2010-02-17 22:39:08 +00:00
|
|
|
/*
|
|
|
|
* PCIe Native PME support
|
|
|
|
*
|
|
|
|
* Copyright (C) 2007 - 2009 Intel Corp
|
|
|
|
* Copyright (C) 2007 - 2009 Shaohua Li <shaohua.li@intel.com>
|
|
|
|
* Copyright (C) 2009 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
|
|
|
|
*
|
|
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
|
|
* License V2. See the file "COPYING" in the main directory of this archive
|
|
|
|
* for more details.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/errno.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2010-02-17 22:39:08 +00:00
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/pcieport_if.h>
|
|
|
|
#include <linux/acpi.h>
|
|
|
|
#include <linux/pci-acpi.h>
|
|
|
|
#include <linux/pm_runtime.h>
|
|
|
|
|
|
|
|
#include "../../pci.h"
|
|
|
|
#include "pcie_pme.h"
|
|
|
|
|
|
|
|
#define PCI_EXP_RTSTA_PME 0x10000 /* PME status */
|
|
|
|
#define PCI_EXP_RTSTA_PENDING 0x20000 /* PME pending */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If set, this switch will prevent the PCIe root port PME service driver from
|
|
|
|
* being registered. Consequently, the interrupt-based PCIe PME signaling will
|
|
|
|
* not be used by any PCIe root ports in that case.
|
|
|
|
*/
|
|
|
|
static bool pcie_pme_disabled;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The PCI Express Base Specification 2.0, Section 6.1.8, states the following:
|
|
|
|
* "In order to maintain compatibility with non-PCI Express-aware system
|
|
|
|
* software, system power management logic must be configured by firmware to use
|
|
|
|
* the legacy mechanism of signaling PME by default. PCI Express-aware system
|
|
|
|
* software must notify the firmware prior to enabling native, interrupt-based
|
|
|
|
* PME signaling." However, if the platform doesn't provide us with a suitable
|
|
|
|
* notification mechanism or the notification fails, it is not clear whether or
|
|
|
|
* not we are supposed to use the interrupt-based PCIe PME signaling. The
|
|
|
|
* switch below can be used to indicate the desired behaviour. When set, it
|
|
|
|
* will make the kernel use the interrupt-based PCIe PME signaling regardless of
|
|
|
|
* the platform notification status, although the kernel will attempt to notify
|
|
|
|
* the platform anyway. When unset, it will prevent the kernel from using the
|
|
|
|
* the interrupt-based PCIe PME signaling if the platform notification fails,
|
|
|
|
* which is the default.
|
|
|
|
*/
|
|
|
|
static bool pcie_pme_force_enable;
|
|
|
|
|
2010-02-17 22:40:07 +00:00
|
|
|
/*
|
|
|
|
* If this switch is set, MSI will not be used for PCIe PME signaling. This
|
|
|
|
* causes the PCIe port driver to use INTx interrupts only, but it turns out
|
|
|
|
* that using MSI for PCIe PME signaling doesn't play well with PCIe PME-based
|
|
|
|
* wake-up from system sleep states.
|
|
|
|
*/
|
|
|
|
bool pcie_pme_msi_disabled;
|
|
|
|
|
2010-02-17 22:39:08 +00:00
|
|
|
static int __init pcie_pme_setup(char *str)
|
|
|
|
{
|
|
|
|
if (!strcmp(str, "off"))
|
|
|
|
pcie_pme_disabled = true;
|
|
|
|
else if (!strcmp(str, "force"))
|
|
|
|
pcie_pme_force_enable = true;
|
2010-02-17 22:40:07 +00:00
|
|
|
else if (!strcmp(str, "nomsi"))
|
|
|
|
pcie_pme_msi_disabled = true;
|
2010-02-17 22:39:08 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
__setup("pcie_pme=", pcie_pme_setup);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_platform_setup - Ensure that the kernel controls the PCIe PME.
|
|
|
|
* @srv: PCIe PME root port service to use for carrying out the check.
|
|
|
|
*
|
|
|
|
* Notify the platform that the native PCIe PME is going to be used and return
|
|
|
|
* 'true' if the control of the PCIe PME registers has been acquired from the
|
|
|
|
* platform.
