linux/drivers/net/ethernet/qualcomm/emac/emac-mac.c

1478 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
*/
/* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support
*/
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include <linux/jiffies.h>
#include <linux/phy.h>
#include <linux/of.h>
#include <net/ip6_checksum.h>
#include "emac.h"
#include "emac-sgmii.h"
/* EMAC_MAC_CTRL */
#define SINGLE_PAUSE_MODE 0x10000000
#define DEBUG_MODE 0x08000000
#define BROAD_EN 0x04000000
#define MULTI_ALL 0x02000000
#define RX_CHKSUM_EN 0x01000000
#define HUGE 0x00800000
#define SPEED(x) (((x) & 0x3) << 20)
#define SPEED_MASK SPEED(0x3)
#define SIMR 0x00080000
#define TPAUSE 0x00010000
#define PROM_MODE 0x00008000
#define VLAN_STRIP 0x00004000
#define PRLEN_BMSK 0x00003c00
#define PRLEN_SHFT 10
#define HUGEN 0x00000200
#define FLCHK 0x00000100
#define PCRCE 0x00000080
#define CRCE 0x00000040
#define FULLD 0x00000020
#define MAC_LP_EN 0x00000010
#define RXFC 0x00000008
#define TXFC 0x00000004
#define RXEN 0x00000002
#define TXEN 0x00000001
/* EMAC_DESC_CTRL_3 */
#define RFD_RING_SIZE_BMSK 0xfff
/* EMAC_DESC_CTRL_4 */
#define RX_BUFFER_SIZE_BMSK 0xffff
/* EMAC_DESC_CTRL_6 */
#define RRD_RING_SIZE_BMSK 0xfff
/* EMAC_DESC_CTRL_9 */
#define TPD_RING_SIZE_BMSK 0xffff
/* EMAC_TXQ_CTRL_0 */
#define NUM_TXF_BURST_PREF_BMSK 0xffff0000
#define NUM_TXF_BURST_PREF_SHFT 16
#define LS_8023_SP 0x80
#define TXQ_MODE 0x40
#define TXQ_EN 0x20
#define IP_OP_SP 0x10
#define NUM_TPD_BURST_PREF_BMSK 0xf
#define NUM_TPD_BURST_PREF_SHFT 0
/* EMAC_TXQ_CTRL_1 */
#define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff
/* EMAC_TXQ_CTRL_2 */
#define TXF_HWM_BMSK 0xfff0000
#define TXF_LWM_BMSK 0xfff
/* EMAC_RXQ_CTRL_0 */
#define RXQ_EN BIT(31)
#define CUT_THRU_EN BIT(30)
#define RSS_HASH_EN BIT(29)
#define NUM_RFD_BURST_PREF_BMSK 0x3f00000
#define NUM_RFD_BURST_PREF_SHFT 20
#define IDT_TABLE_SIZE_BMSK 0x1ff00
#define IDT_TABLE_SIZE_SHFT 8
#define SP_IPV6 0x80
/* EMAC_RXQ_CTRL_1 */
#define JUMBO_1KAH_BMSK 0xf000
#define JUMBO_1KAH_SHFT 12
#define RFD_PREF_LOW_TH 0x10
#define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0
#define RFD_PREF_LOW_THRESHOLD_SHFT 6
#define RFD_PREF_UP_TH 0x10
#define RFD_PREF_UP_THRESHOLD_BMSK 0x3f
#define RFD_PREF_UP_THRESHOLD_SHFT 0
/* EMAC_RXQ_CTRL_2 */
#define RXF_DOF_THRESFHOLD 0x1a0
#define RXF_DOF_THRESHOLD_BMSK 0xfff0000
#define RXF_DOF_THRESHOLD_SHFT 16
#define RXF_UOF_THRESFHOLD 0xbe
#define RXF_UOF_THRESHOLD_BMSK 0xfff
#define RXF_UOF_THRESHOLD_SHFT 0
/* EMAC_RXQ_CTRL_3 */
#define RXD_TIMER_BMSK 0xffff0000
#define RXD_THRESHOLD_BMSK 0xfff
#define RXD_THRESHOLD_SHFT 0
/* EMAC_DMA_CTRL */
#define DMAW_DLY_CNT_BMSK 0xf0000
#define DMAW_DLY_CNT_SHFT 16
#define DMAR_DLY_CNT_BMSK 0xf800
#define DMAR_DLY_CNT_SHFT 11
#define DMAR_REQ_PRI 0x400
#define REGWRBLEN_BMSK 0x380
#define REGWRBLEN_SHFT 7
#define REGRDBLEN_BMSK 0x70
#define REGRDBLEN_SHFT 4
#define OUT_ORDER_MODE 0x4
#define ENH_ORDER_MODE 0x2
#define IN_ORDER_MODE 0x1
/* EMAC_MAILBOX_13 */
#define RFD3_PROC_IDX_BMSK 0xfff0000
#define RFD3_PROC_IDX_SHFT 16
#define RFD3_PROD_IDX_BMSK 0xfff
#define RFD3_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_2 */
#define NTPD_CONS_IDX_BMSK 0xffff0000
#define NTPD_CONS_IDX_SHFT 16
/* EMAC_MAILBOX_3 */
#define RFD0_CONS_IDX_BMSK 0xfff
#define RFD0_CONS_IDX_SHFT 0
/* EMAC_MAILBOX_11 */
