forked from Minki/linux
767 lines
21 KiB
C
767 lines
21 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Device Memory Migration functionality.
|
||
|
*
|
||
|
* Originally written by Jérôme Glisse.
|
||
|
*/
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/memremap.h>
|
||
|
#include <linux/migrate.h>
|
||
|
#include <linux/mm_inline.h>
|
||
|
#include <linux/mmu_notifier.h>
|
||
|
#include <linux/oom.h>
|
||
|
#include <linux/pagewalk.h>
|
||
|
#include <linux/rmap.h>
|
||
|
#include <linux/swapops.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include "internal.h"
|
||
|
|
||
|
static int migrate_vma_collect_skip(unsigned long start,
|
||
|
unsigned long end,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct migrate_vma *migrate = walk->private;
|
||
|
unsigned long addr;
|
||
|
|
||
|
for (addr = start; addr < end; addr += PAGE_SIZE) {
|
||
|
migrate->dst[migrate->npages] = 0;
|
||
|
migrate->src[migrate->npages++] = 0;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int migrate_vma_collect_hole(unsigned long start,
|
||
|
unsigned long end,
|
||
|
__always_unused int depth,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct migrate_vma *migrate = walk->private;
|
||
|
unsigned long addr;
|
||
|
|
||
|
/* Only allow populating anonymous memory. */
|
||
|
if (!vma_is_anonymous(walk->vma))
|
||
|
return migrate_vma_collect_skip(start, end, walk);
|
||
|
|
||
|
for (addr = start; addr < end; addr += PAGE_SIZE) {
|
||
|
migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
|
||
|
migrate->dst[migrate->npages] = 0;
|
||
|
migrate->npages++;
|
||
|
migrate->cpages++;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int migrate_vma_collect_pmd(pmd_t *pmdp,
|
||
|
unsigned long start,
|
||
|
unsigned long end,
|
||
|
struct mm_walk *walk)
|
||
|
{
|
||
|
struct migrate_vma *migrate = walk->private;
|
||
|
struct vm_area_struct *vma = walk->vma;
|
||
|
struct mm_struct *mm = vma->vm_mm;
|
||
|
unsigned long addr = start, unmapped = 0;
|
||
|
spinlock_t *ptl;
|
||
|
pte_t *ptep;
|
||
|
|
||
|
again:
|
||
|
if (pmd_none(*pmdp))
|
||
|
return migrate_vma_collect_hole(start, end, -1, walk);
|
||
|
|
||
|
if (pmd_trans_huge(*pmdp)) {
|
||
|
struct page *page;
|
||
|
|
||
|
ptl = pmd_lock(mm, pmdp);
|
||
|
if (unlikely(!pmd_trans_huge(*pmdp))) {
|
||
|
spin_unlock(ptl);
|
||
|
goto again;
|
||
|
}
|
||
|
|
||
|
page = pmd_page(*pmdp);
|
||
|
if (is_huge_zero_page(page)) {
|
||
|
spin_unlock(ptl);
|
||
|
split_huge_pmd(vma, pmdp, addr);
|
||
|
if (pmd_trans_unstable(pmdp))
|
||
|
return migrate_vma_collect_skip(start, end,
|
||
|
walk);
|
||
|
} else {
|
||
|
int ret;
|
||
|
|
||
|
get_page(page);
|
||
|
spin_unlock(ptl);
|
||
|
if (unlikely(!trylock_page(page)))
|
||
|
return migrate_vma_collect_skip(start, end,
|
||
|
walk);
|
||
|
ret = split_huge_page(page);
|
||
|
unlock_page(page);
|
||
|
put_page(page);
|
||
|
if (ret)
|
||
|
return migrate_vma_collect_skip(start, end,
|
||
|
walk);
|
||
|
if (pmd_none(*pmdp))
|
||
|
return migrate_vma_collect_hole(start, end, -1,
|
||
|
walk);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (unlikely(pmd_bad(*pmdp)))
|
||
|
return migrate_vma_collect_skip(start, end, walk);
|
||
|
|
||
|
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
|
||
|
arch_enter_lazy_mmu_mode();
|
||
|
|
||
|
for (; addr < end; addr += PAGE_SIZE, ptep++) {
|
||
|
unsigned long mpfn = 0, pfn;
|
||
|
struct page *page;
|
||
|
swp_entry_t entry;
|
||
|
pte_t pte;
|
||
|
|
||
|
pte = *ptep;
|
||
|
|
||
|
if (pte_none(pte)) {
|
||
|
if (vma_is_anonymous(vma)) {
|
||
|
mpfn = MIGRATE_PFN_MIGRATE;
|
||
|
migrate->cpages++;
|
||
|
}
|
||
|
goto next;
|
||
|
}
|
||
|
|
||
|
if (!pte_present(pte)) {
|
||
|
/*
|
||
|
* Only care about unaddressable device page special
|
||
|
* page table entry. Other special swap entries are not
|
||
|
* migratable, and we ignore regular swapped page.
