2009-06-01 18:13:33 +00:00
|
|
|
/*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* Copyright (C) 2007 Alan Stern
|
|
|
|
* Copyright (C) IBM Corporation, 2009
|
2009-09-09 17:22:48 +00:00
|
|
|
* Copyright (C) 2009, Frederic Weisbecker <fweisbec@gmail.com>
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
*
|
|
|
|
* Thanks to Ingo Molnar for his many suggestions.
|
2009-11-23 15:47:13 +00:00
|
|
|
*
|
|
|
|
* Authors: Alan Stern <stern@rowland.harvard.edu>
|
|
|
|
* K.Prasad <prasad@linux.vnet.ibm.com>
|
|
|
|
* Frederic Weisbecker <fweisbec@gmail.com>
|
2009-06-01 18:13:33 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
|
|
|
|
* using the CPU's debug registers.
|
|
|
|
* This file contains the arch-independent routines.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/irqflags.h>
|
|
|
|
#include <linux/kallsyms.h>
|
|
|
|
#include <linux/notifier.h>
|
|
|
|
#include <linux/kprobes.h>
|
|
|
|
#include <linux/kdebug.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/percpu.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/init.h>
|
2010-04-23 03:59:55 +00:00
|
|
|
#include <linux/slab.h>
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
#include <linux/list.h>
|
2009-12-30 06:22:22 +00:00
|
|
|
#include <linux/cpu.h>
|
2009-06-01 18:13:33 +00:00
|
|
|
#include <linux/smp.h>
|
2018-03-12 13:45:43 +00:00
|
|
|
#include <linux/bug.h>
|
2009-06-01 18:13:33 +00:00
|
|
|
|
2009-09-09 17:22:48 +00:00
|
|
|
#include <linux/hw_breakpoint.h>
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
/*
|
|
|
|
* Constraints data
|
|
|
|
*/
|
2013-06-20 15:50:20 +00:00
|
|
|
struct bp_cpuinfo {
|
|
|
|
/* Number of pinned cpu breakpoints in a cpu */
|
|
|
|
unsigned int cpu_pinned;
|
|
|
|
/* tsk_pinned[n] is the number of tasks having n+1 breakpoints */
|
|
|
|
unsigned int *tsk_pinned;
|
|
|
|
/* Number of non-pinned cpu/task breakpoints in a cpu */
|
|
|
|
unsigned int flexible; /* XXX: placeholder, see fetch_this_slot() */
|
|
|
|
};
|
2009-06-01 18:13:33 +00:00
|
|
|
|
2013-06-20 15:50:20 +00:00
|
|
|
static DEFINE_PER_CPU(struct bp_cpuinfo, bp_cpuinfo[TYPE_MAX]);
|
2010-04-23 03:59:55 +00:00
|
|
|
static int nr_slots[TYPE_MAX];
|
|
|
|
|
2013-06-20 15:50:20 +00:00
|
|
|
static struct bp_cpuinfo *get_bp_info(int cpu, enum bp_type_idx type)
|
|
|
|
{
|
|
|
|
return per_cpu_ptr(bp_cpuinfo + type, cpu);
|
|
|
|
}
|
|
|
|
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
/* Keep track of the breakpoints attached to tasks */
|
|
|
|
static LIST_HEAD(bp_task_head);
|
|
|
|
|
2010-04-23 03:59:55 +00:00
|
|
|
static int constraints_initialized;
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
/* Gather the number of total pinned and un-pinned bp in a cpuset */
|
|
|
|
struct bp_busy_slots {
|
|
|
|
unsigned int pinned;
|
|
|
|
unsigned int flexible;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Serialize accesses to the above constraints */
|
|
|
|
static DEFINE_MUTEX(nr_bp_mutex);
|
|
|
|
|
2010-04-12 22:32:30 +00:00
|
|
|
__weak int hw_breakpoint_weight(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2018-03-12 13:45:41 +00:00
|
|
|
static inline enum bp_type_idx find_slot_idx(u64 bp_type)
|
2010-04-11 16:55:56 +00:00
|
|
|
{
|
2018-03-12 13:45:41 +00:00
|
|
|
if (bp_type & HW_BREAKPOINT_RW)
|
2010-04-11 16:55:56 +00:00
|
|
|
return TYPE_DATA;
|
|
|
|
|
|
|
|
return TYPE_INST;
|
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
/*
|
|
|
|
* Report the maximum number of pinned breakpoints a task
|
|
|
|
* have in this cpu
|
|
|
|
*/
|
2010-04-11 16:55:56 +00:00
|
|
|
static unsigned int max_task_bp_pinned(int cpu, enum bp_type_idx type)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2013-06-20 15:50:20 +00:00
|
|
|
unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
int i;
|
2009-06-01 18:13:33 +00:00
|
|
|
|
2010-04-23 03:59:55 +00:00
|
|
|
for (i = nr_slots[type] - 1; i >= 0; i--) {
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
if (tsk_pinned[i] > 0)
|
|
|
|
return i + 1;
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
|
|
|
|
2009-09-09 17:22:48 +00:00
|
|
|
return 0;
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
|
|
|
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
/*
|
|
|
|
* Count the number of breakpoints of the same type and same task.
|
|
|
|
* The given event must be not on the list.
