linux/arch/s390/kvm/priv.c

821 lines
22 KiB
C
Raw Normal View History

/*
* handling privileged instructions
*
* Copyright IBM Corp. 2008, 2013
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): Carsten Otte <cotte@de.ibm.com>
* Christian Borntraeger <borntraeger@de.ibm.com>
*/
#include <linux/kvm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/gfp.h>
#include <linux/errno.h>
#include <linux/compat.h>
#include <asm/asm-offsets.h>
#include <asm/facility.h>
#include <asm/current.h>
#include <asm/debug.h>
#include <asm/ebcdic.h>
#include <asm/sysinfo.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/io.h>
#include <asm/ptrace.h>
#include <asm/compat.h>
#include "gaccess.h"
#include "kvm-s390.h"
#include "trace.h"
/* Handle SCK (SET CLOCK) interception */
static int handle_set_clock(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu *cpup;
s64 hostclk, val;
u64 op2;
int i;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
op2 = kvm_s390_get_base_disp_s(vcpu);
if (op2 & 7) /* Operand must be on a doubleword boundary */
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (get_guest(vcpu, val, (u64 __user *) op2))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
if (store_tod_clock(&hostclk)) {
kvm_s390_set_psw_cc(vcpu, 3);
return 0;
}
val = (val - hostclk) & ~0x3fUL;
mutex_lock(&vcpu->kvm->lock);
kvm_for_each_vcpu(i, cpup, vcpu->kvm)
cpup->arch.sie_block->epoch = val;
mutex_unlock(&vcpu->kvm->lock);
kvm_s390_set_psw_cc(vcpu, 0);
return 0;
}
static int handle_set_prefix(struct kvm_vcpu *vcpu)
{
u64 operand2;
u32 address = 0;
u8 tmp;
vcpu->stat.instruction_spx++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
operand2 = kvm_s390_get_base_disp_s(vcpu);
/* must be word boundary */
if (operand2 & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
/* get the value */
if (get_guest(vcpu, address, (u32 __user *) operand2))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
address = address & 0x7fffe000u;
/* make sure that the new value is valid memory */
if (copy_from_guest_absolute(vcpu, &tmp, address, 1) ||
(copy_from_guest_absolute(vcpu, &tmp, address + PAGE_SIZE, 1)))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
kvm_s390_set_prefix(vcpu, address);
VCPU_EVENT(vcpu, 5, "setting prefix to %x", address);
trace_kvm_s390_handle_prefix(vcpu, 1, address);
return 0;
}
static int handle_store_prefix(struct kvm_vcpu *vcpu)
{
u64 operand2;
u32 address;
vcpu->stat.instruction_stpx++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
operand2 = kvm_s390_get_base_disp_s(vcpu);
/* must be word boundary */
if (operand2 & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
address = vcpu->arch.sie_block->prefix;
address = address & 0x7fffe000u;
/* get the value */
if (put_guest(vcpu, address, (u32 __user *)operand2))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
VCPU_EVENT(vcpu, 5, "storing prefix to %x", address);
trace_kvm_s390_handle_prefix(vcpu, 0, address);
return 0;
}
static int handle_store_cpu_address(struct kvm_vcpu *vcpu)
{
u64 useraddr;
vcpu->stat.instruction_stap++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
useraddr = kvm_s390_get_base_disp_s(vcpu);
if (useraddr & 1)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (put_guest(vcpu, vcpu->vcpu_id, (u16 __user *)useraddr))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
VCPU_EVENT(vcpu, 5, "storing cpu address to %llx", useraddr);
trace_kvm_s390_handle_stap(vcpu, useraddr);
return 0;
}
static int handle_skey(struct kvm_vcpu *vcpu)
{
vcpu->stat.instruction_storage_key++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
vcpu->arch.sie_block->gpsw.addr =
__rewind_psw(vcpu->arch.sie_block->gpsw, 4);
VCPU_EVENT(vcpu, 4, "%s", "retrying storage key operation");
return 0;
}
static int handle_test_block(struct kvm_vcpu *vcpu)
{
unsigned long hva;
gpa_t addr;
int reg2;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
kvm_s390_get_regs_rre(vcpu, NULL, &reg2);
addr = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK;
addr = kvm_s390_real_to_abs(vcpu, addr);
hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(addr));
if (kvm_is_error_hva(hva))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
/*
* We don't expect errors on modern systems, and do not care
* about storage keys (yet), so let's just clear the page.