#define H3TPD_PROD_IDX_BMSK 0xffff0000
#define H3TPD_PROD_IDX_SHFT 16
/* EMAC_AXI_MAST_CTRL */
#define DATA_BYTE_SWAP 0x8
#define MAX_BOUND 0x2
#define MAX_BTYPE 0x1
/* EMAC_MAILBOX_12 */
#define H3TPD_CONS_IDX_BMSK 0xffff0000
#define H3TPD_CONS_IDX_SHFT 16
/* EMAC_MAILBOX_9 */
#define H2TPD_PROD_IDX_BMSK 0xffff
#define H2TPD_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_10 */
#define H1TPD_CONS_IDX_BMSK 0xffff0000
#define H1TPD_CONS_IDX_SHFT 16
#define H2TPD_CONS_IDX_BMSK 0xffff
#define H2TPD_CONS_IDX_SHFT 0
/* EMAC_ATHR_HEADER_CTRL */
#define HEADER_CNT_EN 0x2
#define HEADER_ENABLE 0x1
/* EMAC_MAILBOX_0 */
#define RFD0_PROC_IDX_BMSK 0xfff0000
#define RFD0_PROC_IDX_SHFT 16
#define RFD0_PROD_IDX_BMSK 0xfff
#define RFD0_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_5 */
#define RFD1_PROC_IDX_BMSK 0xfff0000
#define RFD1_PROC_IDX_SHFT 16
#define RFD1_PROD_IDX_BMSK 0xfff
#define RFD1_PROD_IDX_SHFT 0
/* EMAC_MISC_CTRL */
#define RX_UNCPL_INT_EN 0x1
/* EMAC_MAILBOX_7 */
#define RFD2_CONS_IDX_BMSK 0xfff0000
#define RFD2_CONS_IDX_SHFT 16
#define RFD1_CONS_IDX_BMSK 0xfff
#define RFD1_CONS_IDX_SHFT 0
/* EMAC_MAILBOX_8 */
#define RFD3_CONS_IDX_BMSK 0xfff
#define RFD3_CONS_IDX_SHFT 0
/* EMAC_MAILBOX_15 */
#define NTPD_PROD_IDX_BMSK 0xffff
#define NTPD_PROD_IDX_SHFT 0
/* EMAC_MAILBOX_16 */
#define H1TPD_PROD_IDX_BMSK 0xffff
#define H1TPD_PROD_IDX_SHFT 0
#define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20
#define RXQ0_RSS_HSTYP_IPV6_EN 0x10
#define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8
#define RXQ0_RSS_HSTYP_IPV4_EN 0x4
/* EMAC_EMAC_WRAPPER_TX_TS_INX */
#define EMAC_WRAPPER_TX_TS_EMPTY BIT(31)
#define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff
struct emac_skb_cb {
u32 tpd_idx;
unsigned long jiffies;
};
#define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb)
#define EMAC_RSS_IDT_SIZE 256
#define JUMBO_1KAH 0x4
#define RXD_TH 0x100
#define EMAC_TPD_LAST_FRAGMENT 0x80000000
#define EMAC_TPD_TSTAMP_SAVE 0x80000000
/* EMAC Errors in emac_rrd.word[3] */
#define EMAC_RRD_L4F BIT(14)
#define EMAC_RRD_IPF BIT(15)
#define EMAC_RRD_CRC BIT(21)
#define EMAC_RRD_FAE BIT(22)
#define EMAC_RRD_TRN BIT(23)
#define EMAC_RRD_RNT BIT(24)
#define EMAC_RRD_INC BIT(25)
#define EMAC_RRD_FOV BIT(29)
#define EMAC_RRD_LEN BIT(30)
/* Error bits that will result in a received frame being discarded */
#define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \
EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \
EMAC_RRD_FOV | EMAC_RRD_LEN)
#define EMAC_RRD_STATS_DW_IDX 3
#define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX)))
#define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX)))
#define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX)))
#define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)]))
#define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)]))
#define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8
#define ISR_RX_PKT (\
RX_PKT_INT0 |\
RX_PKT_INT1 |\
RX_PKT_INT2 |\
RX_PKT_INT3)
void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr)
{
u32 crc32, bit, reg, mta;
/* Calculate the CRC of the MAC address */
crc32 = ether_crc(ETH_ALEN, addr);
/* The HASH Table is an array of 2 32-bit registers. It is
* treated like an array of 64 bits (BitArray[hash_value]).
* Use the upper 6 bits of the above CRC as the hash value.