|
||
|
*/
|
||
|
entry = pte_to_swp_entry(pte);
|
||
|
if (!is_device_private_entry(entry))
|
||
|
goto next;
|
||
|
|
||
|
page = pfn_swap_entry_to_page(entry);
|
||
|
if (!(migrate->flags &
|
||
|
MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
|
||
|
page->pgmap->owner != migrate->pgmap_owner)
|
||
|
goto next;
|
||
|
|
||
|
mpfn = migrate_pfn(page_to_pfn(page)) |
|
||
|
MIGRATE_PFN_MIGRATE;
|
||
|
if (is_writable_device_private_entry(entry))
|
||
|
mpfn |= MIGRATE_PFN_WRITE;
|
||
|
} else {
|
||
|
if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
|
||
|
goto next;
|
||
|
pfn = pte_pfn(pte);
|
||
|
if (is_zero_pfn(pfn)) {
|
||
|
mpfn = MIGRATE_PFN_MIGRATE;
|
||
|
migrate->cpages++;
|
||
|
goto next;
|
||
|
}
|
||
|
page = vm_normal_page(migrate->vma, addr, pte);
|
||
|
mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
|
||
|
mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
|
||
|
}
|
||
|
|
||
|
/* FIXME support THP */
|
||
|
if (!page || !page->mapping || PageTransCompound(page)) {
|
||
|
mpfn = 0;
|
||
|
goto next;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* By getting a reference on the page we pin it and that blocks
|
||
|
* any kind of migration. Side effect is that it "freezes" the
|
||
|
* pte.
|
||
|
*
|
||
|
* We drop this reference after isolating the page from the lru
|
||
|
* for non device page (device page are not on the lru and thus
|
||
|
* can't be dropped from it).
|
||
|
*/
|
||
|
get_page(page);
|
||
|
|
||
|
/*
|
||
|
* Optimize for the common case where page is only mapped once
|
||
|
* in one process. If we can lock the page, then we can safely
|
||
|
* set up a special migration page table entry now.
|
||
|
*/
|
||
|
if (trylock_page(page)) {
|
||
|
pte_t swp_pte;
|
||
|
|
||
|
migrate->cpages++;
|
||
|
ptep_get_and_clear(mm, addr, ptep);
|
||
|
|
||
|
/* Setup special migration page table entry */
|
||
|
if (mpfn & MIGRATE_PFN_WRITE)
|
||
|
entry = make_writable_migration_entry(
|
||
|
page_to_pfn(page));
|
||
|
else
|
||
|
entry = make_readable_migration_entry(
|
||
|
page_to_pfn(page));
|
||
|
swp_pte = swp_entry_to_pte(entry);
|
||
|
if (pte_present(pte)) {
|
||
|
if (pte_soft_dirty(pte))
|
||
|
swp_pte = pte_swp_mksoft_dirty(swp_pte);
|
||
|
if (pte_uffd_wp(pte))
|
||
|
swp_pte = pte_swp_mkuffd_wp(swp_pte);
|
||
|
} else {
|
||
|
if (pte_swp_soft_dirty(pte))
|
||
|
swp_pte = pte_swp_mksoft_dirty(swp_pte);
|
||
|
if (pte_swp_uffd_wp(pte))
|
||
|
swp_pte = pte_swp_mkuffd_wp(swp_pte);
|
||
|
}
|
||
|
set_pte_at(mm, addr, ptep, swp_pte);
|
||
|
|
||
|
/*
|
||
|
* This is like regular unmap: we remove the rmap and
|
||
|
* drop page refcount. Page won't be freed, as we took
|
||
|
* a reference just above.