|
|
|
|
*/
|
2012-10-26 16:28:56 +00:00
|
|
|
static int task_bp_pinned(int cpu, struct perf_event *bp, enum bp_type_idx type)
|
2009-12-07 05:46:48 +00:00
|
|
|
{
|
2015-03-05 21:10:19 +00:00
|
|
|
struct task_struct *tsk = bp->hw.target;
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
struct perf_event *iter;
|
2009-12-07 05:46:48 +00:00
|
|
|
int count = 0;
|
|
|
|
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
list_for_each_entry(iter, &bp_task_head, hw.bp_list) {
|
2015-03-05 21:10:19 +00:00
|
|
|
if (iter->hw.target == tsk &&
|
2018-03-12 13:45:41 +00:00
|
|
|
find_slot_idx(iter->attr.bp_type) == type &&
|
2013-06-20 15:50:06 +00:00
|
|
|
(iter->cpu < 0 || cpu == iter->cpu))
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
count += hw_breakpoint_weight(iter);
|
2009-12-07 05:46:48 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
2013-06-20 15:50:15 +00:00
|
|
|
static const struct cpumask *cpumask_of_bp(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
if (bp->cpu >= 0)
|
|
|
|
return cpumask_of(bp->cpu);
|
|
|
|
return cpu_possible_mask;
|
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
/*
|
|
|
|
* Report the number of pinned/un-pinned breakpoints we have in
|
|
|
|
* a given cpu (cpu > -1) or in all of them (cpu = -1).
|
|
|
|
*/
|
2009-12-07 05:46:48 +00:00
|
|
|
static void
|
2010-04-11 16:55:56 +00:00
|
|
|
fetch_bp_busy_slots(struct bp_busy_slots *slots, struct perf_event *bp,
|
|
|
|
enum bp_type_idx type)
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
{
|
2013-06-20 15:50:15 +00:00
|
|
|
const struct cpumask *cpumask = cpumask_of_bp(bp);
|
|
|
|
int cpu;
|
2009-12-07 05:46:48 +00:00
|
|
|
|
2013-06-20 15:50:15 +00:00
|
|
|
for_each_cpu(cpu, cpumask) {
|
2013-06-20 15:50:20 +00:00
|
|
|
struct bp_cpuinfo *info = get_bp_info(cpu, type);
|
|
|
|
int nr;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
2013-06-20 15:50:20 +00:00
|
|
|
nr = info->cpu_pinned;
|
2015-03-05 21:10:19 +00:00
|
|
|
if (!bp->hw.target)
|
2010-04-11 16:55:56 +00:00
|
|
|
nr += max_task_bp_pinned(cpu, type);
|
2009-12-07 05:46:48 +00:00
|
|
|
else
|
2012-10-26 16:28:56 +00:00
|
|
|
nr += task_bp_pinned(cpu, bp, type);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
|
|
|
if (nr > slots->pinned)
|
|
|
|
slots->pinned = nr;
|
|
|
|
|
2013-06-20 15:50:20 +00:00
|
|
|
nr = info->flexible;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
if (nr > slots->flexible)
|
|
|
|
slots->flexible = nr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-04-12 22:32:30 +00:00
|
|
|
/*
|
|
|
|
* For now, continue to consider flexible as pinned, until we can
|
|
|
|
* ensure no flexible event can ever be scheduled before a pinned event
|
|
|
|
* in a same cpu.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
fetch_this_slot(struct bp_busy_slots *slots, int weight)
|
|
|
|
{
|
|
|
|
slots->pinned += weight;
|
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
/*
|
|
|
|
* Add a pinned breakpoint for the given task in our constraint table
|
|
|
|
*/
|
2013-06-20 15:50:13 +00:00
|
|
|
static void toggle_bp_task_slot(struct perf_event *bp, int cpu,
|
2010-04-12 22:32:30 +00:00
|
|
|
enum bp_type_idx type, int weight)
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
{
|
2013-06-20 15:50:20 +00:00
|
|
|
unsigned int *tsk_pinned = get_bp_info(cpu, type)->tsk_pinned;
|
2013-06-20 15:50:11 +00:00
|
|
|
int old_idx, new_idx;
|
|
|
|
|
|
|
|
old_idx = task_bp_pinned(cpu, bp, type) - 1;
|
2013-06-20 15:50:13 +00:00
|
|
|
new_idx = old_idx + weight;
|
2013-06-20 15:50:11 +00:00
|
|
|
|
|
|
|
if (old_idx >= 0)
|
|
|
|
tsk_pinned[old_idx]--;
|
|
|
|
if (new_idx >= 0)
|
|
|
|
tsk_pinned[new_idx]++;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add/remove the given breakpoint in our constraint table
|
|
|
|
*/
|
2010-04-11 16:55:56 +00:00
|
|
|
static void
|
2010-04-12 22:32:30 +00:00
|
|
|
toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
|
|
|
|
int weight)
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
{
|
2013-06-20 15:50:15 +00:00
|
|
|
const struct cpumask *cpumask = cpumask_of_bp(bp);
|
|
|
|
int cpu;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
2013-06-20 15:50:13 +00:00
|
|
|
if (!enable)
|
|
|
|
weight = -weight;
|
|
|
|
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
/* Pinned counter cpu profiling */
|
2015-03-05 21:10:19 +00:00
|
|
|
if (!bp->hw.target) {
|
2013-06-20 15:50:20 +00:00
|
|
|
get_bp_info(bp->cpu, type)->cpu_pinned += weight;
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
/* Pinned counter task profiling */
|
2013-06-20 15:50:15 +00:00
|
|
|
for_each_cpu(cpu, cpumask)
|
2013-06-20 15:50:13 +00:00
|
|
|
toggle_bp_task_slot(bp, cpu, type, weight);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
|
|
|
if (enable)
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
list_add_tail(&bp->hw.bp_list, &bp_task_head);
|
2013-06-20 15:50:11 +00:00
|
|
|
else
|
|
|
|
list_del(&bp->hw.bp_list);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
}
|
|
|
|
|
2010-06-15 06:04:34 +00:00
|
|
|
/*
|
|
|
|
* Function to perform processor-specific cleanup during unregistration
|
|
|
|
*/
|
|
|
|
__weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* A weak stub function here for those archs that don't define
|
|
|
|
* it inside arch/.../kernel/hw_breakpoint.c
|
|
|
|
*/
|
|
|
|
}
|
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
/*
|
|
|
|
* Contraints to check before allowing this new breakpoint counter:
|
|
|
|
*
|
|
|
|
* == Non-pinned counter == (Considered as pinned for now)
|
|
|
|
*
|
|
|
|
* - If attached to a single cpu, check:
|
|
|
|
*
|
2013-06-20 15:50:20 +00:00
|
|
|
* (per_cpu(info->flexible, cpu) || (per_cpu(info->cpu_pinned, cpu)
|
|
|
|
* + max(per_cpu(info->tsk_pinned, cpu)))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
*
|
|
|
|
* -> If there are already non-pinned counters in this cpu, it means
|
|
|
|
* there is already a free slot for them.
