forked from Minki/linux
525 lines
15 KiB
C
525 lines
15 KiB
C
|
/*
|
||
|
* A fairly generic DMA-API to IOMMU-API glue layer.
|
||
|
*
|
||
|
* Copyright (C) 2014-2015 ARM Ltd.
|
||
|
*
|
||
|
* based in part on arch/arm/mm/dma-mapping.c:
|
||
|
* Copyright (C) 2000-2004 Russell King
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/dma-iommu.h>
|
||
|
#include <linux/huge_mm.h>
|
||
|
#include <linux/iommu.h>
|
||
|
#include <linux/iova.h>
|
||
|
#include <linux/mm.h>
|
||
|
|
||
|
int iommu_dma_init(void)
|
||
|
{
|
||
|
return iova_cache_get();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iommu_get_dma_cookie - Acquire DMA-API resources for a domain
|
||
|
* @domain: IOMMU domain to prepare for DMA-API usage
|
||
|
*
|
||
|
* IOMMU drivers should normally call this from their domain_alloc
|
||
|
* callback when domain->type == IOMMU_DOMAIN_DMA.
|
||
|
*/
|
||
|
int iommu_get_dma_cookie(struct iommu_domain *domain)
|
||
|
{
|
||
|
struct iova_domain *iovad;
|
||
|
|
||
|
if (domain->iova_cookie)
|
||
|
return -EEXIST;
|
||
|
|
||
|
iovad = kzalloc(sizeof(*iovad), GFP_KERNEL);
|
||
|
domain->iova_cookie = iovad;
|
||
|
|
||
|
return iovad ? 0 : -ENOMEM;
|
||
|
}
|
||
|
EXPORT_SYMBOL(iommu_get_dma_cookie);
|
||
|
|
||
|
/**
|
||
|
* iommu_put_dma_cookie - Release a domain's DMA mapping resources
|
||
|
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
|
||
|
*
|
||
|
* IOMMU drivers should normally call this from their domain_free callback.
|
||
|
*/
|
||
|
void iommu_put_dma_cookie(struct iommu_domain *domain)
|
||
|
{
|
||
|
struct iova_domain *iovad = domain->iova_cookie;
|
||
|
|
||
|
if (!iovad)
|
||
|
return;
|
||
|
|
||
|
put_iova_domain(iovad);
|
||
|
kfree(iovad);
|
||
|
domain->iova_cookie = NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL(iommu_put_dma_cookie);
|
||
|
|
||
|
/**
|
||
|
* iommu_dma_init_domain - Initialise a DMA mapping domain
|
||
|
* @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
|
||
|
* @base: IOVA at which the mappable address space starts
|
||
|
* @size: Size of IOVA space
|
||
|
*
|
||
|
* @base and @size should be exact multiples of IOMMU page granularity to
|
||
|
* avoid rounding surprises. If necessary, we reserve the page at address 0
|
||
|
* to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
|
||
|
* any change which could make prior IOVAs invalid will fail.
|
||
|
*/
|
||
|
int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, u64 size)
|
||
|
{
|
||
|
struct iova_domain *iovad = domain->iova_cookie;
|
||
|
unsigned long order, base_pfn, end_pfn;
|
||
|
|
||
|
if (!iovad)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* Use the smallest supported page size for IOVA granularity */
|
||
|
order = __ffs(domain->ops->pgsize_bitmap);
|
||
|
base_pfn = max_t(unsigned long, 1, base >> order);
|
||
|
end_pfn = (base + size - 1) >> order;
|
||
|
|
||
|
/* Check the domain allows at least some access to the device... */
|
||
|
if (domain->geometry.force_aperture) {
|
||
|
if (base > domain->geometry.aperture_end ||
|
||
|
base + size <= domain->geometry.aperture_start) {
|
||
|
pr_warn("specified DMA range outside IOMMU capability\n");
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
/* ...then finally give it a kicking to make sure it fits */
|
||
|
base_pfn = max_t(unsigned long, base_pfn,
|
||
|
domain->geometry.aperture_start >> order);
|
||
|
end_pfn = min_t(unsigned long, end_pfn,
|
||
|
domain->geometry.aperture_end >> order);
|
||
|
}
|
||
|
|
||
|
/* All we can safely do with an existing domain is enlarge it */
|
||
|
if (iovad->start_pfn) {
|
||
|
if (1UL << order != iovad->granule ||
|
||
|
base_pfn != iovad->start_pfn ||
|
||
|
end_pfn < iovad->dma_32bit_pfn) {
|
||
|
pr_warn("Incompatible range for DMA domain\n");
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
iovad->dma_32bit_pfn = end_pfn;
|
||
|
} else {
|
||
|
init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL(iommu_dma_init_domain);
|
||
|
|
||
|
/**
|
||
|
* dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
|
||
|
* @dir: Direction of DMA transfer
|
||
|
* @coherent: Is the DMA master cache-coherent?