|
||
|
*/
|
||
|
page_remove_rmap(page, vma, false);
|
||
|
put_page(page);
|
||
|
|
||
|
if (pte_present(pte))
|
||
|
unmapped++;
|
||
|
} else {
|
||
|
put_page(page);
|
||
|
mpfn = 0;
|
||
|
}
|
||
|
|
||
|
next:
|
||
|
migrate->dst[migrate->npages] = 0;
|
||
|
migrate->src[migrate->npages++] = mpfn;
|
||
|
}
|
||
|
arch_leave_lazy_mmu_mode();
|
||
|
pte_unmap_unlock(ptep - 1, ptl);
|
||
|
|
||
|
/* Only flush the TLB if we actually modified any entries */
|
||
|
if (unmapped)
|
||
|
flush_tlb_range(walk->vma, start, end);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct mm_walk_ops migrate_vma_walk_ops = {
|
||
|
.pmd_entry = migrate_vma_collect_pmd,
|
||
|
.pte_hole = migrate_vma_collect_hole,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* migrate_vma_collect() - collect pages over a range of virtual addresses
|
||
|
* @migrate: migrate struct containing all migration information
|
||
|
*
|
||
|
* This will walk the CPU page table. For each virtual address backed by a
|
||
|
* valid page, it updates the src array and takes a reference on the page, in
|
||
|
* order to pin the page until we lock it and unmap it.
|
||
|
*/
|
||
|
static void migrate_vma_collect(struct migrate_vma *migrate)
|
||
|
{
|
||
|
struct mmu_notifier_range range;
|
||
|
|
||
|
/*
|
||
|
* Note that the pgmap_owner is passed to the mmu notifier callback so
|
||
|
* that the registered device driver can skip invalidating device
|
||
|
* private page mappings that won't be migrated.
|
||
|
*/
|
||
|
mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
|
||
|
migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
|
||
|
migrate->pgmap_owner);
|
||
|
mmu_notifier_invalidate_range_start(&range);
|
||
|
|
||
|
walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
|
||
|
&migrate_vma_walk_ops, migrate);
|
||
|
|
||
|
mmu_notifier_invalidate_range_end(&range);
|
||
|
migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* migrate_vma_check_page() - check if page is pinned or not
|
||
|
* @page: struct page to check
|
||
|
*
|
||
|
* Pinned pages cannot be migrated. This is the same test as in
|
||
|
* folio_migrate_mapping(), except that here we allow migration of a
|
||
|
* ZONE_DEVICE page.
|
||
|
*/
|
||
|
static bool migrate_vma_check_page(struct page *page)
|
||
|
{
|
||
|
/*
|
||
|
* One extra ref because caller holds an extra reference, either from
|
||
|
* isolate_lru_page() for a regular page, or migrate_vma_collect() for
|
||
|
* a device page.
|
||
|
*/
|
||
|
int extra = 1;
|
||
|
|
||
|
/*
|
||
|
* FIXME support THP (transparent huge page), it is bit more complex to
|
||
|
* check them than regular pages, because they can be mapped with a pmd
|
||
|
* or with a pte (split pte mapping).
|
||
|
*/
|
||
|
if (PageCompound(page))
|
||
|
return false;
|
||
|
|
||
|
/* Page from ZONE_DEVICE have one extra reference */
|
||
|
if (is_zone_device_page(page))
|
||
|
extra++;
|
||
|
|
||
|
/* For file back page */
|
||
|
if (page_mapping(page))
|
||
|
extra += 1 + page_has_private(page);
|
||
|
|
||
|
if ((page_count(page) - extra) > page_mapcount(page))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* migrate_vma_unmap() - replace page mapping with special migration pte entry
|
||
|
* @migrate: migrate struct containing all migration information
|
||
|
*
|
||
|
* Isolate pages from the LRU and replace mappings (CPU page table pte) with a
|
||
|
* special migration pte entry and check if it has been pinned. Pinned pages are
|
||
|
* restored because we cannot migrate them.
|
||
|
*
|
||
|
* This is the last step before we call the device driver callback to allocate
|
||
|
* destination memory and copy contents of original page over to new page.
