linux/tools/memory-model/linux-kernel.cat

125 lines
3.5 KiB
Plaintext
Raw Normal View History

Automate memory-barriers.txt; provide Linux-kernel memory model There is some reason to believe that Documentation/memory-barriers.txt could use some help, and a major purpose of this patch is to provide that help in the form of a design-time tool that can produce all valid executions of a small fragment of concurrent Linux-kernel code, which is called a "litmus test". This tool's functionality is roughly similar to a full state-space search. Please note that this is a design-time tool, not useful for regression testing. However, we hope that the underlying Linux-kernel memory model will be incorporated into other tools capable of analyzing large bodies of code for regression-testing purposes. The main tool is herd7, together with the linux-kernel.bell, linux-kernel.cat, linux-kernel.cfg, linux-kernel.def, and lock.cat files added by this patch. The herd7 executable takes the other files as input, and all of these files collectively define the Linux-kernel memory memory model. A brief description of each of these other files is provided in the README file. Although this tool does have its limitations, which are documented in the README file, it does improve on the version reported on in the LWN series (https://lwn.net/Articles/718628/ and https://lwn.net/Articles/720550/) by supporting locking and arithmetic, including a much wider variety of read-modify-write atomic operations. Please note that herd7 is not part of this submission, but is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). A second tool is klitmus7, which converts litmus tests to loadable kernel modules for direct testing. As with herd7, the klitmus7 code is freely available from http://diy.inria.fr/sources/index.html (and via "git" at https://github.com/herd/herdtools7). Of course, litmus tests are not always the best way to fully understand a memory model, so this patch also includes Documentation/explanation.txt, which describes the memory model in detail. In addition, Documentation/recipes.txt provides example known-good and known-bad use cases for those who prefer working by example. This patch also includes a few sample litmus tests, and a great many more litmus tests are available at https://github.com/paulmckrcu/litmus. This patch was the result of a most excellent collaboration founded by Jade Alglave and also including Alan Stern, Andrea Parri, and Luc Maranget. For more details on the history of this collaboration, please refer to the Linux-kernel memory model presentations at 2016 LinuxCon EU, 2016 Kernel Summit, 2016 Linux Plumbers Conference, 2017 linux.conf.au, or 2017 Linux Plumbers Conference microconference. However, one aspect of the history does bear repeating due to weak copyright tracking earlier in this project, which extends back to early 2015. This weakness came to light in late 2017 after an LKMM presentation by Paul in which an audience member noted the similarity of some LKMM code to code in early published papers. This prompted a copyright review. From Alan Stern: To say that the model was mine is not entirely accurate. Pieces of it (especially the Scpv and Atomic axioms) were taken directly from Jade's models. And of course the Happens-before and Propagation relations and axioms were heavily based on Jade and Luc's work, even though they weren't identical to the earlier versions. Only the RCU portion was completely original. . . . One can make a much better case that I wrote the bulk of lock.cat. However, it was inspired by Luc's earlier version (and still shares some elements in common), and of course it benefited from feedback and testing from all members of our group. The model prior to Alan's was Luc Maranget's. From Luc: I totally agree on Alan Stern's account of the linux kernel model genesis. I thank him for his acknowledgments of my participation to previous model drafts. I'd like to complete Alan Stern's statement: any bell cat code I have written has its roots in discussions with Jade Alglave and Paul McKenney. Moreover I have borrowed cat and bell code written by Jade Alglave freely. This copyright review therefore resulted in late adds to the copyright statements of several files. Discussion of v1 has raised several issues, which we do not believe should block acceptance given that this level of change will be ongoing, just as it has been with memory-barriers.txt: o Under what conditions should ordering provided by pure locking be seen by CPUs not holding the relevant lock(s)? In particular, should the message-passing pattern be forbidden? o Should examples involving C11 release sequences be forbidden? Note that this C11 is still a moving target for this issue: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0735r0.html o Some details of the handling of internal dependencies for atomic read-modify-write atomic operations are still subject to debate. o Changes recently accepted into mainline greatly reduce the need to handle DEC Alpha as a special case. These changes add an smp_read_barrier_depends() to READ_ONCE(), thus causing Alpha to respect ordering of dependent reads. If these changes stick, the memory model can be simplified accordingly. o Will changes be required to accommodate RISC-V? Differences from v1: (http://lkml.kernel.org/r/20171113184031.GA26302@linux.vnet.ibm.com) o Add SPDX notations to .bell and .cat files, replacing textual license statements. o Add reference to upcoming ASPLOS paper to .bell and .cat files. o Updated identifier names in .bell and .cat files to match those used in the ASPLOS paper. o Updates to READMEs and other documentation based on review feedback. o Added a memory-ordering cheatsheet. o Update sigs to new Co-Developed-by and add acks and reviewed-bys. o Simplify rules detecting nested RCU read-side critical sections. o Update copyright statements as noted above. Co-Developed-by: Alan Stern <stern@rowland.harvard.edu> Co-Developed-by: Andrea Parri <parri.andrea@gmail.com> Co-Developed-by: Jade Alglave <j.alglave@ucl.ac.uk> Co-Developed-by: Luc Maranget <luc.maranget@inria.fr> Co-Developed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Andrea Parri <parri.andrea@gmail.com> Signed-off-by: Jade Alglave <j.alglave@ucl.ac.uk> Signed-off-by: Luc Maranget <luc.maranget@inria.fr> Signed-off-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Nicholas Piggin <npiggin@gmail.com> Acked-by: David Howells <dhowells@redhat.com> Acked-by: "Reshetova, Elena" <elena.reshetova@intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Akira Yokosawa <akiyks@gmail.com> Cc: <linux-arch@vger.kernel.org>
2018-01-19 03:58:55 +00:00
// SPDX-License-Identifier: GPL-2.0+
(*
* Copyright (C) 2015 Jade Alglave <j.alglave@ucl.ac.uk>,
* Copyright (C) 2016 Luc Maranget <luc.maranget@inria.fr> for Inria
* Copyright (C) 2017 Alan Stern <stern@rowland.harvard.edu>,
* Andrea Parri <parri.andrea@gmail.com>
*
* An earlier version of this file appears in the companion webpage for
* "Frightening small children and disconcerting grown-ups: Concurrency
* in the Linux kernel" by Alglave, Maranget, McKenney, Parri, and Stern,
* which is to appear in ASPLOS 2018.
