linux/drivers/gpu/drm/amd/amdgpu/amdgpu_atomfirmware.c

467 lines
14 KiB
C
Raw Normal View History

/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "atom.h"
#include "atombios.h"
bool amdgpu_atomfirmware_gpu_supports_virtualization(struct amdgpu_device *adev)
{
int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
uint16_t data_offset;
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, NULL,
NULL, NULL, &data_offset)) {
struct atom_firmware_info_v3_1 *firmware_info =
(struct atom_firmware_info_v3_1 *)(adev->mode_info.atom_context->bios +
data_offset);
if (le32_to_cpu(firmware_info->firmware_capability) &
ATOM_FIRMWARE_CAP_GPU_VIRTUALIZATION)
return true;
}
return false;
}
void amdgpu_atomfirmware_scratch_regs_init(struct amdgpu_device *adev)
{
int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
uint16_t data_offset;
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context, index, NULL,
NULL, NULL, &data_offset)) {
struct atom_firmware_info_v3_1 *firmware_info =
(struct atom_firmware_info_v3_1 *)(adev->mode_info.atom_context->bios +
data_offset);
adev->bios_scratch_reg_offset =
le32_to_cpu(firmware_info->bios_scratch_reg_startaddr);
}
}
int amdgpu_atomfirmware_allocate_fb_scratch(struct amdgpu_device *adev)
{
struct atom_context *ctx = adev->mode_info.atom_context;
int index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
vram_usagebyfirmware);
struct vram_usagebyfirmware_v2_1 * firmware_usage;
uint32_t start_addr, size;
uint16_t data_offset;
int usage_bytes = 0;
if (amdgpu_atom_parse_data_header(ctx, index, NULL, NULL, NULL, &data_offset)) {
firmware_usage = (struct vram_usagebyfirmware_v2_1 *)(ctx->bios + data_offset);
DRM_DEBUG("atom firmware requested %08x %dkb fw %dkb drv\n",
le32_to_cpu(firmware_usage->start_address_in_kb),
le16_to_cpu(firmware_usage->used_by_firmware_in_kb),
le16_to_cpu(firmware_usage->used_by_driver_in_kb));
start_addr = le32_to_cpu(firmware_usage->start_address_in_kb);
size = le16_to_cpu(firmware_usage->used_by_firmware_in_kb);
if ((uint32_t)(start_addr & ATOM_VRAM_OPERATION_FLAGS_MASK) ==
(uint32_t)(ATOM_VRAM_BLOCK_SRIOV_MSG_SHARE_RESERVATION <<
ATOM_VRAM_OPERATION_FLAGS_SHIFT)) {
/* Firmware request VRAM reservation for SR-IOV */
adev->fw_vram_usage.start_offset = (start_addr &
(~ATOM_VRAM_OPERATION_FLAGS_MASK)) << 10;
adev->fw_vram_usage.size = size << 10;
/* Use the default scratch size */
usage_bytes = 0;
} else {
usage_bytes = le16_to_cpu(firmware_usage->used_by_driver_in_kb) << 10;
}
}
ctx->scratch_size_bytes = 0;
if (usage_bytes == 0)
usage_bytes = 20 * 1024;
/* allocate some scratch memory */
ctx->scratch = kzalloc(usage_bytes, GFP_KERNEL);
if (!ctx->scratch)
return -ENOMEM;
ctx->scratch_size_bytes = usage_bytes;
return 0;
}
union igp_info {
struct atom_integrated_system_info_v1_11 v11;
};
union umc_info {
struct atom_umc_info_v3_1 v31;
};
union vram_info {
struct atom_vram_info_header_v2_3 v23;
struct atom_vram_info_header_v2_4 v24;
};
/*
* Return vram width from integrated system info table, if available,
* or 0 if not.
