linux/drivers/connector/connector.c

323 lines
7.7 KiB
C
Raw Normal View History

[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
/*
* connector.c
connector: create connector workqueue only while needed once The netlink connector uses its own workqueue to relay the datas sent from userspace to the appropriate callback. If you launch the test from Documentation/connector and change it a bit to send a high flow of data, you will see thousands of events coming to the "cqueue" workqueue by looking at the workqueue tracer. This flow of events can be sent very quickly. So, to not encumber the kevent workqueue and delay other jobs, the "cqueue" workqueue should remain. But this workqueue is pointless most of the time, it will always be created (assuming you have built it of course) although only developpers with specific needs will use it. So avoid this "most of the time useless task", this patch proposes to create this workqueue only when needed once. The first jobs to be sent to connector callbacks will be sent to kevent while the "cqueue" thread creation will be scheduled to kevent too. The following jobs will continue to be scheduled to keventd until the cqueue workqueue is created, and then the rest of the jobs will continue to perform as usual, through this dedicated workqueue. Each time I tested this patch, only the first event was sent to keventd, the rest has been sent to cqueue which have been created quickly. Also, this patch fixes some trailing whitespaces on the connector files. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Evgeniy Polyakov <zbr@ioremap.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-03 07:22:04 +00:00
*
* 2004+ Copyright (c) Evgeniy Polyakov <zbr@ioremap.net>
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
* All rights reserved.
connector: create connector workqueue only while needed once The netlink connector uses its own workqueue to relay the datas sent from userspace to the appropriate callback. If you launch the test from Documentation/connector and change it a bit to send a high flow of data, you will see thousands of events coming to the "cqueue" workqueue by looking at the workqueue tracer. This flow of events can be sent very quickly. So, to not encumber the kevent workqueue and delay other jobs, the "cqueue" workqueue should remain. But this workqueue is pointless most of the time, it will always be created (assuming you have built it of course) although only developpers with specific needs will use it. So avoid this "most of the time useless task", this patch proposes to create this workqueue only when needed once. The first jobs to be sent to connector callbacks will be sent to kevent while the "cqueue" thread creation will be scheduled to kevent too. The following jobs will continue to be scheduled to keventd until the cqueue workqueue is created, and then the rest of the jobs will continue to perform as usual, through this dedicated workqueue. Each time I tested this patch, only the first event was sent to keventd, the rest has been sent to cqueue which have been created quickly. Also, this patch fixes some trailing whitespaces on the connector files. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Evgeniy Polyakov <zbr@ioremap.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-03 07:22:04 +00:00
*
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/skbuff.h>
#include <net/netlink.h>
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
#include <linux/moduleparam.h>
#include <linux/connector.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
#include <net/sock.h>
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
MODULE_DESCRIPTION("Generic userspace <-> kernelspace connector.");
MODULE_ALIAS_NET_PF_PROTO(PF_NETLINK, NETLINK_CONNECTOR);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
static struct cn_dev cdev;
static int cn_already_initialized;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
/*
* Sends mult (multiple) cn_msg at a time.
*
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
* msg->seq and msg->ack are used to determine message genealogy.
* When someone sends message it puts there locally unique sequence
* and random acknowledge numbers. Sequence number may be copied into
* nlmsghdr->nlmsg_seq too.
*
* Sequence number is incremented with each message to be sent.
*
* If we expect a reply to our message then the sequence number in
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
* received message MUST be the same as in original message, and
* acknowledge number MUST be the same + 1.
*
* If we receive a message and its sequence number is not equal to the
* one we are expecting then it is a new message.
*
* If we receive a message and its sequence number is the same as one
* we are expecting but it's acknowledgement number is not equal to
* the acknowledgement number in the original message + 1, then it is
* a new message.
*
* If msg->len != len, then additional cn_msg messages are expected following
* the first msg.
*
* The message is sent to, the portid if given, the group if given, both if
* both, or if both are zero then the group is looked up and sent there.