*/
if (clear_user((void __user *)hva, PAGE_SIZE) != 0)
return -EFAULT;
kvm_s390_set_psw_cc(vcpu, 0);
vcpu->run->s.regs.gprs[0] = 0;
return 0;
}
static int handle_tpi(struct kvm_vcpu *vcpu)
{
struct kvm_s390_interrupt_info *inti;
u64 addr;
int cc;
addr = kvm_s390_get_base_disp_s(vcpu);
if (addr & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
cc = 0;
inti = kvm_s390_get_io_int(vcpu->kvm, vcpu->arch.sie_block->gcr[6], 0);
if (!inti)
goto no_interrupt;
cc = 1;
if (addr) {
/*
* Store the two-word I/O interruption code into the
* provided area.
*/
if (put_guest(vcpu, inti->io.subchannel_id, (u16 __user *)addr)
|| put_guest(vcpu, inti->io.subchannel_nr, (u16 __user *)(addr + 2))
|| put_guest(vcpu, inti->io.io_int_parm, (u32 __user *)(addr + 4)))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
} else {
/*
* Store the three-word I/O interruption code into
* the appropriate lowcore area.
*/
put_guest(vcpu, inti->io.subchannel_id, (u16 __user *) __LC_SUBCHANNEL_ID);
put_guest(vcpu, inti->io.subchannel_nr, (u16 __user *) __LC_SUBCHANNEL_NR);
put_guest(vcpu, inti->io.io_int_parm, (u32 __user *) __LC_IO_INT_PARM);
put_guest(vcpu, inti->io.io_int_word, (u32 __user *) __LC_IO_INT_WORD);
}
kfree(inti);
no_interrupt:
/* Set condition code and we're done. */
kvm_s390_set_psw_cc(vcpu, cc);
return 0;
}
static int handle_tsch(struct kvm_vcpu *vcpu)
{
struct kvm_s390_interrupt_info *inti;
inti = kvm_s390_get_io_int(vcpu->kvm, 0,
vcpu->run->s.regs.gprs[1]);
/*
* Prepare exit to userspace.
* We indicate whether we dequeued a pending I/O interrupt
* so that userspace can re-inject it if the instruction gets
* a program check. While this may re-order the pending I/O
* interrupts, this is no problem since the priority is kept
* intact.
*/
vcpu->run->exit_reason = KVM_EXIT_S390_TSCH;
vcpu->run->s390_tsch.dequeued = !!inti;
if (inti) {
vcpu->run->s390_tsch.subchannel_id = inti->io.subchannel_id;
vcpu->run->s390_tsch.subchannel_nr = inti->io.subchannel_nr;
vcpu->run->s390_tsch.io_int_parm = inti->io.io_int_parm;
vcpu->run->s390_tsch.io_int_word = inti->io.io_int_word;
}
vcpu->run->s390_tsch.ipb = vcpu->arch.sie_block->ipb;
kfree(inti);
return -EREMOTE;
}
static int handle_io_inst(struct kvm_vcpu *vcpu)
{
VCPU_EVENT(vcpu, 4, "%s", "I/O instruction");
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (vcpu->kvm->arch.css_support) {
/*
* Most I/O instructions will be handled by userspace.
* Exceptions are tpi and the interrupt portion of tsch.
*/
if (vcpu->arch.sie_block->ipa == 0xb236)
return handle_tpi(vcpu);
if (vcpu->arch.sie_block->ipa == 0xb235)
return handle_tsch(vcpu);
/* Handle in userspace. */
return -EOPNOTSUPP;
} else {
/*
* Set condition code 3 to stop the guest from issuing channel
* I/O instructions.