|
|
|
|
* Otherwise, we check that the maximum number of per task
|
|
|
|
* breakpoints (for this cpu) plus the number of per cpu breakpoint
|
|
|
|
* (for this cpu) doesn't cover every registers.
|
|
|
|
*
|
|
|
|
* - If attached to every cpus, check:
|
|
|
|
*
|
2013-06-20 15:50:20 +00:00
|
|
|
* (per_cpu(info->flexible, *) || (max(per_cpu(info->cpu_pinned, *))
|
|
|
|
* + max(per_cpu(info->tsk_pinned, *)))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
*
|
|
|
|
* -> This is roughly the same, except we check the number of per cpu
|
|
|
|
* bp for every cpu and we keep the max one. Same for the per tasks
|
|
|
|
* breakpoints.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* == Pinned counter ==
|
|
|
|
*
|
|
|
|
* - If attached to a single cpu, check:
|
|
|
|
*
|
2013-06-20 15:50:20 +00:00
|
|
|
* ((per_cpu(info->flexible, cpu) > 1) + per_cpu(info->cpu_pinned, cpu)
|
|
|
|
* + max(per_cpu(info->tsk_pinned, cpu))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
*
|
2013-06-20 15:50:20 +00:00
|
|
|
* -> Same checks as before. But now the info->flexible, if any, must keep
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
* one register at least (or they will never be fed).
|
|
|
|
*
|
|
|
|
* - If attached to every cpus, check:
|
|
|
|
*
|
2013-06-20 15:50:20 +00:00
|
|
|
* ((per_cpu(info->flexible, *) > 1) + max(per_cpu(info->cpu_pinned, *))
|
|
|
|
* + max(per_cpu(info->tsk_pinned, *))) < HBP_NUM
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
*/
|
2018-03-12 13:45:42 +00:00
|
|
|
static int __reserve_bp_slot(struct perf_event *bp, u64 bp_type)
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
{
|
|
|
|
struct bp_busy_slots slots = {0};
|
2010-04-11 16:55:56 +00:00
|
|
|
enum bp_type_idx type;
|
2010-04-12 22:32:30 +00:00
|
|
|
int weight;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
2010-04-23 03:59:55 +00:00
|
|
|
/* We couldn't initialize breakpoint constraints on boot */
|
|
|
|
if (!constraints_initialized)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2010-04-11 16:55:56 +00:00
|
|
|
/* Basic checks */
|
2018-03-12 13:45:42 +00:00
|
|
|
if (bp_type == HW_BREAKPOINT_EMPTY ||
|
|
|
|
bp_type == HW_BREAKPOINT_INVALID)
|
2010-04-11 16:55:56 +00:00
|
|
|
return -EINVAL;
|
|
|
|
|
2018-03-12 13:45:42 +00:00
|
|
|
type = find_slot_idx(bp_type);
|
2010-04-12 22:32:30 +00:00
|
|
|
weight = hw_breakpoint_weight(bp);
|
|
|
|
|
2010-04-11 16:55:56 +00:00
|
|
|
fetch_bp_busy_slots(&slots, bp, type);
|
hw_breakpoints: Fix per task breakpoint tracking
Freeing a perf event can happen in several ways. A task
calls perf_event_exit_task() right before exiting. This helper
will detach all the events from the task context and queue their
removal through free_event() if they are child tasks. The task
also loses its context reference there.
Releasing the breakpoint slot from the constraint table is made
from free_event() that calls release_bp_slot(). We count the number
of breakpoints this task is running by looking at the task's
perf_event_ctxp and iterating through its attached events.
But at this time, the reference to this context has been cleaned up
already.
So looking at the event->ctx instead of task->perf_event_ctxp
to count the remaining breakpoints should solve the problem.
At least it would for child breakpoints, but not for parent ones.
If the parent exits before the child, it will remove all its
events from the context but free_event() will be called later,
on fd release time. And checking the number of breakpoints the
task has attached to its context at this time is unreliable as all
events have been removed from the context.
To solve this, we keep track of the list of per task breakpoints.
On top of it, we maintain our array of numbers of breakpoints used
by the tasks. We use the context address as a task id.
So, instead of looking at the number of events attached to a context,
we walk through our list of per task breakpoints and count the number
of breakpoints that use the same ctx than the one to be reserved or
released from the constraint table, and update the count on top of this
result.
In the meantime it solves a bad refcounting, it also solves a warning,
reported by Paul.
