlocked+0x4c/0xb0 [drm_kms_helper] [ 246.768966] #3: 000000004c8f0b6b (crtc_ww_class_acquire){+.+.}, at: restore_fbdev_mode_atomic+0x4b/0x240 [drm_kms_helper] [ 246.769921] #4: 000000004c34a296 (crtc_ww_class_mutex){+.+.}, at: drm_modeset_backoff+0x8a/0x1b0 [drm] [ 246.770839] 1 lock held by dmesg/1038: [ 246.771739] 2 locks held by zsh/1172: [ 246.772650] #0: 00000000836d0438 (&tty->ldisc_sem){++++}, at: ldsem_down_read+0x37/0x40 [ 246.773680] #1: 000000001f4f4d48 (&ldata->atomic_read_lock){+.+.}, at: n_tty_read+0xc1/0x870 [ 246.775522] ============================================= After trying dozens of different solutions, I found one very simple one that should also have the benefit of preventing us from having to fight locking for the rest of our lives. So, we work around these deadlocks by deferring all fbcon hotplug events that happen after the runtime suspend process starts until after the device is resumed again. Changes since v7: - Fixup commit message - Daniel Vetter Changes since v6: - Remove unused nouveau_fbcon_hotplugged_in_suspend() - Ilia Changes since v5: - Come up with the (hopefully final) solution for solving this dumb problem, one that is a lot less likely to cause issues with locking in the future. This should work around all deadlock conditions with fbcon brought up thus far. Changes since v4: - Add nouveau_fbcon_hotplugged_in_suspend() to workaround deadlock condition that Lukas described - Just move all of this out of drm_fb_helper. It seems that other DRM drivers have already figured out other workarounds for this. If other drivers do end up needing this in the future, we can just move this back into drm_fb_helper again. Changes since v3: - Actually check if fb_helper is NULL in both new helpers - Actually check drm_fbdev_emulation in both new helpers - Don't fire off a fb_helper hotplug unconditionally; only do it if the following conditions are true (as otherwise, calling this in the wrong spot will cause Bad Things to happen): - fb_helper hotplug handling was actually inhibited previously - fb_helper actually has a delayed hotplug pending - fb_helper is actually bound - fb_helper is actually initialized - Add __must_check to drm_fb_helper_suspend_hotplug(). There's no situation where a driver would actually want to use this without checking the return value, so enforce that - Rewrite and clarify the documentation for both helpers. - Make sure to return true in the drm_fb_helper_suspend_hotplug() stub that's provided in drm_fb_helper.h when CONFIG_DRM_FBDEV_EMULATION isn't enabled - Actually grab the toplevel fb_helper lock in drm_fb_helper_resume_hotplug(), since it's possible other activity (such as a hotplug) could be going on at the same time the driver calls drm_fb_helper_resume_hotplug(). We need this to check whether or not drm_fb_helper_hotplug_event() needs to be called anyway Signed-off-by: Lyude Paul <lyude@redhat.com> Reviewed-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: stable@vger.kernel.org Cc: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-08-15 19:00:13 +00:00
.output_poll_changed = nouveau_fbcon_output_poll_changed,
};
struct nouveau_drm_prop_enum_list {
u8 gen_mask;
int type;
char *name;
};
static struct nouveau_drm_prop_enum_list underscan[] = {
{ 6, UNDERSCAN_AUTO, "auto" },
{ 6, UNDERSCAN_OFF, "off" },
{ 6, UNDERSCAN_ON, "on" },
{}
};
static struct nouveau_drm_prop_enum_list dither_mode[] = {
{ 7, DITHERING_MODE_AUTO, "auto" },
{ 7, DITHERING_MODE_OFF, "off" },
{ 1, DITHERING_MODE_ON, "on" },
{ 6, DITHERING_MODE_STATIC2X2, "static 2x2" },
{ 6, DITHERING_MODE_DYNAMIC2X2, "dynamic 2x2" },
{ 4, DITHERING_MODE_TEMPORAL, "temporal" },
{}
};
static struct nouveau_drm_prop_enum_list dither_depth[] = {
{ 6, DITHERING_DEPTH_AUTO, "auto" },
{ 6, DITHERING_DEPTH_6BPC, "6 bpc" },
{ 6, DITHERING_DEPTH_8BPC, "8 bpc" },
{}
};
#define PROP_ENUM(p,gen,n,list) do { \
struct nouveau_drm_prop_enum_list *l = (list); \
int c = 0; \
while (l->gen_mask) { \
if (l->gen_mask & (1 << (gen))) \
c++; \
l++; \
} \
if (c) { \
p = drm_property_create(dev, DRM_MODE_PROP_ENUM, n, c); \
l = (list); \
while (p && l->gen_mask) { \
if (l->gen_mask & (1 << (gen))) { \
drm_property_add_enum(p, l->type, l->name); \
} \
l++; \
} \
} \
} while(0)
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
static void
nouveau_display_hpd_work(struct work_struct *work)
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
{
struct nouveau_drm *drm = container_of(work, typeof(*drm), hpd_work);
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
pm_runtime_get_sync(drm->dev->dev);
drm_helper_hpd_irq_event(drm->dev);
pm_runtime_mark_last_busy(drm->dev->dev);
pm_runtime_put_sync(drm->dev->dev);
}
#ifdef CONFIG_ACPI
/*
* Hans de Goede: This define belongs in acpi/video.h, I've submitted a patch
* to the acpi subsys to move it there from drivers/acpi/acpi_video.c .