*/
kvm_s390_set_psw_cc(vcpu, 3);
return 0;
}
}
static int handle_stfl(struct kvm_vcpu *vcpu)
{
int rc;
vcpu->stat.instruction_stfl++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
rc = copy_to_guest(vcpu, offsetof(struct _lowcore, stfl_fac_list),
vfacilities, 4);
if (rc)
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
VCPU_EVENT(vcpu, 5, "store facility list value %x",
*(unsigned int *) vfacilities);
trace_kvm_s390_handle_stfl(vcpu, *(unsigned int *) vfacilities);
return 0;
}
static void handle_new_psw(struct kvm_vcpu *vcpu)
{
/* Check whether the new psw is enabled for machine checks. */
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK)
kvm_s390_deliver_pending_machine_checks(vcpu);
}
#define PSW_MASK_ADDR_MODE (PSW_MASK_EA | PSW_MASK_BA)
#define PSW_MASK_UNASSIGNED 0xb80800fe7fffffffUL
#define PSW_ADDR_24 0x0000000000ffffffUL
#define PSW_ADDR_31 0x000000007fffffffUL
static int is_valid_psw(psw_t *psw) {
if (psw->mask & PSW_MASK_UNASSIGNED)
return 0;
if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_BA) {
if (psw->addr & ~PSW_ADDR_31)
return 0;
}
if (!(psw->mask & PSW_MASK_ADDR_MODE) && (psw->addr & ~PSW_ADDR_24))
return 0;
if ((psw->mask & PSW_MASK_ADDR_MODE) == PSW_MASK_EA)
return 0;
return 1;
}
int kvm_s390_handle_lpsw(struct kvm_vcpu *vcpu)
{
psw_t *gpsw = &vcpu->arch.sie_block->gpsw;
psw_compat_t new_psw;
u64 addr;
if (gpsw->mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
addr = kvm_s390_get_base_disp_s(vcpu);
if (addr & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (copy_from_guest(vcpu, &new_psw, addr, sizeof(new_psw)))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
if (!(new_psw.mask & PSW32_MASK_BASE))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
gpsw->mask = (new_psw.mask & ~PSW32_MASK_BASE) << 32;
gpsw->mask |= new_psw.addr & PSW32_ADDR_AMODE;
gpsw->addr = new_psw.addr & ~PSW32_ADDR_AMODE;
if (!is_valid_psw(gpsw))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
handle_new_psw(vcpu);
return 0;
}
static int handle_lpswe(struct kvm_vcpu *vcpu)
{
psw_t new_psw;
u64 addr;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
addr = kvm_s390_get_base_disp_s(vcpu);
if (addr & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (copy_from_guest(vcpu, &new_psw, addr, sizeof(new_psw)))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
vcpu->arch.sie_block->gpsw = new_psw;
if (!is_valid_psw(&vcpu->arch.sie_block->gpsw))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
handle_new_psw(vcpu);
return 0;
}
static int handle_stidp(struct kvm_vcpu *vcpu)
{
u64 operand2;
vcpu->stat.instruction_stidp++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
operand2 = kvm_s390_get_base_disp_s(vcpu);
if (operand2 & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (put_guest(vcpu, vcpu->arch.stidp_data, (u64 __user *)operand2))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
VCPU_EVENT(vcpu, 5, "%s", "store cpu id");
return 0;
}
static void handle_stsi_3_2_2(struct kvm_vcpu *vcpu, struct sysinfo_3_2_2 *mem)
{
int cpus = 0;
int n;