*/
reg = (crc32 >> 31) & 0x1;
bit = (crc32 >> 26) & 0x1F;
mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
mta |= BIT(bit);
writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2));
}
void emac_mac_multicast_addr_clear(struct emac_adapter *adpt)
{
writel(0, adpt->base + EMAC_HASH_TAB_REG0);
writel(0, adpt->base + EMAC_HASH_TAB_REG1);
}
/* definitions for RSS */
#define EMAC_RSS_KEY(_i, _type) \
(EMAC_RSS_KEY0 + ((_i) * sizeof(_type)))
#define EMAC_RSS_TBL(_i, _type) \
(EMAC_IDT_TABLE0 + ((_i) * sizeof(_type)))
/* Config MAC modes */
void emac_mac_mode_config(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
u32 mac;
mac = readl(adpt->base + EMAC_MAC_CTRL);
mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
mac |= VLAN_STRIP;
if (netdev->flags & IFF_PROMISC)
mac |= PROM_MODE;
if (netdev->flags & IFF_ALLMULTI)
mac |= MULTI_ALL;
writel(mac, adpt->base + EMAC_MAC_CTRL);
}
/* Config descriptor rings */
static void emac_mac_dma_rings_config(struct emac_adapter *adpt)
{
/* TPD (Transmit Packet Descriptor) */
writel(upper_32_bits(adpt->tx_q.tpd.dma_addr),
adpt->base + EMAC_DESC_CTRL_1);
writel(lower_32_bits(adpt->tx_q.tpd.dma_addr),
adpt->base + EMAC_DESC_CTRL_8);
writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_9);
/* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */
writel(upper_32_bits(adpt->rx_q.rfd.dma_addr),
adpt->base + EMAC_DESC_CTRL_0);
writel(lower_32_bits(adpt->rx_q.rfd.dma_addr),
adpt->base + EMAC_DESC_CTRL_2);
writel(lower_32_bits(adpt->rx_q.rrd.dma_addr),
adpt->base + EMAC_DESC_CTRL_5);
writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_3);
writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_6);
writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK,
adpt->base + EMAC_DESC_CTRL_4);
writel(0, adpt->base + EMAC_DESC_CTRL_11);
/* Load all of the base addresses above and ensure that triggering HW to
* read ring pointers is flushed
*/
writel(1, adpt->base + EMAC_INTER_SRAM_PART9);
}
/* Config transmit parameters */
static void emac_mac_tx_config(struct emac_adapter *adpt)
{
u32 val;
writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) &
JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1);
val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) &
NUM_TPD_BURST_PREF_BMSK;
val |= TXQ_MODE | LS_8023_SP;
val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) &
NUM_TXF_BURST_PREF_BMSK;
writel(val, adpt->base + EMAC_TXQ_CTRL_0);
emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2,
(TXF_HWM_BMSK | TXF_LWM_BMSK), 0);
}
/* Config receive parameters */
static void emac_mac_rx_config(struct emac_adapter *adpt)
{
u32 val;
val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) &
NUM_RFD_BURST_PREF_BMSK;
val |= (SP_IPV6 | CUT_THRU_EN);
writel(val, adpt->base + EMAC_RXQ_CTRL_0);
val = readl(adpt->base + EMAC_RXQ_CTRL_1);
val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK |
RFD_PREF_UP_THRESHOLD_BMSK);
val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) |
(RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) |
(RFD_PREF_UP_TH << RFD_PREF_UP_THRESHOLD_SHFT);
writel(val, adpt->base + EMAC_RXQ_CTRL_1);
val = readl(adpt->base + EMAC_RXQ_CTRL_2);
val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK);
val |= (RXF_DOF_THRESFHOLD << RXF_DOF_THRESHOLD_SHFT) |
(RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT);
writel(val, adpt->base + EMAC_RXQ_CTRL_2);
val = readl(adpt->base + EMAC_RXQ_CTRL_3);
val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK);
val |= RXD_TH << RXD_THRESHOLD_SHFT;
writel(val, adpt->base + EMAC_RXQ_CTRL_3);
}
/* Config dma */
static void emac_mac_dma_config(struct emac_adapter *adpt)
{
u32 dma_ctrl = DMAR_REQ_PRI;
switch (adpt->dma_order) {
case emac_dma_ord_in:
dma_ctrl |= IN_ORDER_MODE;
break;
case emac_dma_ord_enh:
dma_ctrl |= ENH_ORDER_MODE;
break;
case emac_dma_ord_out:
dma_ctrl |= OUT_ORDER_MODE;
break;
default:
break;
}
dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) &
REGRDBLEN_BMSK;
dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) &
REGWRBLEN_BMSK;
dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) &
DMAR_DLY_CNT_BMSK;
dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) &
DMAW_DLY_CNT_BMSK;
/* config DMA and ensure that configuration is flushed to HW */
writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL);
}
/* set MAC address */
static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr)
{
u32 sta;
/* for example: 00-A0-C6-11-22-33
* 0<-->C6112233, 1<-->00A0.
*/
/* low 32bit word */
sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) |
(((u32)addr[4]) << 8) | (((u32)addr[5]));
writel(sta, adpt->base + EMAC_MAC_STA_ADDR0);
/* hight 32bit word */
sta = (((u32)addr[0]) << 8) | (u32)addr[1];
writel(sta, adpt->base + EMAC_MAC_STA_ADDR1);
}
static void emac_mac_config(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
unsigned int max_frame;
u32 val;
emac_set_mac_address(adpt, netdev->dev_addr);
max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ?
ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE;
emac_mac_dma_rings_config(adpt);
writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
adpt->base + EMAC_MAX_FRAM_LEN_CTRL);
emac_mac_tx_config(adpt);
emac_mac_rx_config(adpt);
emac_mac_dma_config(adpt);
val = readl(adpt->base + EMAC_AXI_MAST_CTRL);
val &= ~(DATA_BYTE_SWAP | MAX_BOUND);
val |= MAX_BTYPE;
writel(val, adpt->base + EMAC_AXI_MAST_CTRL);
writel(0, adpt->base + EMAC_CLK_GATE_CTRL);
writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL);
}
void emac_mac_reset(struct emac_adapter *adpt)
{
emac_mac_stop(adpt);
emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST);
usleep_range(100, 150); /* reset may take up to 100usec */
/* interrupt clear-on-read */
emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN);
}
static void emac_mac_start(struct emac_adapter *adpt)
{
struct phy_device *phydev = adpt->phydev;
u32 mac, csr1;
/* enable tx queue */
emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN);
/* enable rx queue */
emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN);
/* enable mac control */
mac = readl(adpt->base + EMAC_MAC_CTRL);
csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
mac |= TXEN | RXEN; /* enable RX/TX */
/* Configure MAC flow control. If set to automatic, then match
* whatever the PHY does. Otherwise, enable or disable it, depending
* on what the user configured via ethtool.