* This should be dropped once that is merged.
*/
#ifndef ACPI_VIDEO_NOTIFY_PROBE
#define ACPI_VIDEO_NOTIFY_PROBE 0x81
#endif
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
static int
nouveau_display_acpi_ntfy(struct notifier_block *nb, unsigned long val,
void *data)
{
struct nouveau_drm *drm = container_of(nb, typeof(*drm), acpi_nb);
struct acpi_bus_event *info = data;
drm/nouveau/drm/nouveau: Prevent handling ACPI HPD events too early On most systems with ACPI hotplugging support, it seems that we always receive a hotplug event once we re-enable EC interrupts even if the GPU hasn't even been resumed yet. This can cause problems since even though we schedule hpd_work to handle connector reprobing for us, hpd_work synchronizes on pm_runtime_get_sync() to wait until the device is ready to perform reprobing. Since runtime suspend/resume callbacks are disabled before the PM core calls ->suspend(), any calls to pm_runtime_get_sync() during this period will grab a runtime PM ref and return immediately with -EACCES. Because we schedule hpd_work from our ACPI HPD handler, and hpd_work synchronizes on pm_runtime_get_sync(), this causes us to launch a connector reprobe immediately even if the GPU isn't actually resumed just yet. This causes various warnings in dmesg and occasionally, also prevents some displays connected to the dedicated GPU from coming back up after suspend. Example: usb 1-4: USB disconnect, device number 14 usb 1-4.1: USB disconnect, device number 15 WARNING: CPU: 0 PID: 838 at drivers/gpu/drm/nouveau/include/nvkm/subdev/i2c.h:170 nouveau_dp_detect+0x17e/0x370 [nouveau] CPU: 0 PID: 838 Comm: kworker/0:6 Not tainted 4.17.14-201.Lyude.bz1477182.V3.fc28.x86_64 #1 Hardware name: LENOVO 20EQS64N00/20EQS64N00, BIOS N1EET77W (1.50 ) 03/28/2018 Workqueue: events nouveau_display_hpd_work [nouveau] RIP: 0010:nouveau_dp_detect+0x17e/0x370 [nouveau] RSP: 0018:ffffa15143933cf0 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8cb4f656c400 RCX: 0000000000000000 RDX: ffffa1514500e4e4 RSI: ffffa1514500e4e4 RDI: 0000000001009002 RBP: ffff8cb4f4a8a800 R08: ffffa15143933cfd R09: ffffa15143933cfc R10: 0000000000000000 R11: 0000000000000000 R12: ffff8cb4fb57a000 R13: ffff8cb4fb57a000 R14: ffff8cb4f4a8f800 R15: ffff8cb4f656c418 FS: 0000000000000000(0000) GS:ffff8cb51f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f78ec938000 CR3: 000000073720a003 CR4: 00000000003606f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? _cond_resched+0x15/0x30 nouveau_connector_detect+0x2ce/0x520 [nouveau] ? _cond_resched+0x15/0x30 ? ww_mutex_lock+0x12/0x40 drm_helper_probe_detect_ctx+0x8b/0xe0 [drm_kms_helper] drm_helper_hpd_irq_event+0xa8/0x120 [drm_kms_helper] nouveau_display_hpd_work+0x2a/0x60 [nouveau] process_one_work+0x187/0x340 worker_thread+0x2e/0x380 ? pwq_unbound_release_workfn+0xd0/0xd0 kthread+0x112/0x130 ? kthread_create_worker_on_cpu+0x70/0x70 ret_from_fork+0x35/0x40 Code: 4c 8d 44 24 0d b9 00 05 00 00 48 89 ef ba 09 00 00 00 be 01 00 00 00 e8 e1 09 f8 ff 85 c0 0f 85 b2 01 00 00 80 7c 24 0c 03 74 02 <0f> 0b 48 89 ef e8 b8 07 f8 ff f6 05 51 1b c8 ff 02 0f 84 72 ff ---[ end trace 55d811b38fc8e71a ]--- So, to fix this we attempt to grab a runtime PM reference in the ACPI handler itself asynchronously. If the GPU is already awake (it will have normal hotplugging at this point) or runtime PM callbacks are currently disabled on the device, we drop our reference without updating the autosuspend delay. We only schedule connector reprobes when we successfully managed to queue up a resume request with our asynchronous PM ref. This also has the added benefit of preventing redundant connector reprobes from ACPI while the GPU is runtime resumed! Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Cc: Karol Herbst <kherbst@redhat.com> Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1477182#c41 Signed-off-by: Lyude Paul <lyude@redhat.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-08-16 20:13:13 +00:00
int ret;
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