|
||
|
*
|
||
|
* Return: corresponding IOMMU API page protection flags
|
||
|
*/
|
||
|
int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
|
||
|
{
|
||
|
int prot = coherent ? IOMMU_CACHE : 0;
|
||
|
|
||
|
switch (dir) {
|
||
|
case DMA_BIDIRECTIONAL:
|
||
|
return prot | IOMMU_READ | IOMMU_WRITE;
|
||
|
case DMA_TO_DEVICE:
|
||
|
return prot | IOMMU_READ;
|
||
|
case DMA_FROM_DEVICE:
|
||
|
return prot | IOMMU_WRITE;
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct iova *__alloc_iova(struct iova_domain *iovad, size_t size,
|
||
|
dma_addr_t dma_limit)
|
||
|
{
|
||
|
unsigned long shift = iova_shift(iovad);
|
||
|
unsigned long length = iova_align(iovad, size) >> shift;
|
||
|
|
||
|
/*
|
||
|
* Enforce size-alignment to be safe - there could perhaps be an
|
||
|
* attribute to control this per-device, or at least per-domain...
|
||
|
*/
|
||
|
return alloc_iova(iovad, length, dma_limit >> shift, true);
|
||
|
}
|
||
|
|
||
|
/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
|
||
|
static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
|
||
|
{
|
||
|
struct iova_domain *iovad = domain->iova_cookie;
|
||
|
unsigned long shift = iova_shift(iovad);
|
||
|
unsigned long pfn = dma_addr >> shift;
|
||
|
struct iova *iova = find_iova(iovad, pfn);
|
||
|
size_t size;
|
||
|
|
||
|
if (WARN_ON(!iova))
|
||
|
return;
|
||
|
|
||
|
size = iova_size(iova) << shift;
|
||
|
size -= iommu_unmap(domain, pfn << shift, size);
|
||
|
/* ...and if we can't, then something is horribly, horribly wrong */
|
||
|
WARN_ON(size > 0);
|
||
|
__free_iova(iovad, iova);
|
||
|
}
|
||
|
|
||
|
static void __iommu_dma_free_pages(struct page **pages, int count)
|
||
|
{
|
||
|
while (count--)
|
||
|
__free_page(pages[count]);
|
||
|
kvfree(pages);
|
||
|
}
|
||
|
|
||
|
static struct page **__iommu_dma_alloc_pages(unsigned int count, gfp_t gfp)
|
||
|
{
|
||
|
struct page **pages;
|
||
|
unsigned int i = 0, array_size = count * sizeof(*pages);
|
||
|
|
||
|
if (array_size <= PAGE_SIZE)
|
||
|
pages = kzalloc(array_size, GFP_KERNEL);
|
||
|
else
|
||
|
pages = vzalloc(array_size);
|
||
|
if (!pages)
|
||
|
return NULL;
|
||
|
|
||
|
/* IOMMU can map any pages, so himem can also be used here */
|
||
|
gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
|
||
|
|
||
|
while (count) {
|
||
|
struct page *page = NULL;
|
||
|
int j, order = __fls(count);
|
||
|
|
||
|
/*
|
||
|
* Higher-order allocations are a convenience rather
|
||
|
* than a necessity, hence using __GFP_NORETRY until
|
||
|
* falling back to single-page allocations.