cpus = atomic_read(&vcpu->kvm->online_vcpus);
/* deal with other level 3 hypervisors */
if (stsi(mem, 3, 2, 2))
mem->count = 0;
if (mem->count < 8)
mem->count++;
for (n = mem->count - 1; n > 0 ; n--)
memcpy(&mem->vm[n], &mem->vm[n - 1], sizeof(mem->vm[0]));
mem->vm[0].cpus_total = cpus;
mem->vm[0].cpus_configured = cpus;
mem->vm[0].cpus_standby = 0;
mem->vm[0].cpus_reserved = 0;
mem->vm[0].caf = 1000;
memcpy(mem->vm[0].name, "KVMguest", 8);
ASCEBC(mem->vm[0].name, 8);
memcpy(mem->vm[0].cpi, "KVM/Linux ", 16);
ASCEBC(mem->vm[0].cpi, 16);
}
static int handle_stsi(struct kvm_vcpu *vcpu)
{
int fc = (vcpu->run->s.regs.gprs[0] & 0xf0000000) >> 28;
int sel1 = vcpu->run->s.regs.gprs[0] & 0xff;
int sel2 = vcpu->run->s.regs.gprs[1] & 0xffff;
unsigned long mem = 0;
u64 operand2;
int rc = 0;
vcpu->stat.instruction_stsi++;
VCPU_EVENT(vcpu, 4, "stsi: fc: %x sel1: %x sel2: %x", fc, sel1, sel2);
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (fc > 3) {
kvm_s390_set_psw_cc(vcpu, 3);
return 0;
}
if (vcpu->run->s.regs.gprs[0] & 0x0fffff00
|| vcpu->run->s.regs.gprs[1] & 0xffff0000)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (fc == 0) {
vcpu->run->s.regs.gprs[0] = 3 << 28;
kvm_s390_set_psw_cc(vcpu, 0);
return 0;
}
operand2 = kvm_s390_get_base_disp_s(vcpu);
if (operand2 & 0xfff)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
switch (fc) {
case 1: /* same handling for 1 and 2 */
case 2:
mem = get_zeroed_page(GFP_KERNEL);
if (!mem)
goto out_no_data;
if (stsi((void *) mem, fc, sel1, sel2))
goto out_no_data;
break;
case 3:
if (sel1 != 2 || sel2 != 2)
goto out_no_data;
mem = get_zeroed_page(GFP_KERNEL);
if (!mem)
goto out_no_data;
handle_stsi_3_2_2(vcpu, (void *) mem);
break;
}
if (copy_to_guest_absolute(vcpu, operand2, (void *) mem, PAGE_SIZE)) {
rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
goto out_exception;
}
trace_kvm_s390_handle_stsi(vcpu, fc, sel1, sel2, operand2);
free_page(mem);
kvm_s390_set_psw_cc(vcpu, 0);
vcpu->run->s.regs.gprs[0] = 0;
return 0;
out_no_data:
kvm_s390_set_psw_cc(vcpu, 3);
out_exception:
free_page(mem);
return rc;
}
static const intercept_handler_t b2_handlers[256] = {
[0x02] = handle_stidp,
[0x04] = handle_set_clock,
[0x10] = handle_set_prefix,
[0x11] = handle_store_prefix,
[0x12] = handle_store_cpu_address,
[0x29] = handle_skey,
[0x2a] = handle_skey,
[0x2b] = handle_skey,
[0x2c] = handle_test_block,
[0x30] = handle_io_inst,
[0x31] = handle_io_inst,
[0x32] = handle_io_inst,
[0x33] = handle_io_inst,
[0x34] = handle_io_inst,
[0x35] = handle_io_inst,
[0x36] = handle_io_inst,
[0x37] = handle_io_inst,
[0x38] = handle_io_inst,
[0x39] = handle_io_inst,
[0x3a] = handle_io_inst,
[0x3b] = handle_io_inst,
[0x3c] = handle_io_inst,
[0x5f] = handle_io_inst,
[0x74] = handle_io_inst,
[0x76] = handle_io_inst,
[0x7d] = handle_stsi,
[0xb1] = handle_stfl,
[0xb2] = handle_lpswe,
};
int kvm_s390_handle_b2(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
/*
* A lot of B2 instructions are priviledged. Here we check for
* the privileged ones, that we can handle in the kernel.
* Anything else goes to userspace.