if (!strcmp(info->device_class, ACPI_VIDEO_CLASS)) {
if (info->type == ACPI_VIDEO_NOTIFY_PROBE) {
drm/nouveau/drm/nouveau: Prevent handling ACPI HPD events too early On most systems with ACPI hotplugging support, it seems that we always receive a hotplug event once we re-enable EC interrupts even if the GPU hasn't even been resumed yet. This can cause problems since even though we schedule hpd_work to handle connector reprobing for us, hpd_work synchronizes on pm_runtime_get_sync() to wait until the device is ready to perform reprobing. Since runtime suspend/resume callbacks are disabled before the PM core calls ->suspend(), any calls to pm_runtime_get_sync() during this period will grab a runtime PM ref and return immediately with -EACCES. Because we schedule hpd_work from our ACPI HPD handler, and hpd_work synchronizes on pm_runtime_get_sync(), this causes us to launch a connector reprobe immediately even if the GPU isn't actually resumed just yet. This causes various warnings in dmesg and occasionally, also prevents some displays connected to the dedicated GPU from coming back up after suspend. Example: usb 1-4: USB disconnect, device number 14 usb 1-4.1: USB disconnect, device number 15 WARNING: CPU: 0 PID: 838 at drivers/gpu/drm/nouveau/include/nvkm/subdev/i2c.h:170 nouveau_dp_detect+0x17e/0x370 [nouveau] CPU: 0 PID: 838 Comm: kworker/0:6 Not tainted 4.17.14-201.Lyude.bz1477182.V3.fc28.x86_64 #1 Hardware name: LENOVO 20EQS64N00/20EQS64N00, BIOS N1EET77W (1.50 ) 03/28/2018 Workqueue: events nouveau_display_hpd_work [nouveau] RIP: 0010:nouveau_dp_detect+0x17e/0x370 [nouveau] RSP: 0018:ffffa15143933cf0 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8cb4f656c400 RCX: 0000000000000000 RDX: ffffa1514500e4e4 RSI: ffffa1514500e4e4 RDI: 0000000001009002 RBP: ffff8cb4f4a8a800 R08: ffffa15143933cfd R09: ffffa15143933cfc R10: 0000000000000000 R11: 0000000000000000 R12: ffff8cb4fb57a000 R13: ffff8cb4fb57a000 R14: ffff8cb4f4a8f800 R15: ffff8cb4f656c418 FS: 0000000000000000(0000) GS:ffff8cb51f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f78ec938000 CR3: 000000073720a003 CR4: 00000000003606f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? _cond_resched+0x15/0x30 nouveau_connector_detect+0x2ce/0x520 [nouveau] ? _cond_resched+0x15/0x30 ? ww_mutex_lock+0x12/0x40 drm_helper_probe_detect_ctx+0x8b/0xe0 [drm_kms_helper] drm_helper_hpd_irq_event+0xa8/0x120 [drm_kms_helper] nouveau_display_hpd_work+0x2a/0x60 [nouveau] process_one_work+0x187/0x340 worker_thread+0x2e/0x380 ? pwq_unbound_release_workfn+0xd0/0xd0 kthread+0x112/0x130 ? kthread_create_worker_on_cpu+0x70/0x70 ret_from_fork+0x35/0x40 Code: 4c 8d 44 24 0d b9 00 05 00 00 48 89 ef ba 09 00 00 00 be 01 00 00 00 e8 e1 09 f8 ff 85 c0 0f 85 b2 01 00 00 80 7c 24 0c 03 74 02 <0f> 0b 48 89 ef e8 b8 07 f8 ff f6 05 51 1b c8 ff 02 0f 84 72 ff ---[ end trace 55d811b38fc8e71a ]--- So, to fix this we attempt to grab a runtime PM reference in the ACPI handler itself asynchronously. If the GPU is already awake (it will have normal hotplugging at this point) or runtime PM callbacks are currently disabled on the device, we drop our reference without updating the autosuspend delay. We only schedule connector reprobes when we successfully managed to queue up a resume request with our asynchronous PM ref. This also has the added benefit of preventing redundant connector reprobes from ACPI while the GPU is runtime resumed! Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Cc: Karol Herbst <kherbst@redhat.com> Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=1477182#c41 Signed-off-by: Lyude Paul <lyude@redhat.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-08-16 20:13:13 +00:00
ret = pm_runtime_get(drm->dev->dev);
if (ret == 1 || ret == -EACCES) {
/* If the GPU is already awake, or in a state
* where we can't wake it up, it can handle
* it's own hotplug events.
*/
pm_runtime_put_autosuspend(drm->dev->dev);
} else if (ret == 0) {
/* This may be the only indication we receive
* of a connector hotplug on a runtime
* suspended GPU, schedule hpd_work to check.