*/
mac &= ~(RXFC | TXFC);
if (adpt->automatic) {
/* If it's set to automatic, then update our local values */
adpt->rx_flow_control = phydev->pause;
adpt->tx_flow_control = phydev->pause != phydev->asym_pause;
}
mac |= adpt->rx_flow_control ? RXFC : 0;
mac |= adpt->tx_flow_control ? TXFC : 0;
/* setup link speed */
mac &= ~SPEED_MASK;
if (phydev->speed == SPEED_1000) {
mac |= SPEED(2);
csr1 |= FREQ_MODE;
} else {
mac |= SPEED(1);
csr1 &= ~FREQ_MODE;
}
if (phydev->duplex == DUPLEX_FULL)
mac |= FULLD;
else
mac &= ~FULLD;
/* other parameters */
mac |= (CRCE | PCRCE);
mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK);
mac |= BROAD_EN;
mac |= FLCHK;
mac &= ~RX_CHKSUM_EN;
mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL |
DEBUG_MODE | SINGLE_PAUSE_MODE);
/* Enable single-pause-frame mode if requested.
*
* If enabled, the EMAC will send a single pause frame when the RX
* queue is full. This normally leads to packet loss because
* the pause frame disables the remote MAC only for 33ms (the quanta),
* and then the remote MAC continues sending packets even though
* the RX queue is still full.
*
* If disabled, the EMAC sends a pause frame every 31ms until the RX
* queue is no longer full. Normally, this is the preferred
* method of operation. However, when the system is hung (e.g.
* cores are halted), the EMAC interrupt handler is never called
* and so the RX queue fills up quickly and stays full. The resuling
* non-stop "flood" of pause frames sometimes has the effect of
* disabling nearby switches. In some cases, other nearby switches
* are also affected, shutting down the entire network.
*
* The user can enable or disable single-pause-frame mode
* via ethtool.
*/
mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0;
writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1);
writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL);
/* enable interrupt read clear, low power sleep mode and
* the irq moderators
*/
writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT);
writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN |
IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL);
emac_mac_mode_config(adpt);
emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL,
(HEADER_ENABLE | HEADER_CNT_EN), 0);
}
void emac_mac_stop(struct emac_adapter *adpt)
{
emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0);
emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0);
emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0);
usleep_range(1000, 1050); /* stopping mac may take upto 1msec */
}
/* Free all descriptors of given transmit queue */
static void emac_tx_q_descs_free(struct emac_adapter *adpt)
{
struct emac_tx_queue *tx_q = &adpt->tx_q;
unsigned int i;
size_t size;
/* ring already cleared, nothing to do */
if (!tx_q->tpd.tpbuff)
return;
for (i = 0; i < tx_q->tpd.count; i++) {
struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i);
if (tpbuf->dma_addr) {
dma_unmap_single(adpt->netdev->dev.parent,
tpbuf->dma_addr, tpbuf->length,
DMA_TO_DEVICE);
tpbuf->dma_addr = 0;
}
if (tpbuf->skb) {
dev_kfree_skb_any(tpbuf->skb);
tpbuf->skb = NULL;
}
}
size = sizeof(struct emac_buffer) * tx_q->tpd.count;
memset(tx_q->tpd.tpbuff, 0, size);
/* clear the descriptor ring */
memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size);
tx_q->tpd.consume_idx = 0;
tx_q->tpd.produce_idx = 0;
}
/* Free all descriptors of given receive queue */
static void emac_rx_q_free_descs(struct emac_adapter *adpt)
{
struct device *dev = adpt->netdev->dev.parent;
struct emac_rx_queue *rx_q = &adpt->rx_q;
unsigned int i;
size_t size;
/* ring already cleared, nothing to do */
if (!rx_q->rfd.rfbuff)
return;
for (i = 0; i < rx_q->rfd.count; i++) {
struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i);
if (rfbuf->dma_addr) {
dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length,
DMA_FROM_DEVICE);
rfbuf->dma_addr = 0;
}
if (rfbuf->skb) {
dev_kfree_skb(rfbuf->skb);
rfbuf->skb = NULL;
}
}
size = sizeof(struct emac_buffer) * rx_q->rfd.count;
memset(rx_q->rfd.rfbuff, 0, size);
/* clear the descriptor rings */
memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size);
rx_q->rrd.produce_idx = 0;
rx_q->rrd.consume_idx = 0;
memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size);
rx_q->rfd.produce_idx = 0;
rx_q->rfd.consume_idx = 0;
}
/* Free all buffers associated with given transmit queue */
static void emac_tx_q_bufs_free(struct emac_adapter *adpt)
{
struct emac_tx_queue *tx_q = &adpt->tx_q;
emac_tx_q_descs_free(adpt);
kfree(tx_q->tpd.tpbuff);
tx_q->tpd.tpbuff = NULL;
tx_q->tpd.v_addr = NULL;
tx_q->tpd.dma_addr = 0;
tx_q->tpd.size = 0;
}
/* Allocate TX descriptor ring for the given transmit queue */
static int emac_tx_q_desc_alloc(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
int node = dev_to_node(adpt->netdev->dev.parent);
size_t size;
size = sizeof(struct emac_buffer) * tx_q->tpd.count;
tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node);
if (!tx_q->tpd.tpbuff)
return -ENOMEM;
tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4);
tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used;
tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used;