Badness at /home/paulus/kernel/perf/kernel/hw_breakpoint.c:114
NIP: c0000000000cb470 LR: c0000000000cb46c CTR: c00000000032d9b8
REGS: c000000118e7b570 TRAP: 0700 Not tainted (2.6.35-rc3-perf-00008-g76b0f13
)
MSR: 9000000000029032 <EE,ME,CE,IR,DR> CR: 44004424 XER: 000fffff
TASK = c0000001187dcad0[3143] 'perf' THREAD: c000000118e78000 CPU: 1
GPR00: c0000000000cb46c c000000118e7b7f0 c0000000009866a0 0000000000000020
GPR04: 0000000000000000 000000000000001d 0000000000000000 0000000000000001
GPR08: c0000000009bed68 c00000000086dff8 c000000000a5bf10 0000000000000001
GPR12: 0000000024004422 c00000000ffff200 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000018 00000000101150f4
GPR20: 0000000010206b40 0000000000000000 0000000000000000 00000000101150f4
GPR24: c0000001199090c0 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000000 0000000000000000 c0000000008ec290 0000000000000000
NIP [c0000000000cb470] .task_bp_pinned+0x5c/0x12c
LR [c0000000000cb46c] .task_bp_pinned+0x58/0x12c
Call Trace:
[c000000118e7b7f0] [c0000000000cb46c] .task_bp_pinned+0x58/0x12c (unreliable)
[c000000118e7b8a0] [c0000000000cb584] .toggle_bp_task_slot+0x44/0xe4
[c000000118e7b940] [c0000000000cb6c8] .toggle_bp_slot+0xa4/0x164
[c000000118e7b9f0] [c0000000000cbafc] .release_bp_slot+0x44/0x6c
[c000000118e7ba80] [c0000000000c4178] .bp_perf_event_destroy+0x10/0x24
[c000000118e7bb00] [c0000000000c4aec] .free_event+0x180/0x1bc
[c000000118e7bbc0] [c0000000000c54c4] .perf_event_release_kernel+0x14c/0x170
Reported-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
2010-06-23 21:00:37 +00:00
|
|
|
/*
|
|
|
|
* Simulate the addition of this breakpoint to the constraints
|
|
|
|
* and see the result.
|
|
|
|
*/
|
2010-04-12 22:32:30 +00:00
|
|
|
fetch_this_slot(&slots, weight);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
|
|
|
/* Flexible counters need to keep at least one slot */
|
2010-04-23 03:59:55 +00:00
|
|
|
if (slots.pinned + (!!slots.flexible) > nr_slots[type])
|
2010-01-28 23:04:43 +00:00
|
|
|
return -ENOSPC;
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
2010-04-12 22:32:30 +00:00
|
|
|
toggle_bp_slot(bp, true, type, weight);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
2010-01-28 23:04:43 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int reserve_bp_slot(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
mutex_lock(&nr_bp_mutex);
|
|
|
|
|
2018-03-12 13:45:42 +00:00
|
|
|
ret = __reserve_bp_slot(bp, bp->attr.bp_type);
|
2010-01-28 23:04:43 +00:00
|
|
|
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
mutex_unlock(&nr_bp_mutex);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2018-03-12 13:45:42 +00:00
|
|
|
static void __release_bp_slot(struct perf_event *bp, u64 bp_type)
|
2010-01-28 23:04:43 +00:00
|
|
|
{
|
2010-04-11 16:55:56 +00:00
|
|
|
enum bp_type_idx type;
|
2010-04-12 22:32:30 +00:00
|
|
|
int weight;
|
2010-04-11 16:55:56 +00:00
|
|
|
|
2018-03-12 13:45:42 +00:00
|
|
|
type = find_slot_idx(bp_type);
|
2010-04-12 22:32:30 +00:00
|
|
|
weight = hw_breakpoint_weight(bp);
|
|
|
|
toggle_bp_slot(bp, false, type, weight);
|
2010-01-28 23:04:43 +00:00
|
|
|
}
|
|
|
|
|
2009-09-09 17:22:48 +00:00
|
|
|
void release_bp_slot(struct perf_event *bp)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
mutex_lock(&nr_bp_mutex);
|
|
|
|
|
2010-06-15 06:04:34 +00:00
|
|
|
arch_unregister_hw_breakpoint(bp);
|
2018-03-12 13:45:42 +00:00
|
|
|
__release_bp_slot(bp, bp->attr.bp_type);
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
|
|
|
mutex_unlock(&nr_bp_mutex);
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
|
|
|
|
2018-06-26 02:58:58 +00:00
|
|
|
static int __modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
|
2018-03-12 13:45:43 +00:00
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
__release_bp_slot(bp, old_type);
|
|
|
|
|
2018-06-26 02:58:58 +00:00
|
|
|
err = __reserve_bp_slot(bp, new_type);
|
2018-03-12 13:45:43 +00:00
|
|
|
if (err) {
|
|
|
|
/*
|
|
|
|
* Reserve the old_type slot back in case
|
|
|
|
* there's no space for the new type.
|
|
|
|
*
|
|
|
|
* This must succeed, because we just released
|
|
|
|
* the old_type slot in the __release_bp_slot
|
|
|
|
* call above. If not, something is broken.
|
|
|
|
*/
|
|
|
|
WARN_ON(__reserve_bp_slot(bp, old_type));
|
|
|
|
}
|
|
|
|
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2018-06-26 02:58:58 +00:00
|
|
|
static int modify_bp_slot(struct perf_event *bp, u64 old_type, u64 new_type)
|
2018-03-12 13:45:43 +00:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
mutex_lock(&nr_bp_mutex);
|
2018-06-26 02:58:58 +00:00
|
|
|
ret = __modify_bp_slot(bp, old_type, new_type);
|
2018-03-12 13:45:43 +00:00
|
|
|
mutex_unlock(&nr_bp_mutex);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2010-01-28 23:04:43 +00:00
|
|
|
/*
|
|
|
|
* Allow the kernel debugger to reserve breakpoint slots without
|
|
|
|
* taking a lock using the dbg_* variant of for the reserve and
|
|
|
|
* release breakpoint slots.
|
|
|
|
*/
|
|
|
|
int dbg_reserve_bp_slot(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
if (mutex_is_locked(&nr_bp_mutex))
|
|
|
|
return -1;
|
|
|
|
|
2018-03-12 13:45:42 +00:00
|
|
|
return __reserve_bp_slot(bp, bp->attr.bp_type);
|
2010-01-28 23:04:43 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
int dbg_release_bp_slot(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
if (mutex_is_locked(&nr_bp_mutex))
|
|
|
|
return -1;
|
|
|
|
|
2018-03-12 13:45:42 +00:00
|
|
|
__release_bp_slot(bp, bp->attr.bp_type);
|
2010-01-28 23:04:43 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
hw-breakpoints: Arbitrate access to pmu following registers constraints
Allow or refuse to build a counter using the breakpoints pmu following
given constraints.