|
|
|
|
*/
|
|
|
|
static bool pcie_pme_platform_setup(struct pcie_device *srv)
|
|
|
|
{
|
2010-02-17 22:40:07 +00:00
|
|
|
if (!pcie_pme_platform_notify(srv))
|
|
|
|
return true;
|
|
|
|
return pcie_pme_force_enable;
|
2010-02-17 22:39:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
struct pcie_pme_service_data {
|
|
|
|
spinlock_t lock;
|
|
|
|
struct pcie_device *srv;
|
|
|
|
struct work_struct work;
|
|
|
|
bool noirq; /* Don't enable the PME interrupt used by this service. */
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_interrupt_enable - Enable/disable PCIe PME interrupt generation.
|
|
|
|
* @dev: PCIe root port or event collector.
|
|
|
|
* @enable: Enable or disable the interrupt.
|
|
|
|
*/
|
|
|
|
static void pcie_pme_interrupt_enable(struct pci_dev *dev, bool enable)
|
|
|
|
{
|
|
|
|
int rtctl_pos;
|
|
|
|
u16 rtctl;
|
|
|
|
|
2010-02-22 05:13:39 +00:00
|
|
|
rtctl_pos = pci_pcie_cap(dev) + PCI_EXP_RTCTL;
|
2010-02-17 22:39:08 +00:00
|
|
|
|
|
|
|
pci_read_config_word(dev, rtctl_pos, &rtctl);
|
|
|
|
if (enable)
|
|
|
|
rtctl |= PCI_EXP_RTCTL_PMEIE;
|
|
|
|
else
|
|
|
|
rtctl &= ~PCI_EXP_RTCTL_PMEIE;
|
|
|
|
pci_write_config_word(dev, rtctl_pos, rtctl);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_clear_status - Clear root port PME interrupt status.
|
|
|
|
* @dev: PCIe root port or event collector.
|
|
|
|
*/
|
|
|
|
static void pcie_pme_clear_status(struct pci_dev *dev)
|
|
|
|
{
|
|
|
|
int rtsta_pos;
|
|
|
|
u32 rtsta;
|
|
|
|
|
2010-02-22 05:13:39 +00:00
|
|
|
rtsta_pos = pci_pcie_cap(dev) + PCI_EXP_RTSTA;
|
2010-02-17 22:39:08 +00:00
|
|
|
|
|
|
|
pci_read_config_dword(dev, rtsta_pos, &rtsta);
|
|
|
|
rtsta |= PCI_EXP_RTSTA_PME;
|
|
|
|
pci_write_config_dword(dev, rtsta_pos, rtsta);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_walk_bus - Scan a PCI bus for devices asserting PME#.
|
|
|
|
* @bus: PCI bus to scan.
|
|
|
|
*
|
|
|
|
* Scan given PCI bus and all buses under it for devices asserting PME#.
|
|
|
|
*/
|
|
|
|
static bool pcie_pme_walk_bus(struct pci_bus *bus)
|
|
|
|
{
|
|
|
|
struct pci_dev *dev;
|
|
|
|
bool ret = false;
|
|
|
|
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
|
|
/* Skip PCIe devices in case we started from a root port. */
|
2010-02-22 05:12:24 +00:00
|
|
|
if (!pci_is_pcie(dev) && pci_check_pme_status(dev)) {
|
2010-02-17 22:39:08 +00:00
|
|
|
pm_request_resume(&dev->dev);
|
|
|
|
ret = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dev->subordinate && pcie_pme_walk_bus(dev->subordinate))
|
|
|
|
ret = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_from_pci_bridge - Check if PCIe-PCI bridge generated a PME.
|
|
|
|
* @bus: Secondary bus of the bridge.
|
|
|
|
* @devfn: Device/function number to check.
|
|
|
|
*
|
|
|
|
* PME from PCI devices under a PCIe-PCI bridge may be converted to an in-band
|
|
|
|
* PCIe PME message. In such that case the bridge should use the Requester ID
|
|
|
|
* of device/function number 0 on its secondary bus.
|
|
|
|
*/
|
|
|
|
static bool pcie_pme_from_pci_bridge(struct pci_bus *bus, u8 devfn)
|
|
|
|
{
|
|
|
|
struct pci_dev *dev;
|
|
|
|
bool found = false;
|
|
|
|
|
|
|
|
if (devfn)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
dev = pci_dev_get(bus->self);
|
|
|
|
if (!dev)
|
|
|
|
return false;
|
|
|
|
|
2010-02-22 05:12:24 +00:00
|
|
|
if (pci_is_pcie(dev) && dev->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE) {
|
2010-02-17 22:39:08 +00:00
|
|
|
down_read(&pci_bus_sem);
|
|
|
|
if (pcie_pme_walk_bus(bus))
|
|
|
|
found = true;
|
|
|
|
up_read(&pci_bus_sem);
|
|
|
|
}
|
|
|
|
|
|
|
|
pci_dev_put(dev);
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_handle_request - Find device that generated PME and handle it.