ring_header->used += ALIGN(tx_q->tpd.size, 8);
tx_q->tpd.produce_idx = 0;
tx_q->tpd.consume_idx = 0;
return 0;
}
/* Free all buffers associated with given transmit queue */
static void emac_rx_q_bufs_free(struct emac_adapter *adpt)
{
struct emac_rx_queue *rx_q = &adpt->rx_q;
emac_rx_q_free_descs(adpt);
kfree(rx_q->rfd.rfbuff);
rx_q->rfd.rfbuff = NULL;
rx_q->rfd.v_addr = NULL;
rx_q->rfd.dma_addr = 0;
rx_q->rfd.size = 0;
rx_q->rrd.v_addr = NULL;
rx_q->rrd.dma_addr = 0;
rx_q->rrd.size = 0;
}
/* Allocate RX descriptor rings for the given receive queue */
static int emac_rx_descs_alloc(struct emac_adapter *adpt)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
int node = dev_to_node(adpt->netdev->dev.parent);
struct emac_rx_queue *rx_q = &adpt->rx_q;
size_t size;
size = sizeof(struct emac_buffer) * rx_q->rfd.count;
rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node);
if (!rx_q->rfd.rfbuff)
return -ENOMEM;
rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4);
rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4);
rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used;
rx_q->rrd.v_addr = ring_header->v_addr + ring_header->used;
ring_header->used += ALIGN(rx_q->rrd.size, 8);
rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used;
rx_q->rfd.v_addr = ring_header->v_addr + ring_header->used;
ring_header->used += ALIGN(rx_q->rfd.size, 8);
rx_q->rrd.produce_idx = 0;
rx_q->rrd.consume_idx = 0;
rx_q->rfd.produce_idx = 0;
rx_q->rfd.consume_idx = 0;
return 0;
}
/* Allocate all TX and RX descriptor rings */
int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
struct device *dev = adpt->netdev->dev.parent;
unsigned int num_tx_descs = adpt->tx_desc_cnt;
unsigned int num_rx_descs = adpt->rx_desc_cnt;
int ret;
adpt->tx_q.tpd.count = adpt->tx_desc_cnt;
adpt->rx_q.rrd.count = adpt->rx_desc_cnt;
adpt->rx_q.rfd.count = adpt->rx_desc_cnt;
/* Ring DMA buffer. Each ring may need up to 8 bytes for alignment,
* hence the additional padding bytes are allocated.
*/
ring_header->size = num_tx_descs * (adpt->tpd_size * 4) +
num_rx_descs * (adpt->rfd_size * 4) +
num_rx_descs * (adpt->rrd_size * 4) +
8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */
ring_header->used = 0;
ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size,
&ring_header->dma_addr,
GFP_KERNEL);
if (!ring_header->v_addr)
return -ENOMEM;
ring_header->used = ALIGN(ring_header->dma_addr, 8) -
ring_header->dma_addr;
ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q);
if (ret) {
netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n");
goto err_alloc_tx;
}
ret = emac_rx_descs_alloc(adpt);
if (ret) {
netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n");
goto err_alloc_rx;
}
return 0;
err_alloc_rx:
emac_tx_q_bufs_free(adpt);
err_alloc_tx:
dma_free_coherent(dev, ring_header->size,
ring_header->v_addr, ring_header->dma_addr);
ring_header->v_addr = NULL;
ring_header->dma_addr = 0;
ring_header->size = 0;
ring_header->used = 0;
return ret;
}
/* Free all TX and RX descriptor rings */
void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt)
{
struct emac_ring_header *ring_header = &adpt->ring_header;
struct device *dev = adpt->netdev->dev.parent;
emac_tx_q_bufs_free(adpt);
emac_rx_q_bufs_free(adpt);
dma_free_coherent(dev, ring_header->size,
ring_header->v_addr, ring_header->dma_addr);
ring_header->v_addr = NULL;
ring_header->dma_addr = 0;
ring_header->size = 0;
ring_header->used = 0;
}
/* Initialize descriptor rings */
static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt)
{
unsigned int i;
adpt->tx_q.tpd.produce_idx = 0;
adpt->tx_q.tpd.consume_idx = 0;
for (i = 0; i < adpt->tx_q.tpd.count; i++)
adpt->tx_q.tpd.tpbuff[i].dma_addr = 0;
adpt->rx_q.rrd.produce_idx = 0;
adpt->rx_q.rrd.consume_idx = 0;
adpt->rx_q.rfd.produce_idx = 0;
adpt->rx_q.rfd.consume_idx = 0;
for (i = 0; i < adpt->rx_q.rfd.count; i++)
adpt->rx_q.rfd.rfbuff[i].dma_addr = 0;
}
/* Produce new receive free descriptor */
static void emac_mac_rx_rfd_create(struct emac_adapter *adpt,
struct emac_rx_queue *rx_q,
dma_addr_t addr)
{
u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx);
*(hw_rfd++) = lower_32_bits(addr);
*hw_rfd = upper_32_bits(addr);
if (++rx_q->rfd.produce_idx == rx_q->rfd.count)
rx_q->rfd.produce_idx = 0;
}
/* Fill up receive queue's RFD with preallocated receive buffers */
static void emac_mac_rx_descs_refill(struct emac_adapter *adpt,
struct emac_rx_queue *rx_q)
{
struct emac_buffer *curr_rxbuf;
struct emac_buffer *next_rxbuf;
unsigned int count = 0;
u32 next_produce_idx;
next_produce_idx = rx_q->rfd.produce_idx + 1;
if (next_produce_idx == rx_q->rfd.count)
next_produce_idx = 0;
curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
/* this always has a blank rx_buffer*/
while (!next_rxbuf->dma_addr) {
struct sk_buff *skb;
int ret;
skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size);
if (!skb)
break;
curr_rxbuf->dma_addr =
dma_map_single(adpt->netdev->dev.parent, skb->data,
adpt->rxbuf_size, DMA_FROM_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
curr_rxbuf->dma_addr);
if (ret) {
dev_kfree_skb(skb);
break;
}
curr_rxbuf->skb = skb;
curr_rxbuf->length = adpt->rxbuf_size;
emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr);