|
||
|
*/
|
||
|
static void migrate_vma_unmap(struct migrate_vma *migrate)
|
||
|
{
|
||
|
const unsigned long npages = migrate->npages;
|
||
|
unsigned long i, restore = 0;
|
||
|
bool allow_drain = true;
|
||
|
|
||
|
lru_add_drain();
|
||
|
|
||
|
for (i = 0; i < npages; i++) {
|
||
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
||
|
|
||
|
if (!page)
|
||
|
continue;
|
||
|
|
||
|
/* ZONE_DEVICE pages are not on LRU */
|
||
|
if (!is_zone_device_page(page)) {
|
||
|
if (!PageLRU(page) && allow_drain) {
|
||
|
/* Drain CPU's pagevec */
|
||
|
lru_add_drain_all();
|
||
|
allow_drain = false;
|
||
|
}
|
||
|
|
||
|
if (isolate_lru_page(page)) {
|
||
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
||
|
migrate->cpages--;
|
||
|
restore++;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Drop the reference we took in collect */
|
||
|
put_page(page);
|
||
|
}
|
||
|
|
||
|
if (page_mapped(page))
|
||
|
try_to_migrate(page, 0);
|
||
|
|
||
|
if (page_mapped(page) || !migrate_vma_check_page(page)) {
|
||
|
if (!is_zone_device_page(page)) {
|
||
|
get_page(page);
|
||
|
putback_lru_page(page);
|
||
|
}
|
||
|
|
||
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
||
|
migrate->cpages--;
|
||
|
restore++;
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < npages && restore; i++) {
|
||
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
||
|
|
||
|
if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
|
||
|
continue;
|
||
|
|
||
|
remove_migration_ptes(page, page, false);
|
||
|
|
||
|
migrate->src[i] = 0;
|
||
|
unlock_page(page);
|
||
|
put_page(page);
|
||
|
restore--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* migrate_vma_setup() - prepare to migrate a range of memory
|
||
|
* @args: contains the vma, start, and pfns arrays for the migration
|
||
|
*
|
||
|
* Returns: negative errno on failures, 0 when 0 or more pages were migrated
|
||
|
* without an error.
|
||
|
*
|
||
|
* Prepare to migrate a range of memory virtual address range by collecting all
|
||
|
* the pages backing each virtual address in the range, saving them inside the
|
||
|
* src array. Then lock those pages and unmap them. Once the pages are locked
|
||
|
* and unmapped, check whether each page is pinned or not. Pages that aren't
|
||
|
* pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
|
||
|
* corresponding src array entry. Then restores any pages that are pinned, by
|
||
|
* remapping and unlocking those pages.
|
||
|
*
|
||
|
* The caller should then allocate destination memory and copy source memory to
|
||
|
* it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
|
||
|
* flag set). Once these are allocated and copied, the caller must update each
|
||
|
* corresponding entry in the dst array with the pfn value of the destination
|
||
|
* page and with MIGRATE_PFN_VALID. Destination pages must be locked via
|
||
|
* lock_page().
|
||
|
*
|
||
|
* Note that the caller does not have to migrate all the pages that are marked
|
||
|
* with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
|
||
|
* device memory to system memory. If the caller cannot migrate a device page
|
||
|
* back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
|
||
|
* consequences for the userspace process, so it must be avoided if at all
|
||
|
* possible.
|
||
|
*
|
||
|
* For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
|
||
|
* do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
|
||
|
* allowing the caller to allocate device memory for those unbacked virtual
|
||
|
* addresses. For this the caller simply has to allocate device memory and
|
||
|
* properly set the destination entry like for regular migration. Note that
|
||
|
* this can still fail, and thus inside the device driver you must check if the
|
||
|
* migration was successful for those entries after calling migrate_vma_pages(),
|
||
|
* just like for regular migration.
|
||
|
*
|
||
|
* After that, the callers must call migrate_vma_pages() to go over each entry
|
||
|
* in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
|
||
|
* set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
|
||
|
* then migrate_vma_pages() to migrate struct page information from the source
|
||
|
* struct page to the destination struct page. If it fails to migrate the
|
||
|
* struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
|
||
|
* src array.