|
||
|
*/
|
||
|
for (order = min(order, MAX_ORDER); order > 0; order--) {
|
||
|
page = alloc_pages(gfp | __GFP_NORETRY, order);
|
||
|
if (!page)
|
||
|
continue;
|
||
|
if (PageCompound(page)) {
|
||
|
if (!split_huge_page(page))
|
||
|
break;
|
||
|
__free_pages(page, order);
|
||
|
} else {
|
||
|
split_page(page, order);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!page)
|
||
|
page = alloc_page(gfp);
|
||
|
if (!page) {
|
||
|
__iommu_dma_free_pages(pages, i);
|
||
|
return NULL;
|
||
|
}
|
||
|
j = 1 << order;
|
||
|
count -= j;
|
||
|
while (j--)
|
||
|
pages[i++] = page++;
|
||
|
}
|
||
|
return pages;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
|
||
|
* @dev: Device which owns this buffer
|
||
|
* @pages: Array of buffer pages as returned by iommu_dma_alloc()
|
||
|
* @size: Size of buffer in bytes
|
||
|
* @handle: DMA address of buffer
|
||
|
*
|
||
|
* Frees both the pages associated with the buffer, and the array
|
||
|
* describing them
|
||
|
*/
|
||
|
void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
|
||
|
dma_addr_t *handle)
|
||
|
{
|
||
|
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
|
||
|
__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
|
||
|
*handle = DMA_ERROR_CODE;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
|
||
|
* @dev: Device to allocate memory for. Must be a real device
|
||
|
* attached to an iommu_dma_domain
|
||
|
* @size: Size of buffer in bytes
|
||
|
* @gfp: Allocation flags
|
||
|
* @prot: IOMMU mapping flags
|
||
|
* @handle: Out argument for allocated DMA handle
|
||
|
* @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
|
||
|
* given VA/PA are visible to the given non-coherent device.
|
||
|
*
|
||
|
* If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
|
||
|
* but an IOMMU which supports smaller pages might not map the whole thing.
|
||
|
*
|
||
|
* Return: Array of struct page pointers describing the buffer,
|
||
|
* or NULL on failure.
|
||
|
*/
|
||
|
struct page **iommu_dma_alloc(struct device *dev, size_t size,
|
||
|
gfp_t gfp, int prot, dma_addr_t *handle,
|
||
|
void (*flush_page)(struct device *, const void *, phys_addr_t))
|
||
|
{
|
||
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
||
|
struct iova_domain *iovad = domain->iova_cookie;
|
||
|
struct iova *iova;
|
||
|
struct page **pages;
|
||
|
struct sg_table sgt;
|
||
|
dma_addr_t dma_addr;
|
||
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
||
|
|
||
|
*handle = DMA_ERROR_CODE;
|
||
|
|
||
|
pages = __iommu_dma_alloc_pages(count, gfp);
|
||
|
if (!pages)
|
||
|
return NULL;
|
||
|
|
||
|
iova = __alloc_iova(iovad, size, dev->coherent_dma_mask);
|
||
|
if (!iova)
|
||
|
goto out_free_pages;
|
||
|
|
||
|
size = iova_align(iovad, size);
|
||
|
if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
|
||
|
goto out_free_iova;
|
||
|
|
||
|
if (!(prot & IOMMU_CACHE)) {
|
||
|
struct sg_mapping_iter miter;
|
||
|
/*
|
||
|
* The CPU-centric flushing implied by SG_MITER_TO_SG isn't
|
||
|
* sufficient here, so skip it by using the "wrong" direction.