next_produce_idx = rx_q->rfd.produce_idx + 1;
if (next_produce_idx == rx_q->rfd.count)
next_produce_idx = 0;
curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx);
next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx);
count++;
}
if (count) {
u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) &
rx_q->produce_mask;
emac_reg_update32(adpt->base + rx_q->produce_reg,
rx_q->produce_mask, prod_idx);
}
}
static void emac_adjust_link(struct net_device *netdev)
{
struct emac_adapter *adpt = netdev_priv(netdev);
struct phy_device *phydev = netdev->phydev;
if (phydev->link) {
emac_mac_start(adpt);
emac_sgmii_link_change(adpt, true);
} else {
emac_sgmii_link_change(adpt, false);
emac_mac_stop(adpt);
}
phy_print_status(phydev);
}
/* Bringup the interface/HW */
int emac_mac_up(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
int ret;
emac_mac_rx_tx_ring_reset_all(adpt);
emac_mac_config(adpt);
emac_mac_rx_descs_refill(adpt, &adpt->rx_q);
net: qcom/emac: do not use hardware mdio automatic polling Use software polling (PHY_POLL) to check for link state changes instead of relying on the EMAC's hardware polling feature. Some PHY drivers are unable to get a functioning link because the HW polling is not robust enough. The EMAC is able to poll the PHY on the MDIO bus looking for link state changes (via the Link Status bit in the Status Register at address 0x1). When the link state changes, the EMAC triggers an interrupt and tells the driver what the new state is. The feature eliminates the need for software to poll the MDIO bus. Unfortunately, this feature is incompatible with phylib, because it ignores everything that the PHY core and PHY drivers are trying to do. In particular: 1. It assumes a compatible register set, so PHYs with different registers may not work. 2. It doesn't allow for hardware errata that have work-arounds implemented in the PHY driver. 3. It doesn't support multiple register pages. If the PHY core switches the register set to another page, the EMAC won't know the page has changed and will still attempt to read the same PHY register. 4. It only checks the copper side of the link, not the SGMII side. Some PHY drivers (e.g. at803x) may also check the SGMII side, and report the link as not ready during autonegotiation if the SGMII link is still down. Phylib then waits for another interrupt to query the PHY again, but the EMAC won't send another interrupt because it thinks the link is up. Cc: stable@vger.kernel.org # 4.11.x Tested-by: Manoj Iyer <manoj.iyer@canonical.com> Signed-off-by: Timur Tabi <timur@codeaurora.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-01 21:08:13 +00:00
adpt->phydev->irq = PHY_POLL;
ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link,
PHY_INTERFACE_MODE_SGMII);
if (ret) {
netdev_err(adpt->netdev, "could not connect phy\n");
return ret;
}
phy_attached_print(adpt->phydev, NULL);
/* enable mac irq */
writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS);
writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK);
phy_start(adpt->phydev);
napi_enable(&adpt->rx_q.napi);
netif_start_queue(netdev);
return 0;
}
/* Bring down the interface/HW */
void emac_mac_down(struct emac_adapter *adpt)
{
struct net_device *netdev = adpt->netdev;
netif_stop_queue(netdev);
napi_disable(&adpt->rx_q.napi);
phy_stop(adpt->phydev);
/* Interrupts must be disabled before the PHY is disconnected, to
* avoid a race condition where adjust_link is null when we get
* an interrupt.
*/
writel(DIS_INT, adpt->base + EMAC_INT_STATUS);
writel(0, adpt->base + EMAC_INT_MASK);
synchronize_irq(adpt->irq.irq);
phy_disconnect(adpt->phydev);
emac_mac_reset(adpt);
emac_tx_q_descs_free(adpt);
netdev_reset_queue(adpt->netdev);
emac_rx_q_free_descs(adpt);
}
/* Consume next received packet descriptor */
static bool emac_rx_process_rrd(struct emac_adapter *adpt,
struct emac_rx_queue *rx_q,
struct emac_rrd *rrd)
{
u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx);
rrd->word[3] = *(hw_rrd + 3);
if (!RRD_UPDT(rrd))
return false;
rrd->word[4] = 0;
rrd->word[5] = 0;
rrd->word[0] = *(hw_rrd++);
rrd->word[1] = *(hw_rrd++);
rrd->word[2] = *(hw_rrd++);
if (unlikely(RRD_NOR(rrd) != 1)) {
netdev_err(adpt->netdev,
"error: multi-RFD not support yet! nor:%lu\n",
RRD_NOR(rrd));
}
/* mark rrd as processed */
RRD_UPDT_SET(rrd, 0);
*hw_rrd = rrd->word[3];
if (++rx_q->rrd.consume_idx == rx_q->rrd.count)
rx_q->rrd.consume_idx = 0;
return true;
}
/* Produce new transmit descriptor */
static void emac_tx_tpd_create(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q, struct emac_tpd *tpd)
{
u32 *hw_tpd;
tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx;
hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx);
if (++tx_q->tpd.produce_idx == tx_q->tpd.count)
tx_q->tpd.produce_idx = 0;
*(hw_tpd++) = tpd->word[0];
*(hw_tpd++) = tpd->word[1];
*(hw_tpd++) = tpd->word[2];
*hw_tpd = tpd->word[3];
}
/* Mark the last transmit descriptor as such (for the transmit packet) */
static void emac_tx_tpd_mark_last(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q)
{
u32 *hw_tpd =
EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx);
u32 tmp_tpd;
tmp_tpd = *(hw_tpd + 1);
tmp_tpd |= EMAC_TPD_LAST_FRAGMENT;