*/
NV_DEBUG(drm, "ACPI requested connector reprobe\n");
schedule_work(&drm->hpd_work);
pm_runtime_put_noidle(drm->dev->dev);
} else {
NV_WARN(drm, "Dropped ACPI reprobe event due to RPM error: %d\n",
ret);
}
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
/* acpi-video should not generate keypresses for this */
return NOTIFY_BAD;
}
}
return NOTIFY_DONE;
}
#endif
int
nouveau_display_init(struct drm_device *dev, bool resume, bool runtime)
{
struct nouveau_display *disp = nouveau_display(dev);
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
int ret;
ret = disp->init(dev, resume, runtime);
if (ret)
return ret;
drm/nouveau/drm/nouveau: Fix bogus drm_kms_helper_poll_enable() placement Turns out this part is my fault for not noticing when reviewing 9a2eba337cace ("drm/nouveau: Fix drm poll_helper handling"). Currently we call drm_kms_helper_poll_enable() from nouveau_display_hpd_work(). This makes basically no sense however, because that means we're calling drm_kms_helper_poll_enable() every time we schedule the hotplug detection work. This is also against the advice mentioned in drm_kms_helper_poll_enable()'s documentation: Note that calls to enable and disable polling must be strictly ordered, which is automatically the case when they're only call from suspend/resume callbacks. Of course, hotplugs can't really be ordered. They could even happen immediately after we called drm_kms_helper_poll_disable() in nouveau_display_fini(), which can lead to all sorts of issues. Additionally; enabling polling /after/ we call drm_helper_hpd_irq_event() could also mean that we'd miss a hotplug event anyway, since drm_helper_hpd_irq_event() wouldn't bother trying to probe connectors so long as polling is disabled. So; simply move this back into nouveau_display_init() again. The race condition that both of these patches attempted to work around has already been fixed properly in d61a5c106351 ("drm/nouveau: Fix deadlock on runtime suspend") Fixes: 9a2eba337cace ("drm/nouveau: Fix drm poll_helper handling") Signed-off-by: Lyude Paul <lyude@redhat.com> Acked-by: Karol Herbst <kherbst@redhat.com> Acked-by: Daniel Vetter <daniel@ffwll.ch> Cc: Lukas Wunner <lukas@wunner.de> Cc: Peter Ujfalusi <peter.ujfalusi@ti.com> Cc: stable@vger.kernel.org Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-08-15 19:00:11 +00:00
/* enable connector detection and polling for connectors without HPD
* support
*/
drm_kms_helper_poll_enable(dev);
/* enable hotplug interrupts */
drm_connector_list_iter_begin(dev, &conn_iter);
drm/nouveau: Avoid looping through fake MST connectors When MST and atomic were introduced to nouveau, another structure that could contain a drm_connector embedded within it was introduced; struct nv50_mstc. This meant that we no longer would be able to simply loop through our connector list and assume that nouveau_connector() would return a proper pointer for each connector, since the assertion that all connectors coming from nouveau have a full nouveau_connector struct became invalid. Unfortunately, none of the actual code that looped through connectors ever got updated, which means that we've been causing invalid memory accesses for quite a while now. An example that was caught by KASAN: [ 201.038698] ================================================================== [ 201.038792] BUG: KASAN: slab-out-of-bounds in nvif_notify_get+0x190/0x1a0 [nouveau] [ 201.038797] Read of size 4 at addr ffff88076738c650 by task kworker/0:3/718 [ 201.038800] [ 201.038822] CPU: 0 PID: 718 Comm: kworker/0:3 Tainted: G O 4.18.0-rc4Lyude-Test+ #1 [ 201.038825] Hardware name: LENOVO 20EQS64N0B/20EQS64N0B, BIOS N1EET78W (1.51 ) 05/18/2018 [ 201.038882] Workqueue: events nouveau_display_hpd_work [nouveau] [ 201.038887] Call Trace: [ 201.038894] dump_stack+0xa4/0xfd [ 201.038900] print_address_description+0x71/0x239 [ 201.038929] ? nvif_notify_get+0x190/0x1a0 [nouveau] [ 201.038935] kasan_report.cold.6+0x242/0x2fe [ 201.038942] __asan_report_load4_noabort+0x19/0x20 [ 201.038970] nvif_notify_get+0x190/0x1a0 [nouveau] [ 201.038998] ? nvif_notify_put+0x1f0/0x1f0 [nouveau] [ 201.039003] ? kmsg_dump_rewind_nolock+0xe4/0xe4 [ 