We keep track of the pmu users by using three per cpu variables:
- nr_cpu_bp_pinned stores the number of pinned cpu breakpoints counters
in the given cpu
- nr_bp_flexible stores the number of non-pinned breakpoints counters
in the given cpu.
- task_bp_pinned stores the number of pinned task breakpoints in a cpu
The latter is not a simple counter but gathers the number of tasks that
have n pinned breakpoints.
Considering HBP_NUM the number of available breakpoint address
registers:
task_bp_pinned[0] is the number of tasks having 1 breakpoint
task_bp_pinned[1] is the number of tasks having 2 breakpoints
[...]
task_bp_pinned[HBP_NUM - 1] is the number of tasks having the
maximum number of registers (HBP_NUM).
When a breakpoint counter is created and wants an access to the pmu,
we evaluate the following constraints:
== Non-pinned counter ==
- If attached to a single cpu, check:
(per_cpu(nr_bp_flexible, cpu) || (per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu)))) < HBP_NUM
-> If there are already non-pinned counters in this cpu, it
means there is already a free slot for them.
Otherwise, we check that the maximum number of per task
breakpoints (for this cpu) plus the number of per cpu
breakpoint (for this cpu) doesn't cover every registers.
- If attached to every cpus, check:
(per_cpu(nr_bp_flexible, *) || (max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *)))) < HBP_NUM
-> This is roughly the same, except we check the number of per
cpu bp for every cpu and we keep the max one. Same for the
per tasks breakpoints.
== Pinned counter ==
- If attached to a single cpu, check:
((per_cpu(nr_bp_flexible, cpu) > 1)
+ per_cpu(nr_cpu_bp_pinned, cpu)
+ max(per_cpu(task_bp_pinned, cpu))) < HBP_NUM
-> Same checks as before. But now the nr_bp_flexible, if any,
must keep one register at least (or flexible breakpoints will
never be be fed).
- If attached to every cpus, check:
((per_cpu(nr_bp_flexible, *) > 1)
+ max(per_cpu(nr_cpu_bp_pinned, *))
+ max(per_cpu(task_bp_pinned, *))) < HBP_NUM
Changes in v2:
- Counter -> event rename
Changes in v5:
- Fix unreleased non-pinned task-bound-only counters. We only released
it in the first cpu. (Thanks to Paul Mackerras for reporting that)
Changes in v6:
- Currently, events scheduling are done in this order: cpu context
pinned + cpu context non-pinned + task context pinned + task context
non-pinned events. Then our current constraints are right theoretically
but not in practice, because non-pinned counters may be scheduled
before we can apply every possible pinned counters. So consider
non-pinned counters as pinned for now.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Jan Kiszka <jan.kiszka@web.de>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
2009-09-10 07:26:21 +00:00
|
|
|
|
2018-06-26 02:58:48 +00:00
|
|
|
static int hw_breakpoint_parse(struct perf_event *bp,
|
|
|
|
const struct perf_event_attr *attr,
|
|
|
|
struct arch_hw_breakpoint *hw)
|
|
|
|
{
|
|
|
|
int err;
|
2010-04-18 16:11:53 +00:00
|
|
|
|
2018-06-26 02:58:48 +00:00
|
|
|
err = hw_breakpoint_arch_parse(bp, attr, hw);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2010-04-18 16:11:53 +00:00
|
|
|
|
2018-06-26 02:58:49 +00:00
|
|
|
if (arch_check_bp_in_kernelspace(hw)) {
|
2018-06-26 02:58:48 +00:00
|
|
|
if (attr->exclude_kernel)
|
2010-04-18 16:11:53 +00:00
|
|
|
return -EINVAL;
|
|
|
|
/*
|
|
|
|
* Don't let unprivileged users set a breakpoint in the trap
|
|
|
|
* path to avoid trap recursion attacks.
|
|
|
|
*/
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
|
|
return -EPERM;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-12-05 08:44:31 +00:00
|
|
|
int register_perf_hw_breakpoint(struct perf_event *bp)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2018-06-26 02:58:48 +00:00
|
|
|
struct arch_hw_breakpoint hw;
|
|
|
|
int err;
|
2009-06-01 18:13:33 +00:00
|
|
|
|
2018-06-26 02:58:48 +00:00
|
|
|
err = reserve_bp_slot(bp);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2009-06-01 18:13:33 +00:00
|
|
|
|
2018-06-26 02:58:48 +00:00
|
|
|
err = hw_breakpoint_parse(bp, &bp->attr, &hw);
|
|
|
|
if (err) {
|
2010-01-21 12:55:16 +00:00
|
|
|
release_bp_slot(bp);
|
2018-06-26 02:58:48 +00:00
|
|
|
return err;
|
|
|
|
}
|
2010-01-21 12:55:16 +00:00
|
|
|
|
2018-06-26 02:58:48 +00:00
|
|
|
bp->hw.info = hw;
|
|
|
|
|
|
|
|
return 0;
|
2009-09-09 17:22:48 +00:00
|
|
|
}
|
2009-06-01 18:13:33 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* register_user_hw_breakpoint - register a hardware breakpoint for user space
|
2009-11-27 03:55:53 +00:00
|
|
|
* @attr: breakpoint attributes
|
2009-09-09 17:22:48 +00:00
|
|
|
* @triggered: callback to trigger when we hit the breakpoint
|
2009-06-01 18:13:33 +00:00
|
|
|
* @tsk: pointer to 'task_struct' of the process to which the address belongs
|
|
|
|
*/
|
2009-09-09 17:22:48 +00:00
|
|
|
struct perf_event *
|
2009-11-27 03:55:53 +00:00
|
|
|
register_user_hw_breakpoint(struct perf_event_attr *attr,
|
2009-12-05 08:44:31 +00:00
|
|
|
perf_overflow_handler_t triggered,
|
2011-06-29 15:42:35 +00:00
|
|
|
void *context,
|
2009-11-27 03:55:53 +00:00
|
|
|
struct task_struct *tsk)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2011-06-29 15:42:35 +00:00
|
|
|
return perf_event_create_kernel_counter(attr, -1, tsk, triggered,