*(hw_tpd + 1) = tmp_tpd;
}
static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd)
{
struct emac_buffer *rfbuf = rx_q->rfd.rfbuff;
u32 consume_idx = RRD_SI(rrd);
unsigned int i;
for (i = 0; i < RRD_NOR(rrd); i++) {
rfbuf[consume_idx].skb = NULL;
if (++consume_idx == rx_q->rfd.count)
consume_idx = 0;
}
rx_q->rfd.consume_idx = consume_idx;
rx_q->rfd.process_idx = consume_idx;
}
/* Push the received skb to upper layers */
static void emac_receive_skb(struct emac_rx_queue *rx_q,
struct sk_buff *skb,
u16 vlan_tag, bool vlan_flag)
{
if (vlan_flag) {
u16 vlan;
EMAC_TAG_TO_VLAN(vlan_tag, vlan);
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan);
}
napi_gro_receive(&rx_q->napi, skb);
}
/* Process receive event */
void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q,
int *num_pkts, int max_pkts)
{
u32 proc_idx, hw_consume_idx, num_consume_pkts;
struct net_device *netdev = adpt->netdev;
struct emac_buffer *rfbuf;
unsigned int count = 0;
struct emac_rrd rrd;
struct sk_buff *skb;
u32 reg;
reg = readl_relaxed(adpt->base + rx_q->consume_reg);
hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift;
num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ?
(hw_consume_idx - rx_q->rrd.consume_idx) :
(hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx);
do {
if (!num_consume_pkts)
break;
if (!emac_rx_process_rrd(adpt, rx_q, &rrd))
break;
if (likely(RRD_NOR(&rrd) == 1)) {
/* good receive */
rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd));
dma_unmap_single(adpt->netdev->dev.parent,
rfbuf->dma_addr, rfbuf->length,
DMA_FROM_DEVICE);
rfbuf->dma_addr = 0;
skb = rfbuf->skb;
} else {
netdev_err(adpt->netdev,
"error: multi-RFD not support yet!\n");
break;
}
emac_rx_rfd_clean(rx_q, &rrd);
num_consume_pkts--;
count++;
/* Due to a HW issue in L4 check sum detection (UDP/TCP frags
* with DF set are marked as error), drop packets based on the
* error mask rather than the summary bit (ignoring L4F errors)
*/
if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) {
netif_dbg(adpt, rx_status, adpt->netdev,
"Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n",
rrd.word[0], rrd.word[1],
rrd.word[2], rrd.word[3]);
dev_kfree_skb(skb);
continue;
}
skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN);
skb->dev = netdev;
skb->protocol = eth_type_trans(skb, skb->dev);
if (netdev->features & NETIF_F_RXCSUM)
skb->ip_summed = RRD_L4F(&rrd) ?
CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd),
(bool)RRD_CVTAG(&rrd));
(*num_pkts)++;
} while (*num_pkts < max_pkts);
if (count) {
proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) &
rx_q->process_mask;
emac_reg_update32(adpt->base + rx_q->process_reg,
rx_q->process_mask, proc_idx);
emac_mac_rx_descs_refill(adpt, rx_q);
}
}
/* get the number of free transmit descriptors */
static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q)
{
u32 produce_idx = tx_q->tpd.produce_idx;
u32 consume_idx = tx_q->tpd.consume_idx;
return (consume_idx > produce_idx) ?
(consume_idx - produce_idx - 1) :
(tx_q->tpd.count + consume_idx - produce_idx - 1);
}
/* Process transmit event */
void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q)
{
u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg);
u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0;
struct emac_buffer *tpbuf;
hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift;
while (tx_q->tpd.consume_idx != hw_consume_idx) {
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx);
if (tpbuf->dma_addr) {
dma_unmap_page(adpt->netdev->dev.parent,
tpbuf->dma_addr, tpbuf->length,
DMA_TO_DEVICE);
tpbuf->dma_addr = 0;
}
if (tpbuf->skb) {
pkts_compl++;
bytes_compl += tpbuf->skb->len;
dev_consume_skb_irq(tpbuf->skb);
tpbuf->skb = NULL;
}
if (++tx_q->tpd.consume_idx == tx_q->tpd.count)
tx_q->tpd.consume_idx = 0;
}
netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl);
if (netif_queue_stopped(adpt->netdev))
if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1))
netif_wake_queue(adpt->netdev);
}
/* Initialize all queue data structures */
void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev,
struct emac_adapter *adpt)
{
adpt->rx_q.netdev = adpt->netdev;
adpt->rx_q.produce_reg = EMAC_MAILBOX_0;
adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK;
adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT;
adpt->rx_q.process_reg = EMAC_MAILBOX_0;
adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK;
adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT;
adpt->rx_q.consume_reg = EMAC_MAILBOX_3;
adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK;
adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT;
adpt->rx_q.irq = &adpt->irq;
adpt->rx_q.intr = adpt->irq.mask & ISR_RX_PKT;
adpt->tx_q.produce_reg = EMAC_MAILBOX_15;
adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK;
adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT;
adpt->tx_q.consume_reg = EMAC_MAILBOX_2;
adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK;
adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT;
}
/* Fill up transmit descriptors with TSO and Checksum offload information */
static int emac_tso_csum(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q,
struct sk_buff *skb,