|
|
|
|
* @port: Root port or event collector that generated the PME interrupt.
|
|
|
|
* @req_id: PCIe Requester ID of the device that generated the PME.
|
|
|
|
*/
|
|
|
|
static void pcie_pme_handle_request(struct pci_dev *port, u16 req_id)
|
|
|
|
{
|
|
|
|
u8 busnr = req_id >> 8, devfn = req_id & 0xff;
|
|
|
|
struct pci_bus *bus;
|
|
|
|
struct pci_dev *dev;
|
|
|
|
bool found = false;
|
|
|
|
|
|
|
|
/* First, check if the PME is from the root port itself. */
|
|
|
|
if (port->devfn == devfn && port->bus->number == busnr) {
|
|
|
|
if (pci_check_pme_status(port)) {
|
|
|
|
pm_request_resume(&port->dev);
|
|
|
|
found = true;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Apparently, the root port generated the PME on behalf
|
|
|
|
* of a non-PCIe device downstream. If this is done by
|
|
|
|
* a root port, the Requester ID field in its status
|
|
|
|
* register may contain either the root port's, or the
|
|
|
|
* source device's information (PCI Express Base
|
|
|
|
* Specification, Rev. 2.0, Section 6.1.9).
|
|
|
|
*/
|
|
|
|
down_read(&pci_bus_sem);
|
|
|
|
found = pcie_pme_walk_bus(port->subordinate);
|
|
|
|
up_read(&pci_bus_sem);
|
|
|
|
}
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Second, find the bus the source device is on. */
|
|
|
|
bus = pci_find_bus(pci_domain_nr(port->bus), busnr);
|
|
|
|
if (!bus)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Next, check if the PME is from a PCIe-PCI bridge. */
|
|
|
|
found = pcie_pme_from_pci_bridge(bus, devfn);
|
|
|
|
if (found)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
/* Finally, try to find the PME source on the bus. */
|
|
|
|
down_read(&pci_bus_sem);
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
|
|
pci_dev_get(dev);
|
|
|
|
if (dev->devfn == devfn) {
|
|
|
|
found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
pci_dev_put(dev);
|
|
|
|
}
|
|
|
|
up_read(&pci_bus_sem);
|
|
|
|
|
|
|
|
if (found) {
|
|
|
|
/* The device is there, but we have to check its PME status. */
|
|
|
|
found = pci_check_pme_status(dev);
|
|
|
|
if (found)
|
|
|
|
pm_request_resume(&dev->dev);
|
|
|
|
pci_dev_put(dev);
|
|
|
|
} else if (devfn) {
|
|
|
|
/*
|
|
|
|
* The device is not there, but we can still try to recover by
|
|
|
|
* assuming that the PME was reported by a PCIe-PCI bridge that
|
|
|
|
* used devfn different from zero.
|
|
|
|
*/
|
|
|
|
dev_dbg(&port->dev, "PME interrupt generated for "
|
|
|
|
"non-existent device %02x:%02x.%d\n",
|
|
|
|
busnr, PCI_SLOT(devfn), PCI_FUNC(devfn));
|
|
|
|
found = pcie_pme_from_pci_bridge(bus, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
if (!found)
|
|
|
|
dev_dbg(&port->dev, "Spurious native PME interrupt!\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_work_fn - Work handler for PCIe PME interrupt.
|
|
|
|
* @work: Work structure giving access to service data.
|
|
|
|
*/
|
|
|
|
static void pcie_pme_work_fn(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct pcie_pme_service_data *data =
|
|
|
|
container_of(work, struct pcie_pme_service_data, work);
|
|
|
|
struct pci_dev *port = data->srv->port;
|
|
|
|
int rtsta_pos;
|
|
|
|
u32 rtsta;
|
|
|
|
|
2010-02-22 05:13:39 +00:00
|
|
|
rtsta_pos = pci_pcie_cap(port) + PCI_EXP_RTSTA;
|
2010-02-17 22:39:08 +00:00
|
|
|
|
|
|
|
spin_lock_irq(&data->lock);
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
if (data->noirq)
|
|
|
|
break;
|
|
|
|
|
|
|
|
pci_read_config_dword(port, rtsta_pos, &rtsta);
|
|
|
|
if (rtsta & PCI_EXP_RTSTA_PME) {
|
|
|
|
/*
|
|
|
|
* Clear PME status of the port. If there are other
|
|
|
|
* pending PMEs, the status will be set again.