|
|
|
|
context);
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(register_user_hw_breakpoint);
|
|
|
|
|
2018-06-26 02:58:59 +00:00
|
|
|
static void hw_breakpoint_copy_attr(struct perf_event_attr *to,
|
|
|
|
struct perf_event_attr *from)
|
|
|
|
{
|
|
|
|
to->bp_addr = from->bp_addr;
|
|
|
|
to->bp_type = from->bp_type;
|
|
|
|
to->bp_len = from->bp_len;
|
|
|
|
to->disabled = from->disabled;
|
|
|
|
}
|
|
|
|
|
perf/core: Implement fast breakpoint modification via _IOC_MODIFY_ATTRIBUTES
Problem and motivation: Once a breakpoint perf event (PERF_TYPE_BREAKPOINT)
is created, there is no flexibility to change the breakpoint type
(bp_type), breakpoint address (bp_addr), or breakpoint length (bp_len). The
only option is to close the perf event and configure a new breakpoint
event. This inflexibility has a significant performance overhead. For
example, sampling-based, lightweight performance profilers (and also
concurrency bug detection tools), monitor different addresses for a short
duration using PERF_TYPE_BREAKPOINT and change the address (bp_addr) to
another address or change the kind of breakpoint (bp_type) from "write" to
a "read" or vice-versa or change the length (bp_len) of the address being
monitored. The cost of these modifications is prohibitive since it involves
unmapping the circular buffer associated with the perf event, closing the
perf event, opening another perf event and mmaping another circular buffer.
Solution: The new ioctl flag for perf events,
PERF_EVENT_IOC_MODIFY_ATTRIBUTES, introduced in this patch takes a pointer
to a struct perf_event_attr as an argument to update an old breakpoint
event with new address, type, and size. This facility allows retaining a
previous mmaped perf events ring buffer and avoids having to close and
reopen another perf event.
This patch supports only changing PERF_TYPE_BREAKPOINT event type; future
implementations can extend this feature. The patch replicates some of its
functionality of modify_user_hw_breakpoint() in
kernel/events/hw_breakpoint.c. modify_user_hw_breakpoint cannot be called
directly since perf_event_ctx_lock() is already held in _perf_ioctl().
Evidence: Experiments show that the baseline (not able to modify an already
created breakpoint) costs an order of magnitude (~10x) more than the
suggested optimization (having the ability to dynamically modifying a
configured breakpoint via ioctl). When the breakpoints typically do not
trap, the speedup due to the suggested optimization is ~10x; even when the
breakpoints always trap, the speedup is ~4x due to the suggested
optimization.
Testing: tests posted at
https://github.com/linux-contrib/perf_event_modify_bp demonstrate the
performance significance of this patch. Tests also check the functional
correctness of the patch.
Signed-off-by: Milind Chabbi <chabbi.milind@gmail.com>
[ Using modify_user_hw_breakpoint_check function. ]
[ Reformated PERF_EVENT_IOC_*, so the values are all in one column. ]
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Hari Bathini <hbathini@linux.vnet.ibm.com>
Cc: Jin Yao <yao.jin@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oleg Nesterov <onestero@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20180312134548.31532-8-jolsa@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-12 13:45:47 +00:00
|
|
|
int
|
2018-03-12 13:45:45 +00:00
|
|
|
modify_user_hw_breakpoint_check(struct perf_event *bp, struct perf_event_attr *attr,
|
|
|
|
bool check)
|
2018-03-12 13:45:44 +00:00
|
|
|
{
|
2018-06-26 02:58:48 +00:00
|
|
|
struct arch_hw_breakpoint hw;
|
2018-06-26 02:58:59 +00:00
|
|
|
int err;
|
2018-03-12 13:45:44 +00:00
|
|
|
|
2018-06-26 02:58:59 +00:00
|
|
|
err = hw_breakpoint_parse(bp, attr, &hw);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2018-03-12 13:45:44 +00:00
|
|
|
|
2018-06-26 02:58:59 +00:00
|
|
|
if (check) {
|
|
|
|
struct perf_event_attr old_attr;
|
2018-03-12 13:45:45 +00:00
|
|
|
|
2018-06-26 02:58:59 +00:00
|
|
|
old_attr = bp->attr;
|
|
|
|
hw_breakpoint_copy_attr(&old_attr, attr);
|
|
|
|
if (memcmp(&old_attr, attr, sizeof(*attr)))
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
2018-03-12 13:45:44 +00:00
|
|
|
|
2018-06-26 02:58:59 +00:00
|
|
|
if (bp->attr.bp_type != attr->bp_type) {
|
|
|
|
err = modify_bp_slot(bp, bp->attr.bp_type, attr->bp_type);
|
|
|
|
if (err)
|
|
|
|
return err;
|
2018-03-12 13:45:44 +00:00
|
|
|
}
|
|
|
|
|
2018-06-26 02:58:59 +00:00
|
|
|
hw_breakpoint_copy_attr(&bp->attr, attr);
|
2018-06-26 02:58:48 +00:00
|
|
|
bp->hw.info = hw;
|
|
|
|
|
2018-03-12 13:45:44 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2009-06-01 18:13:33 +00:00
|
|
|
/**
|
|
|
|
* modify_user_hw_breakpoint - modify a user-space hardware breakpoint
|
2009-09-09 17:22:48 +00:00
|
|
|
* @bp: the breakpoint structure to modify
|
2009-11-27 03:55:53 +00:00
|
|
|
* @attr: new breakpoint attributes
|
2009-06-01 18:13:33 +00:00
|
|
|
*/
|
2009-12-09 08:25:48 +00:00
|
|
|
int modify_user_hw_breakpoint(struct perf_event *bp, struct perf_event_attr *attr)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2012-08-02 08:16:35 +00:00
|
|
|
/*
|
|
|
|
* modify_user_hw_breakpoint can be invoked with IRQs disabled and hence it
|
|
|
|
* will not be possible to raise IPIs that invoke __perf_event_disable.