*/
int amdgpu_atomfirmware_get_vram_width(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
u16 data_offset, size;
union igp_info *igp_info;
union vram_info *vram_info;
u32 mem_channel_number;
u32 mem_channel_width;
u8 frev, crev;
if (adev->flags & AMD_IS_APU)
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
integratedsysteminfo);
else
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
vram_info);
/* get any igp specific overrides */
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, &size,
&frev, &crev, &data_offset)) {
if (adev->flags & AMD_IS_APU) {
igp_info = (union igp_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 11:
mem_channel_number = igp_info->v11.umachannelnumber;
/* channel width is 64 */
return mem_channel_number * 64;
default:
return 0;
}
} else {
vram_info = (union vram_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 3:
mem_channel_number = vram_info->v23.vram_module[0].channel_num;
mem_channel_width = vram_info->v23.vram_module[0].channel_width;
return mem_channel_number * (1 << mem_channel_width);
case 4:
mem_channel_number = vram_info->v24.vram_module[0].channel_num;
mem_channel_width = vram_info->v24.vram_module[0].channel_width;
return mem_channel_number * (1 << mem_channel_width);
default:
return 0;
}
}
}
return 0;
}
static int convert_atom_mem_type_to_vram_type (struct amdgpu_device *adev,
int atom_mem_type)
{
int vram_type;
if (adev->flags & AMD_IS_APU) {
switch (atom_mem_type) {
case Ddr2MemType:
case LpDdr2MemType:
vram_type = AMDGPU_VRAM_TYPE_DDR2;
break;
case Ddr3MemType:
case LpDdr3MemType:
vram_type = AMDGPU_VRAM_TYPE_DDR3;
break;
case Ddr4MemType:
case LpDdr4MemType:
vram_type = AMDGPU_VRAM_TYPE_DDR4;
break;
default:
vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
break;
}
} else {
switch (atom_mem_type) {
case ATOM_DGPU_VRAM_TYPE_GDDR5:
vram_type = AMDGPU_VRAM_TYPE_GDDR5;
break;
case ATOM_DGPU_VRAM_TYPE_HBM2:
vram_type = AMDGPU_VRAM_TYPE_HBM;
break;
case ATOM_DGPU_VRAM_TYPE_GDDR6:
vram_type = AMDGPU_VRAM_TYPE_GDDR6;
break;
default:
vram_type = AMDGPU_VRAM_TYPE_UNKNOWN;
break;
}
}
return vram_type;
}
/*
* Return vram type from either integrated system info table
* or umc info table, if available, or 0 (TYPE_UNKNOWN) if not
*/
int amdgpu_atomfirmware_get_vram_type(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
u16 data_offset, size;
union igp_info *igp_info;
union vram_info *vram_info;
u8 frev, crev;
u8 mem_type;
if (adev->flags & AMD_IS_APU)
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
integratedsysteminfo);
else
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
vram_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context,
index, &size,
&frev, &crev, &data_offset)) {
if (adev->flags & AMD_IS_APU) {
igp_info = (union igp_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 11:
mem_type = igp_info->v11.memorytype;
return convert_atom_mem_type_to_vram_type(adev, mem_type);
default:
return 0;
}
} else {
vram_info = (union vram_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 3:
mem_type = vram_info->v23.vram_module[0].memory_type;
return convert_atom_mem_type_to_vram_type(adev, mem_type);
case 4:
mem_type = vram_info->v24.vram_module[0].memory_type;
return convert_atom_mem_type_to_vram_type(adev, mem_type);
default:
return 0;
}
}
}
return 0;
}
/*
* Return true if vbios enabled ecc by default, if umc info table is available
* or false if ecc is not enabled or umc info table is not available
*/
bool amdgpu_atomfirmware_mem_ecc_supported(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
u16 data_offset, size;
union umc_info *umc_info;
u8 frev, crev;
bool ecc_default_enabled = false;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
umc_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context,
index, &size, &frev, &crev, &data_offset)) {
/* support umc_info 3.1+ */
if ((frev == 3 && crev >= 1) || (frev > 3)) {
umc_info = (union umc_info *)
(mode_info->atom_context->bios + data_offset);
ecc_default_enabled =
(le32_to_cpu(umc_info->v31.umc_config) &
UMC_CONFIG__DEFAULT_MEM_ECC_ENABLE) ? true : false;
}
}
return ecc_default_enabled;
}
union firmware_info {
struct atom_firmware_info_v3_1 v31;
};
/*
* Return true if vbios supports sram ecc or false if not
*/