|
||
|
*
|
||
|
* At this point all successfully migrated pages have an entry in the src
|
||
|
* array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
|
||
|
* array entry with MIGRATE_PFN_VALID flag set.
|
||
|
*
|
||
|
* Once migrate_vma_pages() returns the caller may inspect which pages were
|
||
|
* successfully migrated, and which were not. Successfully migrated pages will
|
||
|
* have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
|
||
|
*
|
||
|
* It is safe to update device page table after migrate_vma_pages() because
|
||
|
* both destination and source page are still locked, and the mmap_lock is held
|
||
|
* in read mode (hence no one can unmap the range being migrated).
|
||
|
*
|
||
|
* Once the caller is done cleaning up things and updating its page table (if it
|
||
|
* chose to do so, this is not an obligation) it finally calls
|
||
|
* migrate_vma_finalize() to update the CPU page table to point to new pages
|
||
|
* for successfully migrated pages or otherwise restore the CPU page table to
|
||
|
* point to the original source pages.
|
||
|
*/
|
||
|
int migrate_vma_setup(struct migrate_vma *args)
|
||
|
{
|
||
|
long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
|
||
|
|
||
|
args->start &= PAGE_MASK;
|
||
|
args->end &= PAGE_MASK;
|
||
|
if (!args->vma || is_vm_hugetlb_page(args->vma) ||
|
||
|
(args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
|
||
|
return -EINVAL;
|
||
|
if (nr_pages <= 0)
|
||
|
return -EINVAL;
|
||
|
if (args->start < args->vma->vm_start ||
|
||
|
args->start >= args->vma->vm_end)
|
||
|
return -EINVAL;
|
||
|
if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
|
||
|
return -EINVAL;
|
||
|
if (!args->src || !args->dst)
|
||
|
return -EINVAL;
|
||
|
|
||
|
memset(args->src, 0, sizeof(*args->src) * nr_pages);
|
||
|
args->cpages = 0;
|
||
|
args->npages = 0;
|
||
|
|
||
|
migrate_vma_collect(args);
|
||
|
|
||
|
if (args->cpages)
|
||
|
migrate_vma_unmap(args);
|
||
|
|
||
|
/*
|
||
|
* At this point pages are locked and unmapped, and thus they have
|
||
|
* stable content and can safely be copied to destination memory that
|
||
|
* is allocated by the drivers.
|
||
|
*/
|
||
|
return 0;
|
||
|
|
||
|
}
|
||
|
EXPORT_SYMBOL(migrate_vma_setup);
|
||
|
|
||
|
/*
|
||
|
* This code closely matches the code in:
|
||
|
* __handle_mm_fault()
|
||
|
* handle_pte_fault()
|
||
|
* do_anonymous_page()
|
||
|
* to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
|
||
|
* private page.
|
||
|
*/
|
||
|
static void migrate_vma_insert_page(struct migrate_vma *migrate,
|
||
|
unsigned long addr,
|
||
|
struct page *page,
|
||
|
unsigned long *src)
|
||
|
{
|
||
|
struct vm_area_struct *vma = migrate->vma;
|
||
|
struct mm_struct *mm = vma->vm_mm;
|
||
|
bool flush = false;
|
||
|
spinlock_t *ptl;
|
||
|
pte_t entry;
|
||
|
pgd_t *pgdp;
|
||
|
p4d_t *p4dp;
|
||
|
pud_t *pudp;
|
||
|
pmd_t *pmdp;
|
||
|
pte_t *ptep;
|
||
|
|
||
|
/* Only allow populating anonymous memory */
|
||
|
if (!vma_is_anonymous(vma))
|
||
|
goto abort;
|
||
|
|
||
|
pgdp = pgd_offset(mm, addr);
|
||
|
p4dp = p4d_alloc(mm, pgdp, addr);
|
||
|
if (!p4dp)
|
||
|
goto abort;
|
||
|
pudp = pud_alloc(mm, p4dp, addr);
|
||
|
if (!pudp)
|
||
|
goto abort;
|
||
|
pmdp = pmd_alloc(mm, pudp, addr);
|
||
|
if (!pmdp)
|
||
|
goto abort;
|
||
|
|
||
|
if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
|
||
|
goto abort;
|
||
|
|
||
|
/*
|
||
|
* Use pte_alloc() instead of pte_alloc_map(). We can't run
|
||
|
* pte_offset_map() on pmds where a huge pmd might be created
|
||
|
* from a different thread.