|
|
|
|
* So call the function directly after making sure we are targeting the
|
|
|
|
* current task.
|
|
|
|
*/
|
|
|
|
if (irqs_disabled() && bp->ctx && bp->ctx->task == current)
|
2016-01-11 14:00:50 +00:00
|
|
|
perf_event_disable_local(bp);
|
2012-08-02 08:16:35 +00:00
|
|
|
else
|
|
|
|
perf_event_disable(bp);
|
2009-12-09 08:25:48 +00:00
|
|
|
|
2018-03-27 01:39:07 +00:00
|
|
|
if (!attr->disabled) {
|
2018-03-29 14:03:48 +00:00
|
|
|
int err = modify_user_hw_breakpoint_check(bp, attr, false);
|
2009-12-09 08:25:48 +00:00
|
|
|
|
2018-03-27 01:39:07 +00:00
|
|
|
if (err)
|
|
|
|
return err;
|
2018-03-12 13:45:43 +00:00
|
|
|
perf_event_enable(bp);
|
2018-03-27 01:39:07 +00:00
|
|
|
bp->attr.disabled = 0;
|
2009-12-09 08:25:48 +00:00
|
|
|
}
|
|
|
|
return 0;
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(modify_user_hw_breakpoint);
|
|
|
|
|
|
|
|
/**
|
2009-09-09 17:22:48 +00:00
|
|
|
* unregister_hw_breakpoint - unregister a user-space hardware breakpoint
|
2009-06-01 18:13:33 +00:00
|
|
|
* @bp: the breakpoint structure to unregister
|
|
|
|
*/
|
2009-09-09 17:22:48 +00:00
|
|
|
void unregister_hw_breakpoint(struct perf_event *bp)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2009-09-09 17:22:48 +00:00
|
|
|
if (!bp)
|
|
|
|
return;
|
|
|
|
perf_event_release_kernel(bp);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(unregister_hw_breakpoint);
|
|
|
|
|
2009-06-01 18:13:33 +00:00
|
|
|
/**
|
2009-09-09 17:22:48 +00:00
|
|
|
* register_wide_hw_breakpoint - register a wide breakpoint in the kernel
|
2009-11-27 03:55:54 +00:00
|
|
|
* @attr: breakpoint attributes
|
2009-09-09 17:22:48 +00:00
|
|
|
* @triggered: callback to trigger when we hit the breakpoint
|
2009-06-01 18:13:33 +00:00
|
|
|
*
|
2009-09-09 17:22:48 +00:00
|
|
|
* @return a set of per_cpu pointers to perf events
|
2009-06-01 18:13:33 +00:00
|
|
|
*/
|
2010-02-17 01:50:50 +00:00
|
|
|
struct perf_event * __percpu *
|
2009-11-27 03:55:54 +00:00
|
|
|
register_wide_hw_breakpoint(struct perf_event_attr *attr,
|
2011-06-29 15:42:35 +00:00
|
|
|
perf_overflow_handler_t triggered,
|
|
|
|
void *context)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2013-06-20 15:50:18 +00:00
|
|
|
struct perf_event * __percpu *cpu_events, *bp;
|
|
|
|
long err = 0;
|
2009-09-09 17:22:48 +00:00
|
|
|
int cpu;
|
|
|
|
|
|
|
|
cpu_events = alloc_percpu(typeof(*cpu_events));
|
|
|
|
if (!cpu_events)
|
2010-02-17 01:50:50 +00:00
|
|
|
return (void __percpu __force *)ERR_PTR(-ENOMEM);
|
2009-06-01 18:13:33 +00:00
|
|
|
|
2009-12-30 06:22:22 +00:00
|
|
|
get_online_cpus();
|
|
|
|
for_each_online_cpu(cpu) {
|
2011-06-29 15:42:35 +00:00
|
|
|
bp = perf_event_create_kernel_counter(attr, cpu, NULL,
|
|
|
|
triggered, context);
|
2009-11-26 04:35:42 +00:00
|
|
|
if (IS_ERR(bp)) {
|
2009-09-09 17:22:48 +00:00
|
|
|
err = PTR_ERR(bp);
|
2013-06-20 15:50:18 +00:00
|
|
|
break;
|
2009-09-09 17:22:48 +00:00
|
|
|
}
|
|
|
|
|
2013-06-20 15:50:18 +00:00
|
|
|
per_cpu(*cpu_events, cpu) = bp;
|
2009-09-09 17:22:48 +00:00
|
|
|
}
|
2009-12-30 06:22:22 +00:00
|
|
|
put_online_cpus();
|
|
|
|
|
2013-06-20 15:50:18 +00:00
|
|
|
if (likely(!err))
|
|
|
|
return cpu_events;
|
|
|
|
|
|
|
|
unregister_wide_hw_breakpoint(cpu_events);
|
2010-02-17 01:50:50 +00:00
|
|
|
return (void __percpu __force *)ERR_PTR(err);
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
2009-11-10 09:17:07 +00:00
|
|
|
EXPORT_SYMBOL_GPL(register_wide_hw_breakpoint);
|
2009-06-01 18:13:33 +00:00
|
|
|
|
|
|
|
/**
|
2009-09-09 17:22:48 +00:00
|
|
|
* unregister_wide_hw_breakpoint - unregister a wide breakpoint in the kernel
|
|
|
|
* @cpu_events: the per cpu set of events to unregister
|
2009-06-01 18:13:33 +00:00
|
|
|
*/
|
2010-02-17 01:50:50 +00:00
|
|
|
void unregister_wide_hw_breakpoint(struct perf_event * __percpu *cpu_events)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2009-09-09 17:22:48 +00:00
|
|
|
int cpu;
|
2009-06-01 18:13:33 +00:00
|
|
|
|
2013-06-20 15:50:18 +00:00
|
|
|
for_each_possible_cpu(cpu)
|
|
|
|
unregister_hw_breakpoint(per_cpu(*cpu_events, cpu));
|
|
|
|
|
2009-09-09 17:22:48 +00:00
|
|
|
free_percpu(cpu_events);
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