bool amdgpu_atomfirmware_sram_ecc_supported(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
u16 data_offset, size;
union firmware_info *firmware_info;
u8 frev, crev;
bool sram_ecc_supported = false;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
if (amdgpu_atom_parse_data_header(adev->mode_info.atom_context,
index, &size, &frev, &crev, &data_offset)) {
/* support firmware_info 3.1 + */
if ((frev == 3 && crev >=1) || (frev > 3)) {
firmware_info = (union firmware_info *)
(mode_info->atom_context->bios + data_offset);
sram_ecc_supported =
(le32_to_cpu(firmware_info->v31.firmware_capability) &
ATOM_FIRMWARE_CAP_SRAM_ECC) ? true : false;
}
}
return sram_ecc_supported;
}
union smu_info {
struct atom_smu_info_v3_1 v31;
};
int amdgpu_atomfirmware_get_clock_info(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
struct amdgpu_pll *spll = &adev->clock.spll;
struct amdgpu_pll *mpll = &adev->clock.mpll;
uint8_t frev, crev;
uint16_t data_offset;
int ret = -EINVAL, index;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
firmwareinfo);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union firmware_info *firmware_info =
(union firmware_info *)(mode_info->atom_context->bios +
data_offset);
adev->clock.default_sclk =
le32_to_cpu(firmware_info->v31.bootup_sclk_in10khz);
adev->clock.default_mclk =
le32_to_cpu(firmware_info->v31.bootup_mclk_in10khz);
adev->pm.current_sclk = adev->clock.default_sclk;
adev->pm.current_mclk = adev->clock.default_mclk;
/* not technically a clock, but... */
adev->mode_info.firmware_flags =
le32_to_cpu(firmware_info->v31.firmware_capability);
ret = 0;
}
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smu_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union smu_info *smu_info =
(union smu_info *)(mode_info->atom_context->bios +
data_offset);
/* system clock */
spll->reference_freq = le32_to_cpu(smu_info->v31.core_refclk_10khz);
spll->reference_div = 0;
spll->min_post_div = 1;
spll->max_post_div = 1;
spll->min_ref_div = 2;
spll->max_ref_div = 0xff;
spll->min_feedback_div = 4;
spll->max_feedback_div = 0xff;
spll->best_vco = 0;
ret = 0;
}
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
umc_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union umc_info *umc_info =
(union umc_info *)(mode_info->atom_context->bios +
data_offset);
/* memory clock */
mpll->reference_freq = le32_to_cpu(umc_info->v31.mem_refclk_10khz);
mpll->reference_div = 0;
mpll->min_post_div = 1;
mpll->max_post_div = 1;
mpll->min_ref_div = 2;
mpll->max_ref_div = 0xff;
mpll->min_feedback_div = 4;
mpll->max_feedback_div = 0xff;
mpll->best_vco = 0;
ret = 0;
}
return ret;
}
union gfx_info {
struct atom_gfx_info_v2_4 v24;
};
int amdgpu_atomfirmware_get_gfx_info(struct amdgpu_device *adev)
{
struct amdgpu_mode_info *mode_info = &adev->mode_info;
int index;
uint8_t frev, crev;
uint16_t data_offset;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
gfx_info);
if (amdgpu_atom_parse_data_header(mode_info->atom_context, index, NULL,
&frev, &crev, &data_offset)) {
union gfx_info *gfx_info = (union gfx_info *)
(mode_info->atom_context->bios + data_offset);
switch (crev) {
case 4:
adev->gfx.config.max_shader_engines = gfx_info->v24.max_shader_engines;
adev->gfx.config.max_cu_per_sh = gfx_info->v24.max_cu_per_sh;
adev->gfx.config.max_sh_per_se = gfx_info->v24.max_sh_per_se;
adev->gfx.config.max_backends_per_se = gfx_info->v24.max_backends_per_se;
adev->gfx.config.max_texture_channel_caches = gfx_info->v24.max_texture_channel_caches;
adev->gfx.config.max_gprs = le16_to_cpu(gfx_info->v24.gc_num_gprs);
adev->gfx.config.max_gs_threads = gfx_info->v24.gc_num_max_gs_thds;
adev->gfx.config.gs_vgt_table_depth = gfx_info->v24.gc_gs_table_depth;
adev->gfx.config.gs_prim_buffer_depth =
le16_to_cpu(gfx_info->v24.gc_gsprim_buff_depth);
adev->gfx.config.double_offchip_lds_buf =
gfx_info->v24.gc_double_offchip_lds_buffer;
adev->gfx.cu_info.wave_front_size = le16_to_cpu(gfx_info->v24.gc_wave_size);
adev->gfx.cu_info.max_waves_per_simd = le16_to_cpu(gfx_info->v24.gc_max_waves_per_simd);
adev->gfx.cu_info.max_scratch_slots_per_cu = gfx_info->v24.gc_max_scratch_slots_per_cu;
adev->gfx.cu_info.lds_size = le16_to_cpu(gfx_info->v24.gc_lds_size);
return 0;
default:
return -EINVAL;
}
}
return -EINVAL;
}