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
*/
int cn_netlink_send_mult(struct cn_msg *msg, u16 len, u32 portid, u32 __group,
gfp_t gfp_mask)
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
{
struct cn_callback_entry *__cbq;
unsigned int size;
struct sk_buff *skb;
struct nlmsghdr *nlh;
struct cn_msg *data;
struct cn_dev *dev = &cdev;
u32 group = 0;
int found = 0;
if (portid || __group) {
group = __group;
} else {
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
spin_lock_bh(&dev->cbdev->queue_lock);
list_for_each_entry(__cbq, &dev->cbdev->queue_list,
callback_entry) {
if (cn_cb_equal(&__cbq->id.id, &msg->id)) {
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
found = 1;
group = __cbq->group;
break;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
}
}
spin_unlock_bh(&dev->cbdev->queue_lock);
if (!found)
return -ENODEV;
}
if (!portid && !netlink_has_listeners(dev->nls, group))
return -ESRCH;
size = sizeof(*msg) + len;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
skb = nlmsg_new(size, gfp_mask);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
if (!skb)
return -ENOMEM;
nlh = nlmsg_put(skb, 0, msg->seq, NLMSG_DONE, size, 0);
if (!nlh) {
kfree_skb(skb);
return -EMSGSIZE;
}
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
data = nlmsg_data(nlh);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
memcpy(data, msg, size);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
NETLINK_CB(skb).dst_group = group;
if (group)
return netlink_broadcast(dev->nls, skb, portid, group,
gfp_mask);
return netlink_unicast(dev->nls, skb, portid, !(gfp_mask&__GFP_WAIT));
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
}
EXPORT_SYMBOL_GPL(cn_netlink_send_mult);
/* same as cn_netlink_send_mult except msg->len is used for len */
int cn_netlink_send(struct cn_msg *msg, u32 portid, u32 __group,
gfp_t gfp_mask)
{
return cn_netlink_send_mult(msg, msg->len, portid, __group, gfp_mask);
}
EXPORT_SYMBOL_GPL(cn_netlink_send);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
/*
* Callback helper - queues work and setup destructor for given data.
*/
static int cn_call_callback(struct sk_buff *skb)
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
{
struct nlmsghdr *nlh;
struct cn_callback_entry *i, *cbq = NULL;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
struct cn_dev *dev = &cdev;
struct cn_msg *msg = nlmsg_data(nlmsg_hdr(skb));
struct netlink_skb_parms *nsp = &NETLINK_CB(skb);
int err = -ENODEV;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
/* verify msg->len is within skb */
nlh = nlmsg_hdr(skb);
if (nlh->nlmsg_len < NLMSG_HDRLEN + sizeof(struct cn_msg) + msg->len)
return -EINVAL;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
spin_lock_bh(&dev->cbdev->queue_lock);
list_for_each_entry(i, &dev->cbdev->queue_list, callback_entry) {
if (cn_cb_equal(&i->id.id, &msg->id)) {
atomic_inc(&i->refcnt);
cbq = i;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
break;
}
}
spin_unlock_bh(&dev->cbdev->queue_lock);
if (cbq != NULL) {
cbq->callback(msg, nsp);
kfree_skb(skb);
cn_queue_release_callback(cbq);
err = 0;
}
return err;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
}
/*
* Main netlink receiving function.
*
* It checks skb, netlink header and msg sizes, and calls callback helper.
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
*/
static void cn_rx_skb(struct sk_buff *__skb)
{
struct nlmsghdr *nlh;
struct sk_buff *skb;
int len, err;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
skb = skb_get(__skb);
if (skb->len >= NLMSG_HDRLEN) {
nlh = nlmsg_hdr(skb);
len = nlmsg_len(nlh);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
if (len < (int)sizeof(struct cn_msg) ||
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
skb->len < nlh->nlmsg_len ||
len > CONNECTOR_MAX_MSG_SIZE) {
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
kfree_skb(skb);
return;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
}
err = cn_call_callback(skb);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
if (err < 0)
kfree_skb(skb);
}
}
/*
* Callback add routing - adds callback with given ID and name.
* If there is registered callback with the same ID it will not be added.
*
* May sleep.
*/
int cn_add_callback(struct cb_id *id, const char *name,
void (*callback)(struct cn_msg *,
struct netlink_skb_parms *))
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
{
int err;
struct cn_dev *dev = &cdev;
if (!cn_already_initialized)
return -EAGAIN;
err = cn_queue_add_callback(dev->cbdev, name, id, callback);
if (err)
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
return err;
return 0;
}
EXPORT_SYMBOL_GPL(cn_add_callback);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
/*
* Callback remove routing - removes callback
* with given ID.
* If there is no registered callback with given
* ID nothing happens.
*
* May sleep while waiting for reference counter to become zero.