|
|
|
|
*/
|
|
|
|
pcie_pme_clear_status(port);
|
|
|
|
|
|
|
|
spin_unlock_irq(&data->lock);
|
|
|
|
pcie_pme_handle_request(port, rtsta & 0xffff);
|
|
|
|
spin_lock_irq(&data->lock);
|
|
|
|
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* No need to loop if there are no more PMEs pending. */
|
|
|
|
if (!(rtsta & PCI_EXP_RTSTA_PENDING))
|
|
|
|
break;
|
|
|
|
|
|
|
|
spin_unlock_irq(&data->lock);
|
|
|
|
cpu_relax();
|
|
|
|
spin_lock_irq(&data->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!data->noirq)
|
|
|
|
pcie_pme_interrupt_enable(port, true);
|
|
|
|
|
|
|
|
spin_unlock_irq(&data->lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_irq - Interrupt handler for PCIe root port PME interrupt.
|
|
|
|
* @irq: Interrupt vector.
|
|
|
|
* @context: Interrupt context pointer.
|
|
|
|
*/
|
|
|
|
static irqreturn_t pcie_pme_irq(int irq, void *context)
|
|
|
|
{
|
|
|
|
struct pci_dev *port;
|
|
|
|
struct pcie_pme_service_data *data;
|
|
|
|
int rtsta_pos;
|
|
|
|
u32 rtsta;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
port = ((struct pcie_device *)context)->port;
|
|
|
|
data = get_service_data((struct pcie_device *)context);
|
|
|
|
|
2010-02-22 05:13:39 +00:00
|
|
|
rtsta_pos = pci_pcie_cap(port) + PCI_EXP_RTSTA;
|
2010-02-17 22:39:08 +00:00
|
|
|
|
|
|
|
spin_lock_irqsave(&data->lock, flags);
|
|
|
|
pci_read_config_dword(port, rtsta_pos, &rtsta);
|
|
|
|
|
|
|
|
if (!(rtsta & PCI_EXP_RTSTA_PME)) {
|
|
|
|
spin_unlock_irqrestore(&data->lock, flags);
|
|
|
|
return IRQ_NONE;
|
|
|
|
}
|
|
|
|
|
|
|
|
pcie_pme_interrupt_enable(port, false);
|
|
|
|
spin_unlock_irqrestore(&data->lock, flags);
|
|
|
|
|
|
|
|
/* We don't use pm_wq, because it's freezable. */
|
|
|
|
schedule_work(&data->work);
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_set_native - Set the PME interrupt flag for given device.
|
|
|
|
* @dev: PCI device to handle.
|
|
|
|
* @ign: Ignored.
|
|
|
|
*/
|
|
|
|
static int pcie_pme_set_native(struct pci_dev *dev, void *ign)
|
|
|
|
{
|
|
|
|
dev_info(&dev->dev, "Signaling PME through PCIe PME interrupt\n");
|
|
|
|
|
|
|
|
device_set_run_wake(&dev->dev, true);
|
|
|
|
dev->pme_interrupt = true;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_mark_devices - Set the PME interrupt flag for devices below a port.
|
|
|
|
* @port: PCIe root port or event collector to handle.
|
|
|
|
*
|
|
|
|
* For each device below given root port, including the port itself (or for each
|
|
|
|
* root complex integrated endpoint if @port is a root complex event collector)
|
|
|
|
* set the flag indicating that it can signal run-time wake-up events via PCIe
|
|
|
|
* PME interrupts.
|
|
|
|
*/
|
|
|
|
static void pcie_pme_mark_devices(struct pci_dev *port)
|
|
|
|
{
|
|
|
|
pcie_pme_set_native(port, NULL);
|
|
|
|
if (port->subordinate) {
|
|
|
|
pci_walk_bus(port->subordinate, pcie_pme_set_native, NULL);
|
|
|
|
} else {
|
|
|
|
struct pci_bus *bus = port->bus;
|
|
|
|
struct pci_dev *dev;
|
|
|
|
|
|
|
|
/* Check if this is a root port event collector. */
|
|
|
|
if (port->pcie_type != PCI_EXP_TYPE_RC_EC || !bus)
|
|
|
|
return;
|
|
|
|
|
|
|
|
down_read(&pci_bus_sem);
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list)
|
2010-02-22 05:12:24 +00:00
|
|
|
if (pci_is_pcie(dev)
|
2010-02-17 22:39:08 +00:00
|
|
|
&& dev->pcie_type == PCI_EXP_TYPE_RC_END)
|
|
|
|
pcie_pme_set_native(dev, NULL);
|
|
|
|
up_read(&pci_bus_sem);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_probe - Initialize PCIe PME service for given root port.