|
||
|
*
|
||
|
* pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
|
||
|
* parallel threads are excluded by other means.
|
||
|
*
|
||
|
* Here we only have mmap_read_lock(mm).
|
||
|
*/
|
||
|
if (pte_alloc(mm, pmdp))
|
||
|
goto abort;
|
||
|
|
||
|
/* See the comment in pte_alloc_one_map() */
|
||
|
if (unlikely(pmd_trans_unstable(pmdp)))
|
||
|
goto abort;
|
||
|
|
||
|
if (unlikely(anon_vma_prepare(vma)))
|
||
|
goto abort;
|
||
|
if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
|
||
|
goto abort;
|
||
|
|
||
|
/*
|
||
|
* The memory barrier inside __SetPageUptodate makes sure that
|
||
|
* preceding stores to the page contents become visible before
|
||
|
* the set_pte_at() write.
|
||
|
*/
|
||
|
__SetPageUptodate(page);
|
||
|
|
||
|
if (is_device_private_page(page)) {
|
||
|
swp_entry_t swp_entry;
|
||
|
|
||
|
if (vma->vm_flags & VM_WRITE)
|
||
|
swp_entry = make_writable_device_private_entry(
|
||
|
page_to_pfn(page));
|
||
|
else
|
||
|
swp_entry = make_readable_device_private_entry(
|
||
|
page_to_pfn(page));
|
||
|
entry = swp_entry_to_pte(swp_entry);
|
||
|
} else {
|
||
|
/*
|
||
|
* For now we only support migrating to un-addressable device
|
||
|
* memory.
|
||
|
*/
|
||
|
if (is_zone_device_page(page)) {
|
||
|
pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
|
||
|
goto abort;
|
||
|
}
|
||
|
entry = mk_pte(page, vma->vm_page_prot);
|
||
|
if (vma->vm_flags & VM_WRITE)
|
||
|
entry = pte_mkwrite(pte_mkdirty(entry));
|
||
|
}
|
||
|
|
||
|
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
|
||
|
|
||
|
if (check_stable_address_space(mm))
|
||
|
goto unlock_abort;
|
||
|
|
||
|
if (pte_present(*ptep)) {
|
||
|
unsigned long pfn = pte_pfn(*ptep);
|
||
|
|
||
|
if (!is_zero_pfn(pfn))
|
||
|
goto unlock_abort;
|
||
|
flush = true;
|
||
|
} else if (!pte_none(*ptep))
|
||
|
goto unlock_abort;
|
||
|
|
||
|
/*
|
||
|
* Check for userfaultfd but do not deliver the fault. Instead,
|
||
|
* just back off.
|
||
|
*/
|
||
|
if (userfaultfd_missing(vma))
|
||
|
goto unlock_abort;
|
||
|
|
||
|
inc_mm_counter(mm, MM_ANONPAGES);
|
||
|
page_add_new_anon_rmap(page, vma, addr, false);
|
||
|
if (!is_zone_device_page(page))
|
||
|
lru_cache_add_inactive_or_unevictable(page, vma);
|
||
|
get_page(page);
|
||
|
|
||
|
if (flush) {
|
||
|
flush_cache_page(vma, addr, pte_pfn(*ptep));
|
||
|
ptep_clear_flush_notify(vma, addr, ptep);
|
||
|
set_pte_at_notify(mm, addr, ptep, entry);
|
||
|
update_mmu_cache(vma, addr, ptep);
|
||
|
} else {
|
||
|
/* No need to invalidate - it was non-present before */
|
||
|
set_pte_at(mm, addr, ptep, entry);
|
||
|
update_mmu_cache(vma, addr, ptep);
|
||
|
}
|
||
|
|
||
|
pte_unmap_unlock(ptep, ptl);
|
||
|
*src = MIGRATE_PFN_MIGRATE;
|
||
|
return;
|
||
|
|
||
|
unlock_abort:
|
||
|
pte_unmap_unlock(ptep, ptl);
|
||
|
abort:
|
||
|
*src &= ~MIGRATE_PFN_MIGRATE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* migrate_vma_pages() - migrate meta-data from src page to dst page
|
||
|
* @migrate: migrate struct containing all migration information
|
||
|
*
|
||
|
* This migrates struct page meta-data from source struct page to destination
|
||
|
* struct page. This effectively finishes the migration from source page to the
|
||
|
* destination page.