*/
void cn_del_callback(struct cb_id *id)
{
struct cn_dev *dev = &cdev;
cn_queue_del_callback(dev->cbdev, id);
}
EXPORT_SYMBOL_GPL(cn_del_callback);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
static int cn_proc_show(struct seq_file *m, void *v)
{
struct cn_queue_dev *dev = cdev.cbdev;
struct cn_callback_entry *cbq;
seq_printf(m, "Name ID\n");
spin_lock_bh(&dev->queue_lock);
list_for_each_entry(cbq, &dev->queue_list, callback_entry) {
seq_printf(m, "%-15s %u:%u\n",
cbq->id.name,
cbq->id.id.idx,
cbq->id.id.val);
}
spin_unlock_bh(&dev->queue_lock);
return 0;
}
static int cn_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, cn_proc_show, NULL);
}
static const struct file_operations cn_file_ops = {
.owner = THIS_MODULE,
.open = cn_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release
};
static struct cn_dev cdev = {
.input = cn_rx_skb,
};
static int cn_init(void)
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
{
struct cn_dev *dev = &cdev;
struct netlink_kernel_cfg cfg = {
.groups = CN_NETLINK_USERS + 0xf,
.input = dev->input,
};
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
dev->nls = netlink_kernel_create(&init_net, NETLINK_CONNECTOR, &cfg);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
if (!dev->nls)
return -EIO;
dev->cbdev = cn_queue_alloc_dev("cqueue", dev->nls);
if (!dev->cbdev) {
netlink_kernel_release(dev->nls);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
return -EINVAL;
}
connector: create connector workqueue only while needed once The netlink connector uses its own workqueue to relay the datas sent from userspace to the appropriate callback. If you launch the test from Documentation/connector and change it a bit to send a high flow of data, you will see thousands of events coming to the "cqueue" workqueue by looking at the workqueue tracer. This flow of events can be sent very quickly. So, to not encumber the kevent workqueue and delay other jobs, the "cqueue" workqueue should remain. But this workqueue is pointless most of the time, it will always be created (assuming you have built it of course) although only developpers with specific needs will use it. So avoid this "most of the time useless task", this patch proposes to create this workqueue only when needed once. The first jobs to be sent to connector callbacks will be sent to kevent while the "cqueue" thread creation will be scheduled to kevent too. The following jobs will continue to be scheduled to keventd until the cqueue workqueue is created, and then the rest of the jobs will continue to perform as usual, through this dedicated workqueue. Each time I tested this patch, only the first event was sent to keventd, the rest has been sent to cqueue which have been created quickly. Also, this patch fixes some trailing whitespaces on the connector files. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: Evgeniy Polyakov <zbr@ioremap.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-02-03 07:22:04 +00:00
cn_already_initialized = 1;
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
proc_create("connector", S_IRUGO, init_net.proc_net, &cn_file_ops);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
return 0;
}
static void cn_fini(void)
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
{
struct cn_dev *dev = &cdev;
cn_already_initialized = 0;
remove_proc_entry("connector", init_net.proc_net);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
cn_queue_free_dev(dev->cbdev);
netlink_kernel_release(dev->nls);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
}
subsys_initcall(cn_init);
[NET]: Add netlink connector. Kernel connector - new userspace <-> kernel space easy to use communication module which implements easy to use bidirectional message bus using netlink as it's backend. Connector was created to eliminate complex skb handling both in send and receive message bus direction. Connector driver adds possibility to connect various agents using as one of it's backends netlink based network. One must register callback and identifier. When driver receives special netlink message with appropriate identifier, appropriate callback will be called. From the userspace point of view it's quite straightforward: socket(); bind(); send(); recv(); But if kernelspace want to use full power of such connections, driver writer must create special sockets, must know about struct sk_buff handling... Connector allows any kernelspace agents to use netlink based networking for inter-process communication in a significantly easier way: int cn_add_callback(struct cb_id *id, char *name, void (*callback) (void *)); void cn_netlink_send(struct cn_msg *msg, u32 __groups, int gfp_mask); struct cb_id { __u32 idx; __u32 val; }; idx and val are unique identifiers which must be registered in connector.h for in-kernel usage. void (*callback) (void *) - is a callback function which will be called when message with above idx.val will be received by connector core. Using connector completely hides low-level transport layer from it's users. Connector uses new netlink ability to have many groups in one socket. [ Incorporating many cleanups and fixes by myself and Andrew Morton -DaveM ] Signed-off-by: Evgeniy Polyakov <johnpol@2ka.mipt.ru> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2005-09-12 02:15:07 +00:00
module_exit(cn_fini);