201.039049] nouveau_display_init.cold.12+0x34/0x39 [nouveau] [ 201.039089] ? nouveau_user_framebuffer_create+0x120/0x120 [nouveau] [ 201.039133] nouveau_display_resume+0x5c0/0x810 [nouveau] [ 201.039173] ? nvkm_client_ioctl+0x20/0x20 [nouveau] [ 201.039215] nouveau_do_resume+0x19f/0x570 [nouveau] [ 201.039256] nouveau_pmops_runtime_resume+0xd8/0x2a0 [nouveau] [ 201.039264] pci_pm_runtime_resume+0x130/0x250 [ 201.039269] ? pci_restore_standard_config+0x70/0x70 [ 201.039275] __rpm_callback+0x1f2/0x5d0 [ 201.039279] ? rpm_resume+0x560/0x18a0 [ 201.039283] ? pci_restore_standard_config+0x70/0x70 [ 201.039287] ? pci_restore_standard_config+0x70/0x70 [ 201.039291] ? pci_restore_standard_config+0x70/0x70 [ 201.039296] rpm_callback+0x175/0x210 [ 201.039300] ? pci_restore_standard_config+0x70/0x70 [ 201.039305] rpm_resume+0xcc3/0x18a0 [ 201.039312] ? rpm_callback+0x210/0x210 [ 201.039317] ? __pm_runtime_resume+0x9e/0x100 [ 201.039322] ? kasan_check_write+0x14/0x20 [ 201.039326] ? do_raw_spin_lock+0xc2/0x1c0 [ 201.039333] __pm_runtime_resume+0xac/0x100 [ 201.039374] nouveau_display_hpd_work+0x67/0x1f0 [nouveau] [ 201.039380] process_one_work+0x7a0/0x14d0 [ 201.039388] ? cancel_delayed_work_sync+0x20/0x20 [ 201.039392] ? lock_acquire+0x113/0x310 [ 201.039398] ? kasan_check_write+0x14/0x20 [ 201.039402] ? do_raw_spin_lock+0xc2/0x1c0 [ 201.039409] worker_thread+0x86/0xb50 [ 201.039418] kthread+0x2e9/0x3a0 [ 201.039422] ? process_one_work+0x14d0/0x14d0 [ 201.039426] ? kthread_create_worker_on_cpu+0xc0/0xc0 [ 201.039431] ret_from_fork+0x3a/0x50 [ 201.039441] [ 201.039444] Allocated by task 79: [ 201.039449] save_stack+0x43/0xd0 [ 201.039452] kasan_kmalloc+0xc4/0xe0 [ 201.039456] kmem_cache_alloc_trace+0x10a/0x260 [ 201.039494] nv50_mstm_add_connector+0x9a/0x340 [nouveau] [ 201.039504] drm_dp_add_port+0xff5/0x1fc0 [drm_kms_helper] [ 201.039511] drm_dp_send_link_address+0x4a7/0x740 [drm_kms_helper] [ 201.039518] drm_dp_check_and_send_link_address+0x1a7/0x210 [drm_kms_helper] [ 201.039525] drm_dp_mst_link_probe_work+0x71/0xb0 [drm_kms_helper] [ 201.039529] process_one_work+0x7a0/0x14d0 [ 201.039533] worker_thread+0x86/0xb50 [ 201.039537] kthread+0x2e9/0x3a0 [ 201.039541] ret_from_fork+0x3a/0x50 [ 201.039543] [ 201.039546] Freed by task 0: [ 201.039549] (stack is not available) [ 201.039551] [ 201.039555] The buggy address belongs to the object at ffff88076738c1a8 which belongs to the cache kmalloc-2048 of size 2048 [ 201.039559] The buggy address is located 1192 bytes inside of 2048-byte region [ffff88076738c1a8, ffff88076738c9a8) [ 201.039563] The buggy address belongs to the page: [ 201.039567] page:ffffea001d9ce200 count:1 mapcount:0 mapping:ffff88084000d0c0 index:0x0 compound_mapcount: 0 [ 201.039573] flags: 0x8000000000008100(slab|head) [ 201.039578] raw: 8000000000008100 ffffea001da3be08 ffffea001da25a08 ffff88084000d0c0 [ 201.039582] raw: 0000000000000000 00000000000d000d 00000001ffffffff 0000000000000000 [ 201.039585] page dumped because: kasan: bad access detected [ 201.039588] [ 201.039591] Memory state around the buggy address: [ 201.039594] ffff88076738c500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 201.039598] ffff88076738c580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 201.039601] >ffff88076738c600: 00 00 00 00 00 00 00 00 00 00 fc fc fc fc fc fc [ 201.039604] ^ [ 201.039607] ffff88076738c680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 201.039611] ffff88076738c700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 201.039613] ================================================================== Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Cc: Karol Herbst <karolherbst@gmail.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-07-13 17:06:33 +00:00
nouveau_for_each_non_mst_connector_iter(connector, &conn_iter) {
struct nouveau_connector *conn = nouveau_connector(connector);
nvif_notify_get(&conn->hpd);
}
drm_connector_list_iter_end(&conn_iter);
return ret;
}
void
nouveau_display_fini(struct drm_device *dev, bool suspend, bool runtime)
{
struct nouveau_display *disp = nouveau_display(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct drm_connector *connector;
struct drm_connector_list_iter conn_iter;