|
|
|
|
* @srv: PCIe service to initialize.
|
|
|
|
*/
|
|
|
|
static int pcie_pme_probe(struct pcie_device *srv)
|
|
|
|
{
|
|
|
|
struct pci_dev *port;
|
|
|
|
struct pcie_pme_service_data *data;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!pcie_pme_platform_setup(srv))
|
|
|
|
return -EACCES;
|
|
|
|
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
|
|
if (!data)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
spin_lock_init(&data->lock);
|
|
|
|
INIT_WORK(&data->work, pcie_pme_work_fn);
|
|
|
|
data->srv = srv;
|
|
|
|
set_service_data(srv, data);
|
|
|
|
|
|
|
|
port = srv->port;
|
|
|
|
pcie_pme_interrupt_enable(port, false);
|
|
|
|
pcie_pme_clear_status(port);
|
|
|
|
|
|
|
|
ret = request_irq(srv->irq, pcie_pme_irq, IRQF_SHARED, "PCIe PME", srv);
|
|
|
|
if (ret) {
|
|
|
|
kfree(data);
|
|
|
|
} else {
|
|
|
|
pcie_pme_mark_devices(port);
|
|
|
|
pcie_pme_interrupt_enable(port, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_suspend - Suspend PCIe PME service device.
|
|
|
|
* @srv: PCIe service device to suspend.
|
|
|
|
*/
|
|
|
|
static int pcie_pme_suspend(struct pcie_device *srv)
|
|
|
|
{
|
|
|
|
struct pcie_pme_service_data *data = get_service_data(srv);
|
|
|
|
struct pci_dev *port = srv->port;
|
|
|
|
|
|
|
|
spin_lock_irq(&data->lock);
|
|
|
|
pcie_pme_interrupt_enable(port, false);
|
|
|
|
pcie_pme_clear_status(port);
|
|
|
|
data->noirq = true;
|
|
|
|
spin_unlock_irq(&data->lock);
|
|
|
|
|
|
|
|
synchronize_irq(srv->irq);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_resume - Resume PCIe PME service device.
|
|
|
|
* @srv - PCIe service device to resume.
|
|
|
|
*/
|
|
|
|
static int pcie_pme_resume(struct pcie_device *srv)
|
|
|
|
{
|
|
|
|
struct pcie_pme_service_data *data = get_service_data(srv);
|
|
|
|
struct pci_dev *port = srv->port;
|
|
|
|
|
|
|
|
spin_lock_irq(&data->lock);
|
|
|
|
data->noirq = false;
|
|
|
|
pcie_pme_clear_status(port);
|
|
|
|
pcie_pme_interrupt_enable(port, true);
|
|
|
|
spin_unlock_irq(&data->lock);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_remove - Prepare PCIe PME service device for removal.
|
|
|
|
* @srv - PCIe service device to resume.
|
|
|
|
*/
|
|
|
|
static void pcie_pme_remove(struct pcie_device *srv)
|
|
|
|
{
|
|
|
|
pcie_pme_suspend(srv);
|
|
|
|
free_irq(srv->irq, srv);
|
|
|
|
kfree(get_service_data(srv));
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct pcie_port_service_driver pcie_pme_driver = {
|
|
|
|
.name = "pcie_pme",
|
|
|
|
.port_type = PCI_EXP_TYPE_ROOT_PORT,
|
|
|
|
.service = PCIE_PORT_SERVICE_PME,
|
|
|
|
|
|
|
|
.probe = pcie_pme_probe,
|
|
|
|
.suspend = pcie_pme_suspend,
|
|
|
|
.resume = pcie_pme_resume,
|
|
|
|
.remove = pcie_pme_remove,
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* pcie_pme_service_init - Register the PCIe PME service driver.
|
|
|
|
*/
|
|
|
|
static int __init pcie_pme_service_init(void)
|
|
|
|
{
|
|
|
|
return pcie_pme_disabled ?
|
|
|
|
-ENODEV : pcie_port_service_register(&pcie_pme_driver);
|
|
|
|
}
|
|
|
|
|
|
|
|
module_init(pcie_pme_service_init);
|