|
||
|
*/
|
||
|
sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
|
||
|
while (sg_miter_next(&miter))
|
||
|
flush_page(dev, miter.addr, page_to_phys(miter.page));
|
||
|
sg_miter_stop(&miter);
|
||
|
}
|
||
|
|
||
|
dma_addr = iova_dma_addr(iovad, iova);
|
||
|
if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
|
||
|
< size)
|
||
|
goto out_free_sg;
|
||
|
|
||
|
*handle = dma_addr;
|
||
|
sg_free_table(&sgt);
|
||
|
return pages;
|
||
|
|
||
|
out_free_sg:
|
||
|
sg_free_table(&sgt);
|
||
|
out_free_iova:
|
||
|
__free_iova(iovad, iova);
|
||
|
out_free_pages:
|
||
|
__iommu_dma_free_pages(pages, count);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* iommu_dma_mmap - Map a buffer into provided user VMA
|
||
|
* @pages: Array representing buffer from iommu_dma_alloc()
|
||
|
* @size: Size of buffer in bytes
|
||
|
* @vma: VMA describing requested userspace mapping
|
||
|
*
|
||
|
* Maps the pages of the buffer in @pages into @vma. The caller is responsible
|
||
|
* for verifying the correct size and protection of @vma beforehand.
|
||
|
*/
|
||
|
|
||
|
int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
|
||
|
{
|
||
|
unsigned long uaddr = vma->vm_start;
|
||
|
unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
||
|
int ret = -ENXIO;
|
||
|
|
||
|
for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
|
||
|
ret = vm_insert_page(vma, uaddr, pages[i]);
|
||
|
if (ret)
|
||
|
break;
|
||
|
uaddr += PAGE_SIZE;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
|
||
|
unsigned long offset, size_t size, int prot)
|
||
|
{
|
||
|
dma_addr_t dma_addr;
|
||
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
||
|
struct iova_domain *iovad = domain->iova_cookie;
|
||
|
phys_addr_t phys = page_to_phys(page) + offset;
|
||
|
size_t iova_off = iova_offset(iovad, phys);
|
||
|
size_t len = iova_align(iovad, size + iova_off);
|
||
|
struct iova *iova = __alloc_iova(iovad, len, dma_get_mask(dev));
|
||
|
|
||
|
if (!iova)
|
||
|
return DMA_ERROR_CODE;
|
||
|
|
||
|
dma_addr = iova_dma_addr(iovad, iova);
|
||
|
if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
|
||
|
__free_iova(iovad, iova);
|
||
|
return DMA_ERROR_CODE;
|
||
|
}
|
||
|
return dma_addr + iova_off;
|
||
|
}
|
||
|
|
||
|
void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
|
||
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
||
|
{
|
||
|
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Prepare a successfully-mapped scatterlist to give back to the caller.
|
||
|
* Handling IOVA concatenation can come later, if needed
|
||
|
*/
|
||
|
static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
|
||
|
dma_addr_t dma_addr)
|
||
|
{
|
||
|
struct scatterlist *s;
|
||
|
int i;
|
||
|
|
||
|
for_each_sg(sg, s, nents, i) {
|
||
|
/* Un-swizzling the fields here, hence the naming mismatch */
|
||
|
unsigned int s_offset = sg_dma_address(s);
|
||
|
unsigned int s_length = sg_dma_len(s);
|
||
|
unsigned int s_dma_len = s->length;
|
||
|
|
||
|
s->offset = s_offset;
|
||
|
s->length = s_length;
|
||
|
sg_dma_address(s) = dma_addr + s_offset;
|
||
|
dma_addr += s_dma_len;
|
||
|
}
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If mapping failed, then just restore the original list,
|
||
|
* but making sure the DMA fields are invalidated.