if (!suspend) {
if (drm_drv_uses_atomic_modeset(dev))
drm_atomic_helper_shutdown(dev);
else
drm_helper_force_disable_all(dev);
}
/* disable hotplug interrupts */
drm_connector_list_iter_begin(dev, &conn_iter);
drm/nouveau: Avoid looping through fake MST connectors When MST and atomic were introduced to nouveau, another structure that could contain a drm_connector embedded within it was introduced; struct nv50_mstc. This meant that we no longer would be able to simply loop through our connector list and assume that nouveau_connector() would return a proper pointer for each connector, since the assertion that all connectors coming from nouveau have a full nouveau_connector struct became invalid. Unfortunately, none of the actual code that looped through connectors ever got updated, which means that we've been causing invalid memory accesses for quite a while now. An example that was caught by KASAN: [ 201.038698] ================================================================== [ 201.038792] BUG: KASAN: slab-out-of-bounds in nvif_notify_get+0x190/0x1a0 [nouveau] [ 201.038797] Read of size 4 at addr ffff88076738c650 by task kworker/0:3/718 [ 201.038800] [ 201.038822] CPU: 0 PID: 718 Comm: kworker/0:3 Tainted: G O 4.18.0-rc4Lyude-Test+ #1 [ 201.038825] Hardware name: LENOVO 20EQS64N0B/20EQS64N0B, BIOS N1EET78W (1.51 ) 05/18/2018 [ 201.038882] Workqueue: events nouveau_display_hpd_work [nouveau] [ 201.038887] Call Trace: [ 201.038894] dump_stack+0xa4/0xfd [ 201.038900] print_address_description+0x71/0x239 [ 201.038929] ? nvif_notify_get+0x190/0x1a0 [nouveau] [ 201.038935] kasan_report.cold.6+0x242/0x2fe [ 201.038942] __asan_report_load4_noabort+0x19/0x20 [ 201.038970] nvif_notify_get+0x190/0x1a0 [nouveau] [ 201.038998] ? nvif_notify_put+0x1f0/0x1f0 [nouveau] [ 201.039003] ? kmsg_dump_rewind_nolock+0xe4/0xe4 [ 201.039049] nouveau_display_init.cold.12+0x34/0x39 [nouveau] [ 201.039089] ? nouveau_user_framebuffer_create+0x120/0x120 [nouveau] [ 201.039133] nouveau_display_resume+0x5c0/0x810 [nouveau] [ 201.039173] ? nvkm_client_ioctl+0x20/0x20 [nouveau] [ 201.039215] nouveau_do_resume+0x19f/0x570 [nouveau] [ 201.039256] nouveau_pmops_runtime_resume+0xd8/0x2a0 [nouveau] [ 201.039264] pci_pm_runtime_resume+0x130/0x250 [ 201.039269] ? pci_restore_standard_config+0x70/0x70 [ 201.039275] __rpm_callback+0x1f2/0x5d0 [ 201.039279] ? rpm_resume+0x560/0x18a0 [ 201.039283] ? pci_restore_standard_config+0x70/0x70 [ 201.039287] ? pci_restore_standard_config+0x70/0x70 [ 201.039291] ? pci_restore_standard_config+0x70/0x70 [ 201.039296] rpm_callback+0x175/0x210 [ 201.039300] ? pci_restore_standard_config+0x70/0x70 [ 201.039305] rpm_resume+0xcc3/0x18a0 [ 201.039312] ? rpm_callback+0x210/0x210 [ 201.039317] ? __pm_runtime_resume+0x9e/0x100 [ 201.039322] ? kasan_check_write+0x14/0x20 [ 201.039326] ? do_raw_spin_lock+0xc2/0x1c0 [ 201.039333] __pm_runtime_resume+0xac/0x100 [ 201.039374] nouveau_display_hpd_work+0x67/0x1f0 [nouveau] [ 201.039380] process_one_work+0x7a0/0x14d0 [ 201.039388] ? cancel_delayed_work_sync+0x20/0x20 [ 201.039392] ? lock_acquire+0x113/0x310 [ 201.039398] ? kasan_check_write+0x14/0x20 [ 201.039402] ? do_raw_spin_lock+0xc2/0x1c0 [ 201.039409] worker_thread+0x86/0xb50 [ 201.039418] kthread+0x2e9/0x3a0 [ 201.039422] ? process_one_work+0x14d0/0x14d0 [ 201.039426] ? kthread_create_worker_on_cpu+0xc0/0xc0 [ 201.039431] ret_from_fork+0x3a/0x50 [ 201.039441] [ 201.039444] Allocated by task 79: [ 201.039449] save_stack+0x43/0xd0 [ 201.039452] kasan_kmalloc+0xc4/0xe0 [ 201.039456] kmem_cache_alloc_trace+0x10a/0x260 [ 201.039494] nv50_mstm_add_connector+0x9a/0x340 [nouveau] [ 201.039504] drm_dp_add_port+0xff5/0x1fc0 [drm_kms_helper] [ 201.039511] drm_dp_send_link_address+0x4a7/0x740 [drm_kms_helper] [ 201.039518] drm_dp_check_and_send_link_address+0x1a7/0x210 [drm_kms_helper] [ 201.039525] drm_dp_mst_link_probe_work+0x71/0xb0 [drm_kms_helper] [ 201.039529] process_one_work+0x7a0/0x14d0 [ 201.039533] worker_thread+0x86/0xb50 [ 201.039537] kthread+0x2e9/0x3a0 [ 201.039541] ret_from_fork+0x3a/0x50 [ 201.039543] [ 201.039546] Freed by task 0: [ 201.039549] (stack is not available) [ 201.039551] [ 201.039555] The buggy address belongs