*/
handler = b2_handlers[vcpu->arch.sie_block->ipa & 0x00ff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}
static int handle_epsw(struct kvm_vcpu *vcpu)
{
int reg1, reg2;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
/* This basically extracts the mask half of the psw. */
vcpu->run->s.regs.gprs[reg1] &= 0xffffffff00000000UL;
vcpu->run->s.regs.gprs[reg1] |= vcpu->arch.sie_block->gpsw.mask >> 32;
if (reg2) {
vcpu->run->s.regs.gprs[reg2] &= 0xffffffff00000000UL;
vcpu->run->s.regs.gprs[reg2] |=
vcpu->arch.sie_block->gpsw.mask & 0x00000000ffffffffUL;
}
return 0;
}
#define PFMF_RESERVED 0xfffc0101UL
#define PFMF_SK 0x00020000UL
#define PFMF_CF 0x00010000UL
#define PFMF_UI 0x00008000UL
#define PFMF_FSC 0x00007000UL
#define PFMF_NQ 0x00000800UL
#define PFMF_MR 0x00000400UL
#define PFMF_MC 0x00000200UL
#define PFMF_KEY 0x000000feUL
static int handle_pfmf(struct kvm_vcpu *vcpu)
{
int reg1, reg2;
unsigned long start, end;
vcpu->stat.instruction_pfmf++;
kvm_s390_get_regs_rre(vcpu, &reg1, &reg2);
if (!MACHINE_HAS_PFMF)
return kvm_s390_inject_program_int(vcpu, PGM_OPERATION);
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (vcpu->run->s.regs.gprs[reg1] & PFMF_RESERVED)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
/* Only provide non-quiescing support if the host supports it */
if (vcpu->run->s.regs.gprs[reg1] & PFMF_NQ && !test_facility(14))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
/* No support for conditional-SSKE */
if (vcpu->run->s.regs.gprs[reg1] & (PFMF_MR | PFMF_MC))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
start = vcpu->run->s.regs.gprs[reg2] & PAGE_MASK;
switch (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC) {
case 0x00000000:
end = (start + (1UL << 12)) & ~((1UL << 12) - 1);
break;
case 0x00001000:
end = (start + (1UL << 20)) & ~((1UL << 20) - 1);
break;
/* We dont support EDAT2
case 0x00002000:
end = (start + (1UL << 31)) & ~((1UL << 31) - 1);
break;*/
default:
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
}
while (start < end) {
unsigned long useraddr;
useraddr = gmap_translate(start, vcpu->arch.gmap);
if (IS_ERR((void *)useraddr))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
if (vcpu->run->s.regs.gprs[reg1] & PFMF_CF) {
if (clear_user((void __user *)useraddr, PAGE_SIZE))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}
if (vcpu->run->s.regs.gprs[reg1] & PFMF_SK) {
if (set_guest_storage_key(current->mm, useraddr,
vcpu->run->s.regs.gprs[reg1] & PFMF_KEY,
vcpu->run->s.regs.gprs[reg1] & PFMF_NQ))
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}
start += PAGE_SIZE;
}
if (vcpu->run->s.regs.gprs[reg1] & PFMF_FSC)
vcpu->run->s.regs.gprs[reg2] = end;
return 0;
}
static const intercept_handler_t b9_handlers[256] = {
[0x8d] = handle_epsw,
[0xaf] = handle_pfmf,
};
int kvm_s390_handle_b9(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
/* This is handled just as for the B2 instructions. */
handler = b9_handlers[vcpu->arch.sie_block->ipa & 0x00ff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}
int kvm_s390_handle_lctl(struct kvm_vcpu *vcpu)
{
int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4;
int reg3 = vcpu->arch.sie_block->ipa & 0x000f;
u64 useraddr;
u32 val = 0;
int reg, rc;
vcpu->stat.instruction_lctl++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
useraddr = kvm_s390_get_base_disp_rs(vcpu);
if (useraddr & 3)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