|
||
|
*/
|
||
|
void migrate_vma_pages(struct migrate_vma *migrate)
|
||
|
{
|
||
|
const unsigned long npages = migrate->npages;
|
||
|
const unsigned long start = migrate->start;
|
||
|
struct mmu_notifier_range range;
|
||
|
unsigned long addr, i;
|
||
|
bool notified = false;
|
||
|
|
||
|
for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
|
||
|
struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
|
||
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
||
|
struct address_space *mapping;
|
||
|
int r;
|
||
|
|
||
|
if (!newpage) {
|
||
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!page) {
|
||
|
if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
|
||
|
continue;
|
||
|
if (!notified) {
|
||
|
notified = true;
|
||
|
|
||
|
mmu_notifier_range_init_owner(&range,
|
||
|
MMU_NOTIFY_MIGRATE, 0, migrate->vma,
|
||
|
migrate->vma->vm_mm, addr, migrate->end,
|
||
|
migrate->pgmap_owner);
|
||
|
mmu_notifier_invalidate_range_start(&range);
|
||
|
}
|
||
|
migrate_vma_insert_page(migrate, addr, newpage,
|
||
|
&migrate->src[i]);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
mapping = page_mapping(page);
|
||
|
|
||
|
if (is_device_private_page(newpage)) {
|
||
|
/*
|
||
|
* For now only support private anonymous when migrating
|
||
|
* to un-addressable device memory.
|
||
|
*/
|
||
|
if (mapping) {
|
||
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
||
|
continue;
|
||
|
}
|
||
|
} else if (is_zone_device_page(newpage)) {
|
||
|
/*
|
||
|
* Other types of ZONE_DEVICE page are not supported.
|
||
|
*/
|
||
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
|
||
|
if (r != MIGRATEPAGE_SUCCESS)
|
||
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* No need to double call mmu_notifier->invalidate_range() callback as
|
||
|
* the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
|
||
|
* did already call it.
|
||
|
*/
|
||
|
if (notified)
|
||
|
mmu_notifier_invalidate_range_only_end(&range);
|
||
|
}
|
||
|
EXPORT_SYMBOL(migrate_vma_pages);
|
||
|
|
||
|
/**
|
||
|
* migrate_vma_finalize() - restore CPU page table entry
|
||
|
* @migrate: migrate struct containing all migration information
|
||
|
*
|
||
|
* This replaces the special migration pte entry with either a mapping to the
|
||
|
* new page if migration was successful for that page, or to the original page
|
||
|
* otherwise.
|
||
|
*
|
||
|
* This also unlocks the pages and puts them back on the lru, or drops the extra
|
||
|
* refcount, for device pages.
|
||
|
*/
|
||
|
void migrate_vma_finalize(struct migrate_vma *migrate)
|
||
|
{
|
||
|
const unsigned long npages = migrate->npages;
|
||
|
unsigned long i;
|
||
|
|
||
|
for (i = 0; i < npages; i++) {
|
||
|
struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
|
||
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
||
|
|
||
|
if (!page) {
|
||
|
if (newpage) {
|
||
|
unlock_page(newpage);
|
||
|
put_page(newpage);
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
|
||
|
if (newpage) {
|
||
|
unlock_page(newpage);
|
||
|
put_page(newpage);
|
||
|
}
|
||
|
newpage = page;
|
||
|
}
|
||
|
|
||
|
remove_migration_ptes(page, newpage, false);
|
||
|
unlock_page(page);
|
||
|
|
||
|
if (is_zone_device_page(page))
|
||
|
put_page(page);
|
||
|
else
|
||
|
putback_lru_page(page);
|
||
|
|
||
|
if (newpage != page) {
|
||
|
unlock_page(newpage);
|
||
|
if (is_zone_device_page(newpage))
|
||
|
put_page(newpage);
|
||
|
else
|
||
|
putback_lru_page(newpage);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(migrate_vma_finalize);
|