to the object at ffff88076738c1a8 which belongs to the cache kmalloc-2048 of size 2048 [ 201.039559] The buggy address is located 1192 bytes inside of 2048-byte region [ffff88076738c1a8, ffff88076738c9a8) [ 201.039563] The buggy address belongs to the page: [ 201.039567] page:ffffea001d9ce200 count:1 mapcount:0 mapping:ffff88084000d0c0 index:0x0 compound_mapcount: 0 [ 201.039573] flags: 0x8000000000008100(slab|head) [ 201.039578] raw: 8000000000008100 ffffea001da3be08 ffffea001da25a08 ffff88084000d0c0 [ 201.039582] raw: 0000000000000000 00000000000d000d 00000001ffffffff 0000000000000000 [ 201.039585] page dumped because: kasan: bad access detected [ 201.039588] [ 201.039591] Memory state around the buggy address: [ 201.039594] ffff88076738c500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 201.039598] ffff88076738c580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 201.039601] >ffff88076738c600: 00 00 00 00 00 00 00 00 00 00 fc fc fc fc fc fc [ 201.039604] ^ [ 201.039607] ffff88076738c680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 201.039611] ffff88076738c700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 201.039613] ================================================================== Signed-off-by: Lyude Paul <lyude@redhat.com> Cc: stable@vger.kernel.org Cc: Karol Herbst <karolherbst@gmail.com> Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2018-07-13 17:06:33 +00:00
nouveau_for_each_non_mst_connector_iter(connector, &conn_iter) {
struct nouveau_connector *conn = nouveau_connector(connector);
nvif_notify_put(&conn->hpd);
}
drm_connector_list_iter_end(&conn_iter);
if (!runtime)
cancel_work_sync(&drm->hpd_work);
drm_kms_helper_poll_disable(dev);
disp->fini(dev, suspend);
}
static void
nouveau_display_create_properties(struct drm_device *dev)
{
struct nouveau_display *disp = nouveau_display(dev);
int gen;
if (disp->disp.object.oclass < NV50_DISP)
gen = 0;
else
if (disp->disp.object.oclass < GF110_DISP)
gen = 1;
else
gen = 2;
PROP_ENUM(disp->dithering_mode, gen, "dithering mode", dither_mode);
PROP_ENUM(disp->dithering_depth, gen, "dithering depth", dither_depth);
PROP_ENUM(disp->underscan_property, gen, "underscan", underscan);
disp->underscan_hborder_property =
drm_property_create_range(dev, 0, "underscan hborder", 0, 128);
disp->underscan_vborder_property =
drm_property_create_range(dev, 0, "underscan vborder", 0, 128);
if (gen < 1)
return;
/* -90..+90 */
disp->vibrant_hue_property =
drm_property_create_range(dev, 0, "vibrant hue", 0, 180);
/* -100..+100 */
disp->color_vibrance_property =
drm_property_create_range(dev, 0, "color vibrance", 0, 200);
}
int
nouveau_display_create(struct drm_device *dev)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_device *device = nvxx_device(&drm->client.device);
struct nouveau_display *disp;
int ret;
disp = drm->display = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
drm_mode_config_init(dev);
drm_mode_create_scaling_mode_property(dev);
drm_mode_create_dvi_i_properties(dev);
dev->mode_config.funcs = &nouveau_mode_config_funcs;
dev->mode_config.fb_base = device->func->resource_addr(device, 1);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_CELSIUS) {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
} else
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_FERMI) {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
} else {
dev->mode_config.max_width = 16384;
dev->mode_config.max_height = 16384;
}
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
if (drm->client.device.info.chipset < 0x11)
dev->mode_config.async_page_flip = false;
else
dev->mode_config.async_page_flip = true;
drm_kms_helper_poll_init(dev);
drm_kms_helper_poll_disable(dev);
if (nouveau_modeset != 2 && drm->vbios.dcb.entries) {
ret = nvif_disp_ctor(&drm->client.device, 0, &disp->disp);
if (ret == 0) {
nouveau_display_create_properties(dev);
if (disp->disp.object.oclass < NV50_DISP)
ret = nv04_display_create(dev);
else
ret = nv50_display_create(dev);
}
} else {
ret = 0;
}
if (ret)
goto disp_create_err;
drm_mode_config_reset(dev);
if (dev->mode_config.num_crtc) {
ret = nouveau_display_vblank_init(dev);
if (ret)
goto vblank_err;
}