*)
"Linux kernel memory model"
(*
* File "lock.cat" handles locks and is experimental.
* It can be replaced by include "cos.cat" for tests that do not use locks.
*)
include "lock.cat"
(*******************)
(* Basic relations *)
(*******************)
(* Fences *)
let rb-dep = [R] ; fencerel(Rb_dep) ; [R]
let rmb = [R \ Noreturn] ; fencerel(Rmb) ; [R \ Noreturn]
let wmb = [W] ; fencerel(Wmb) ; [W]
let mb = ([M] ; fencerel(Mb) ; [M]) |
([M] ; fencerel(Before_atomic) ; [RMW] ; po? ; [M]) |
([M] ; po? ; [RMW] ; fencerel(After_atomic) ; [M]) |
([M] ; po? ; [LKW] ; fencerel(After_spinlock) ; [M])
let gp = po ; [Sync-rcu] ; po?
let strong-fence = mb | gp
(* Release Acquire *)
let acq-po = [Acquire] ; po ; [M]
let po-rel = [M] ; po ; [Release]
let rfi-rel-acq = [Release] ; rfi ; [Acquire]
(**********************************)
(* Fundamental coherence ordering *)
(**********************************)
(* Sequential Consistency Per Variable *)
let com = rf | co | fr
acyclic po-loc | com as coherence
(* Atomic Read-Modify-Write *)
empty rmw & (fre ; coe) as atomic
(**********************************)
(* Instruction execution ordering *)
(**********************************)
(* Preserved Program Order *)
let dep = addr | data
let rwdep = (dep | ctrl) ; [W]
let overwrite = co | fr
let to-w = rwdep | (overwrite & int)
let rrdep = addr | (dep ; rfi)
let strong-rrdep = rrdep+ & rb-dep
let to-r = strong-rrdep | rfi-rel-acq
let fence = strong-fence | wmb | po-rel | rmb | acq-po
let ppo = rrdep* ; (to-r | to-w | fence)
(* Propagation: Ordering from release operations and strong fences. *)
let A-cumul(r) = rfe? ; r
let cumul-fence = A-cumul(strong-fence | po-rel) | wmb
let prop = (overwrite & ext)? ; cumul-fence* ; rfe?
(*
* Happens Before: Ordering from the passage of time.
* No fences needed here for prop because relation confined to one process.
*)
let hb = ppo | rfe | ((prop \ id) & int)
acyclic hb as happens-before
(****************************************)
(* Write and fence propagation ordering *)
(****************************************)
(* Propagation: Each non-rf link needs a strong fence. *)
let pb = prop ; strong-fence ; hb*
acyclic pb as propagation
(*******)
(* RCU *)
(*******)
(*
* Effect of read-side critical section proceeds from the rcu_read_lock()
* onward on the one hand and from the rcu_read_unlock() backwards on the
* other hand.
*)
let rscs = po ; crit^-1 ; po?
(*
* The synchronize_rcu() strong fence is special in that it can order not
* one but two non-rf relations, but only in conjunction with an RCU
* read-side critical section.
*)
let link = hb* ; pb* ; prop
(* Chains that affect the RCU grace-period guarantee *)
let gp-link = gp ; link
let rscs-link = rscs ; link
(*
* A cycle containing at least as many grace periods as RCU read-side
* critical sections is forbidden.
*)
let rec rcu-path =
gp-link |
(gp-link ; rscs-link) |
(rscs-link ; gp-link) |
(rcu-path ; rcu-path) |
(gp-link ; rcu-path ; rscs-link) |
(rscs-link ; rcu-path ; gp-link)
irreflexive rcu-path as rcu