struct emac_tpd *tpd)
{
unsigned int hdr_len;
int ret;
if (skb_is_gso(skb)) {
if (skb_header_cloned(skb)) {
ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (unlikely(ret))
return ret;
}
if (skb->protocol == htons(ETH_P_IP)) {
u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data)
+ ntohs(ip_hdr(skb)->tot_len);
if (skb->len > pkt_len)
pskb_trim(skb, pkt_len);
}
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
if (unlikely(skb->len == hdr_len)) {
/* we only need to do csum */
netif_warn(adpt, tx_err, adpt->netdev,
"tso not needed for packet with 0 data\n");
goto do_csum;
}
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check =
~csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
TPD_IPV4_SET(tpd, 1);
}
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
/* ipv6 tso need an extra tpd */
struct emac_tpd extra_tpd;
memset(tpd, 0, sizeof(*tpd));
memset(&extra_tpd, 0, sizeof(extra_tpd));
tcp_v6_gso_csum_prep(skb);
TPD_PKT_LEN_SET(&extra_tpd, skb->len);
TPD_LSO_SET(&extra_tpd, 1);
TPD_LSOV_SET(&extra_tpd, 1);
emac_tx_tpd_create(adpt, tx_q, &extra_tpd);
TPD_LSOV_SET(tpd, 1);
}
TPD_LSO_SET(tpd, 1);
TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb));
TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size);
return 0;
}
do_csum:
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
unsigned int css, cso;
cso = skb_transport_offset(skb);
if (unlikely(cso & 0x1)) {
netdev_err(adpt->netdev,
"error: payload offset should be even\n");
return -EINVAL;
}
css = cso + skb->csum_offset;
TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1);
TPD_CXSUM_OFFSET_SET(tpd, css >> 1);
TPD_CSX_SET(tpd, 1);
}
return 0;
}
/* Fill up transmit descriptors */
static void emac_tx_fill_tpd(struct emac_adapter *adpt,
struct emac_tx_queue *tx_q, struct sk_buff *skb,
struct emac_tpd *tpd)
{
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
unsigned int first = tx_q->tpd.produce_idx;
unsigned int len = skb_headlen(skb);
struct emac_buffer *tpbuf = NULL;
unsigned int mapped_len = 0;
unsigned int i;
int count = 0;
int ret;
/* if Large Segment Offload is (in TCP Segmentation Offload struct) */
if (TPD_LSO(tpd)) {
mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
tpbuf->length = mapped_len;
tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
virt_to_page(skb->data),
offset_in_page(skb->data),
tpbuf->length,
DMA_TO_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
tpbuf->dma_addr);
if (ret)
goto error;
TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
TPD_BUF_LEN_SET(tpd, tpbuf->length);
emac_tx_tpd_create(adpt, tx_q, tpd);
count++;
}
if (mapped_len < len) {
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
tpbuf->length = len - mapped_len;
tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent,
virt_to_page(skb->data +
mapped_len),
offset_in_page(skb->data +
mapped_len),
tpbuf->length, DMA_TO_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
tpbuf->dma_addr);
if (ret)
goto error;
TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
TPD_BUF_LEN_SET(tpd, tpbuf->length);
emac_tx_tpd_create(adpt, tx_q, tpd);
count++;
}
for (i = 0; i < nr_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx);
tpbuf->length = skb_frag_size(frag);
tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent,
frag, 0, tpbuf->length,
DMA_TO_DEVICE);
ret = dma_mapping_error(adpt->netdev->dev.parent,
tpbuf->dma_addr);
if (ret)
goto error;
TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr));
TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr));
TPD_BUF_LEN_SET(tpd, tpbuf->length);
emac_tx_tpd_create(adpt, tx_q, tpd);
count++;
}
/* The last tpd */
wmb();
emac_tx_tpd_mark_last(adpt, tx_q);
/* The last buffer info contain the skb address,
* so it will be freed after unmap
*/
tpbuf->skb = skb;
return;
error:
/* One of the memory mappings failed, so undo everything */
tx_q->tpd.produce_idx = first;
while (count--) {
tpbuf = GET_TPD_BUFFER(tx_q, first);
dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr,
tpbuf->length, DMA_TO_DEVICE);
tpbuf->dma_addr = 0;
tpbuf->length = 0;
if (++first == tx_q->tpd.count)
first = 0;
}
dev_kfree_skb(skb);
}
/* Transmit the packet using specified transmit queue */
int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q,
struct sk_buff *skb)
{
struct emac_tpd tpd;
u32 prod_idx;
memset(&tpd, 0, sizeof(tpd));
if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb_vlan_tag_present(skb)) {
u16 tag;
EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag);
TPD_CVLAN_TAG_SET(&tpd, tag);
TPD_INSTC_SET(&tpd, 1);
}
if (skb_network_offset(skb) != ETH_HLEN)
TPD_TYP_SET(&tpd, 1);
emac_tx_fill_tpd(adpt, tx_q, skb, &tpd);
netdev_sent_queue(adpt->netdev, skb->len);
/* Make sure the are enough free descriptors to hold one
* maximum-sized SKB. We need one desc for each fragment,
* one for the checksum (emac_tso_csum), one for TSO, and
* and one for the SKB header.
*/
if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3))
netif_stop_queue(adpt->netdev);
/* update produce idx */
prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) &
tx_q->produce_mask;
emac_reg_update32(adpt->base + tx_q->produce_reg,
tx_q->produce_mask, prod_idx);
return NETDEV_TX_OK;
}