INIT_WORK(&drm->hpd_work, nouveau_display_hpd_work);
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
#ifdef CONFIG_ACPI
drm->acpi_nb.notifier_call = nouveau_display_acpi_ntfy;
register_acpi_notifier(&drm->acpi_nb);
#endif
return 0;
vblank_err:
disp->dtor(dev);
disp_create_err:
drm_kms_helper_poll_fini(dev);
drm_mode_config_cleanup(dev);
return ret;
}
void
nouveau_display_destroy(struct drm_device *dev)
{
struct nouveau_display *disp = nouveau_display(dev);
drm/nouveau: Intercept ACPI_VIDEO_NOTIFY_PROBE Various notebooks with nvidia GPUs generate an ACPI_VIDEO_NOTIFY_PROBE acpi-video event when an external device gets plugged in (and again on modesets on that connector), the default behavior in the acpi-video driver for this is to send a KEY_SWITCHVIDEOMODE evdev event, which causes e.g. gnome-settings-daemon to ask us to rescan the connectors (good), but also causes g-s-d to switch to mirror mode on a newly plugged monitor rather then using the monitor to extend the desktop (bad) as KEY_SWITCHVIDEOMODE is supposed to switch between extend the desktop vs mirror mode. More troublesome are the repeated ACPI_VIDEO_NOTIFY_PROBE events on changing the mode on the connector, which cause g-s-d to switch between mirror/extend mode, which causes a new ACPI_VIDEO_NOTIFY_PROBE event and we end up with an endless loop. This commit fixes this by adding an acpi notifier block handler to nouveau_display.c to intercept ACPI_VIDEO_NOTIFY_PROBE and: 1) Wake-up runtime suspended GPUs and call drm_helper_hpd_irq_event() on them, this is necessary in some cases for the GPU to detect connector hotplug events while runtime suspended 2) Return NOTIFY_BAD to stop acpi-video from emitting a bogus KEY_SWITCHVIDEOMODE key-press event There already is another acpi notifier block handler registered in drivers/gpu/drm/nouveau/nvkm/engine/device/acpi.c, but that is not suitable since that one gets unregistered on runtime suspend, and we also want to intercept ACPI_VIDEO_NOTIFY_PROBE when runtime suspended. Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2016-11-09 17:17:44 +00:00
#ifdef CONFIG_ACPI
unregister_acpi_notifier(&nouveau_drm(dev)->acpi_nb);
#endif
nouveau_display_vblank_fini(dev);
drm_kms_helper_poll_fini(dev);
drm_mode_config_cleanup(dev);
if (disp->dtor)
disp->dtor(dev);
nvif_disp_dtor(&disp->disp);
nouveau_drm(dev)->display = NULL;
kfree(disp);
}
int
nouveau_display_suspend(struct drm_device *dev, bool runtime)
{
struct nouveau_display *disp = nouveau_display(dev);
if (drm_drv_uses_atomic_modeset(dev)) {
if (!runtime) {
disp->suspend = drm_atomic_helper_suspend(dev);
if (IS_ERR(disp->suspend)) {
int ret = PTR_ERR(disp->suspend);
disp->suspend = NULL;
return ret;
}
}
}
nouveau_display_fini(dev, true, runtime);
return 0;
}
void
nouveau_display_resume(struct drm_device *dev, bool runtime)
{
struct nouveau_display *disp = nouveau_display(dev);
nouveau_display_init(dev, true, runtime);
if (drm_drv_uses_atomic_modeset(dev)) {
if (disp->suspend) {
drm_atomic_helper_resume(dev, disp->suspend);
disp->suspend = NULL;
}
return;
}
}
int
nouveau_display_dumb_create(struct drm_file *file_priv, struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
struct nouveau_cli *cli = nouveau_cli(file_priv);
struct nouveau_bo *bo;
uint32_t domain;
int ret;
args->pitch = roundup(args->width * (args->bpp / 8), 256);
args->size = args->pitch * args->height;
args->size = roundup(args->size, PAGE_SIZE);
/* Use VRAM if there is any ; otherwise fallback to system memory */
if (nouveau_drm(dev)->client.device.info.ram_size != 0)
domain = NOUVEAU_GEM_DOMAIN_VRAM;
else
domain = NOUVEAU_GEM_DOMAIN_GART;
ret = nouveau_gem_new(cli, args->size, 0, domain, 0, 0, &bo);
if (ret)
return ret;
ret = drm_gem_handle_create(file_priv, &bo->gem, &args->handle);
drm_gem_object_put_unlocked(&bo->gem);
return ret;
}
int
nouveau_display_dumb_map_offset(struct drm_file *file_priv,
struct drm_device *dev,
uint32_t handle, uint64_t *poffset)
{
struct drm_gem_object *gem;
gem = drm_gem_object_lookup(file_priv, handle);
if (gem) {
struct nouveau_bo *bo = nouveau_gem_object(gem);
*poffset = drm_vma_node_offset_addr(&bo->bo.vma_node);
drm_gem_object_put_unlocked(gem);
return 0;
}
return -ENOENT;
}