|
||
|
*/
|
||
|
static void __invalidate_sg(struct scatterlist *sg, int nents)
|
||
|
{
|
||
|
struct scatterlist *s;
|
||
|
int i;
|
||
|
|
||
|
for_each_sg(sg, s, nents, i) {
|
||
|
if (sg_dma_address(s) != DMA_ERROR_CODE)
|
||
|
s->offset = sg_dma_address(s);
|
||
|
if (sg_dma_len(s))
|
||
|
s->length = sg_dma_len(s);
|
||
|
sg_dma_address(s) = DMA_ERROR_CODE;
|
||
|
sg_dma_len(s) = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The DMA API client is passing in a scatterlist which could describe
|
||
|
* any old buffer layout, but the IOMMU API requires everything to be
|
||
|
* aligned to IOMMU pages. Hence the need for this complicated bit of
|
||
|
* impedance-matching, to be able to hand off a suitably-aligned list,
|
||
|
* but still preserve the original offsets and sizes for the caller.
|
||
|
*/
|
||
|
int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
|
||
|
int nents, int prot)
|
||
|
{
|
||
|
struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
|
||
|
struct iova_domain *iovad = domain->iova_cookie;
|
||
|
struct iova *iova;
|
||
|
struct scatterlist *s, *prev = NULL;
|
||
|
dma_addr_t dma_addr;
|
||
|
size_t iova_len = 0;
|
||
|
int i;
|
||
|
|
||
|
/*
|
||
|
* Work out how much IOVA space we need, and align the segments to
|
||
|
* IOVA granules for the IOMMU driver to handle. With some clever
|
||
|
* trickery we can modify the list in-place, but reversibly, by
|
||
|
* hiding the original data in the as-yet-unused DMA fields.
|
||
|
*/
|
||
|
for_each_sg(sg, s, nents, i) {
|
||
|
size_t s_offset = iova_offset(iovad, s->offset);
|
||
|
size_t s_length = s->length;
|
||
|
|
||
|
sg_dma_address(s) = s->offset;
|
||
|
sg_dma_len(s) = s_length;
|
||
|
s->offset -= s_offset;
|
||
|
s_length = iova_align(iovad, s_length + s_offset);
|
||
|
s->length = s_length;
|
||
|
|
||
|
/*
|
||
|
* The simple way to avoid the rare case of a segment
|
||
|
* crossing the boundary mask is to pad the previous one
|
||
|
* to end at a naturally-aligned IOVA for this one's size,
|
||
|
* at the cost of potentially over-allocating a little.
|
||
|
*/
|
||
|
if (prev) {
|
||
|
size_t pad_len = roundup_pow_of_two(s_length);
|
||
|
|
||
|
pad_len = (pad_len - iova_len) & (pad_len - 1);
|
||
|
prev->length += pad_len;
|
||
|
iova_len += pad_len;
|
||
|
}
|
||
|
|
||
|
iova_len += s_length;
|
||
|
prev = s;
|
||
|
}
|
||
|
|
||
|
iova = __alloc_iova(iovad, iova_len, dma_get_mask(dev));
|
||
|
if (!iova)
|
||
|
goto out_restore_sg;
|
||
|
|
||
|
/*
|
||
|
* We'll leave any physical concatenation to the IOMMU driver's
|
||
|
* implementation - it knows better than we do.
|
||
|
*/
|
||
|
dma_addr = iova_dma_addr(iovad, iova);
|
||
|
if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
|
||
|
goto out_free_iova;
|
||
|
|
||
|
return __finalise_sg(dev, sg, nents, dma_addr);
|
||
|
|
||
|
out_free_iova:
|
||
|
__free_iova(iovad, iova);
|
||
|
out_restore_sg:
|
||
|
__invalidate_sg(sg, nents);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
||
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
||
|
{
|
||
|
/*
|
||
|
* The scatterlist segments are mapped into a single
|
||
|
* contiguous IOVA allocation, so this is incredibly easy.
|
||
|
*/
|
||
|
__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
|
||
|
}
|
||
|
|
||
|
int iommu_dma_supported(struct device *dev, u64 mask)
|
||
|
{
|
||
|
/*
|
||
|
* 'Special' IOMMUs which don't have the same addressing capability
|
||
|
* as the CPU will have to wait until we have some way to query that
|
||
|
* before they'll be able to use this framework.
|
||
|
*/
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
|
||
|
{
|
||
|
return dma_addr == DMA_ERROR_CODE;
|
||
|
}
|