2009-11-10 09:17:07 +00:00
|
|
|
EXPORT_SYMBOL_GPL(unregister_wide_hw_breakpoint);
|
2009-06-01 18:13:33 +00:00
|
|
|
|
|
|
|
static struct notifier_block hw_breakpoint_exceptions_nb = {
|
|
|
|
.notifier_call = hw_breakpoint_exceptions_notify,
|
|
|
|
/* we need to be notified first */
|
|
|
|
.priority = 0x7fffffff
|
|
|
|
};
|
|
|
|
|
2010-06-11 11:35:08 +00:00
|
|
|
static void bp_perf_event_destroy(struct perf_event *event)
|
|
|
|
{
|
|
|
|
release_bp_slot(event);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hw_breakpoint_event_init(struct perf_event *bp)
|
|
|
|
{
|
|
|
|
int err;
|
|
|
|
|
|
|
|
if (bp->attr.type != PERF_TYPE_BREAKPOINT)
|
|
|
|
return -ENOENT;
|
|
|
|
|
2012-02-09 22:20:59 +00:00
|
|
|
/*
|
|
|
|
* no branch sampling for breakpoint events
|
|
|
|
*/
|
|
|
|
if (has_branch_stack(bp))
|
|
|
|
return -EOPNOTSUPP;
|
|
|
|
|
2010-06-11 11:35:08 +00:00
|
|
|
err = register_perf_hw_breakpoint(bp);
|
|
|
|
if (err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
bp->destroy = bp_perf_event_destroy;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
perf: Rework the PMU methods
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-16 12:37:10 +00:00
|
|
|
static int hw_breakpoint_add(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
if (!(flags & PERF_EF_START))
|
|
|
|
bp->hw.state = PERF_HES_STOPPED;
|
|
|
|
|
2013-05-01 15:25:44 +00:00
|
|
|
if (is_sampling_event(bp)) {
|
|
|
|
bp->hw.last_period = bp->hw.sample_period;
|
|
|
|
perf_swevent_set_period(bp);
|
|
|
|
}
|
|
|
|
|
perf: Rework the PMU methods
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-16 12:37:10 +00:00
|
|
|
return arch_install_hw_breakpoint(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_breakpoint_del(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
arch_uninstall_hw_breakpoint(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_breakpoint_start(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
bp->hw.state = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hw_breakpoint_stop(struct perf_event *bp, int flags)
|
|
|
|
{
|
|
|
|
bp->hw.state = PERF_HES_STOPPED;
|
|
|
|
}
|
|
|
|
|
2010-06-11 11:35:08 +00:00
|
|
|
static struct pmu perf_breakpoint = {
|
2010-09-07 15:34:50 +00:00
|
|
|
.task_ctx_nr = perf_sw_context, /* could eventually get its own */
|
|
|
|
|
2010-06-11 11:35:08 +00:00
|
|
|
.event_init = hw_breakpoint_event_init,
|
perf: Rework the PMU methods
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-06-16 12:37:10 +00:00
|
|
|
.add = hw_breakpoint_add,
|
|
|
|
.del = hw_breakpoint_del,
|
|
|
|
.start = hw_breakpoint_start,
|
|
|
|
.stop = hw_breakpoint_stop,
|
2010-06-11 11:35:08 +00:00
|
|
|
.read = hw_breakpoint_pmu_read,
|
|
|
|
};
|
|
|
|
|
2010-11-04 22:33:01 +00:00
|
|
|
int __init init_hw_breakpoint(void)
|
2009-06-01 18:13:33 +00:00
|
|
|
{
|
2010-04-23 03:59:55 +00:00
|
|
|
int cpu, err_cpu;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < TYPE_MAX; i++)
|
|
|
|
nr_slots[i] = hw_breakpoint_slots(i);
|
|
|
|
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
|
|
for (i = 0; i < TYPE_MAX; i++) {
|
2013-06-20 15:50:20 +00:00
|
|
|
struct bp_cpuinfo *info = get_bp_info(cpu, i);
|
|
|
|
|
|
|
|
info->tsk_pinned = kcalloc(nr_slots[i], sizeof(int),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!info->tsk_pinned)
|
2010-04-23 03:59:55 +00:00
|
|
|
goto err_alloc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
constraints_initialized = 1;
|
|
|
|
|
2010-11-17 22:17:36 +00:00
|
|
|
perf_pmu_register(&perf_breakpoint, "breakpoint", PERF_TYPE_BREAKPOINT);
|
2010-06-11 11:35:08 +00:00
|
|
|
|
2009-06-01 18:13:33 +00:00
|
|
|
return register_die_notifier(&hw_breakpoint_exceptions_nb);
|
2010-04-23 03:59:55 +00:00
|
|
|
|
|
|
|
err_alloc:
|
|
|
|
for_each_possible_cpu(err_cpu) {
|
|
|
|
for (i = 0; i < TYPE_MAX; i++)
|
2013-06-20 15:50:20 +00:00
|
|
|
kfree(get_bp_info(err_cpu, i)->tsk_pinned);
|
2012-02-28 01:19:38 +00:00
|
|
|
if (err_cpu == cpu)
|
|
|
|
break;
|
2010-04-23 03:59:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return -ENOMEM;
|
2009-06-01 18:13:33 +00:00
|
|
|
}
|
2009-09-09 17:22:48 +00:00
|
|
|
|
|
|
|
|