VCPU_EVENT(vcpu, 5, "lctl r1:%x, r3:%x, addr:%llx", reg1, reg3,
useraddr);
trace_kvm_s390_handle_lctl(vcpu, 0, reg1, reg3, useraddr);
reg = reg1;
do {
rc = get_guest(vcpu, val, (u32 __user *) useraddr);
if (rc)
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
vcpu->arch.sie_block->gcr[reg] &= 0xffffffff00000000ul;
vcpu->arch.sie_block->gcr[reg] |= val;
useraddr += 4;
if (reg == reg3)
break;
reg = (reg + 1) % 16;
} while (1);
return 0;
}
static int handle_lctlg(struct kvm_vcpu *vcpu)
{
int reg1 = (vcpu->arch.sie_block->ipa & 0x00f0) >> 4;
int reg3 = vcpu->arch.sie_block->ipa & 0x000f;
u64 useraddr;
int reg, rc;
vcpu->stat.instruction_lctlg++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
useraddr = kvm_s390_get_base_disp_rsy(vcpu);
if (useraddr & 7)
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
reg = reg1;
VCPU_EVENT(vcpu, 5, "lctlg r1:%x, r3:%x, addr:%llx", reg1, reg3,
useraddr);
trace_kvm_s390_handle_lctl(vcpu, 1, reg1, reg3, useraddr);
do {
rc = get_guest(vcpu, vcpu->arch.sie_block->gcr[reg],
(u64 __user *) useraddr);
if (rc)
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
useraddr += 8;
if (reg == reg3)
break;
reg = (reg + 1) % 16;
} while (1);
return 0;
}
static const intercept_handler_t eb_handlers[256] = {
[0x2f] = handle_lctlg,
};
int kvm_s390_handle_eb(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
handler = eb_handlers[vcpu->arch.sie_block->ipb & 0xff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}
static int handle_tprot(struct kvm_vcpu *vcpu)
{
u64 address1, address2;
struct vm_area_struct *vma;
unsigned long user_address;
vcpu->stat.instruction_tprot++;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
kvm_s390_get_base_disp_sse(vcpu, &address1, &address2);
/* we only handle the Linux memory detection case:
* access key == 0
* guest DAT == off
* everything else goes to userspace. */
if (address2 & 0xf0)
return -EOPNOTSUPP;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_DAT)
return -EOPNOTSUPP;
down_read(&current->mm->mmap_sem);
user_address = __gmap_translate(address1, vcpu->arch.gmap);
if (IS_ERR_VALUE(user_address))
goto out_inject;
vma = find_vma(current->mm, user_address);
if (!vma)
goto out_inject;
vcpu->arch.sie_block->gpsw.mask &= ~(3ul << 44);
if (!(vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_READ))
vcpu->arch.sie_block->gpsw.mask |= (1ul << 44);
if (!(vma->vm_flags & VM_WRITE) && !(vma->vm_flags & VM_READ))
vcpu->arch.sie_block->gpsw.mask |= (2ul << 44);
up_read(&current->mm->mmap_sem);
return 0;
out_inject:
up_read(&current->mm->mmap_sem);
return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}
int kvm_s390_handle_e5(struct kvm_vcpu *vcpu)
{
/* For e5xx... instructions we only handle TPROT */
if ((vcpu->arch.sie_block->ipa & 0x00ff) == 0x01)
return handle_tprot(vcpu);
return -EOPNOTSUPP;
}
static int handle_sckpf(struct kvm_vcpu *vcpu)
{
u32 value;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
if (vcpu->run->s.regs.gprs[0] & 0x00000000ffff0000)
return kvm_s390_inject_program_int(vcpu,
PGM_SPECIFICATION);
value = vcpu->run->s.regs.gprs[0] & 0x000000000000ffff;
vcpu->arch.sie_block->todpr = value;
return 0;
}
static const intercept_handler_t x01_handlers[256] = {
[0x07] = handle_sckpf,
};
int kvm_s390_handle_01(struct kvm_vcpu *vcpu)
{
intercept_handler_t handler;
handler = x01_handlers[vcpu->arch.sie_block->ipa & 0x00ff];
if (handler)
return handler(vcpu);
return -EOPNOTSUPP;
}