linux/drivers/infiniband/hw/cxgb4/mem.c

949 lines
24 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <rdma/ib_umem.h>
#include <linux/atomic.h>
#include "iw_cxgb4.h"
int use_dsgl = 1;
module_param(use_dsgl, int, 0644);
MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=1)");
#define T4_ULPTX_MIN_IO 32
#define C4IW_MAX_INLINE_SIZE 96
#define T4_ULPTX_MAX_DMA 1024
#define C4IW_INLINE_THRESHOLD 128
static int inline_threshold = C4IW_INLINE_THRESHOLD;
module_param(inline_threshold, int, 0644);
MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
u32 len, dma_addr_t data, int wait)
{
struct sk_buff *skb;
struct ulp_mem_io *req;
struct ulptx_sgl *sgl;
u8 wr_len;
int ret = 0;
struct c4iw_wr_wait wr_wait;
addr &= 0x7FFFFFF;
if (wait)
c4iw_init_wr_wait(&wr_wait);
wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
if (!skb)
return -ENOMEM;
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
memset(req, 0, wr_len);
INIT_ULPTX_WR(req, wr_len, 0, 0);
req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
(wait ? FW_WR_COMPL(1) : 0));
req->wr.wr_lo = wait ? (__force __be64)&wr_wait : 0;
req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
req->cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE));
req->cmd |= cpu_to_be32(V_T5_ULP_MEMIO_ORDER(1));
req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(len>>5));
req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr));
sgl = (struct ulptx_sgl *)(req + 1);
sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_DSGL) |
ULPTX_NSGE(1));
sgl->len0 = cpu_to_be32(len);
sgl->addr0 = cpu_to_be64(data);
ret = c4iw_ofld_send(rdev, skb);
if (ret)
return ret;
if (wait)
ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
return ret;
}
static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
void *data)
{
struct sk_buff *skb;
struct ulp_mem_io *req;
struct ulptx_idata *sc;
u8 wr_len, *to_dp, *from_dp;
int copy_len, num_wqe, i, ret = 0;
struct c4iw_wr_wait wr_wait;
__be32 cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE));
if (is_t4(rdev->lldi.adapter_type))
cmd |= cpu_to_be32(ULP_MEMIO_ORDER(1));
else
cmd |= cpu_to_be32(V_T5_ULP_MEMIO_IMM(1));
addr &= 0x7FFFFFF;
PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
c4iw_init_wr_wait(&wr_wait);
for (i = 0; i < num_wqe; i++) {
copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
len;
wr_len = roundup(sizeof *req + sizeof *sc +
roundup(copy_len, T4_ULPTX_MIN_IO), 16);
skb = alloc_skb(wr_len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
memset(req, 0, wr_len);
INIT_ULPTX_WR(req, wr_len, 0, 0);
if (i == (num_wqe-1)) {
req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
FW_WR_COMPL(1));
req->wr.wr_lo = (__force __be64)(unsigned long) &wr_wait;
} else
req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR));
req->wr.wr_mid = cpu_to_be32(
FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
req->cmd = cmd;
req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(
DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
16));
req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr + i * 3));
sc = (struct ulptx_idata *)(req + 1);
sc->cmd_more = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_IMM));
sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
to_dp = (u8 *)(sc + 1);
from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
if (data)
memcpy(to_dp, from_dp, copy_len);
else
memset(to_dp, 0, copy_len);
if (copy_len % T4_ULPTX_MIN_IO)
memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
(copy_len % T4_ULPTX_MIN_IO));
ret = c4iw_ofld_send(rdev, skb);
if (ret)
return ret;
len -= C4IW_MAX_INLINE_SIZE;
}
ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
return ret;
}
static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
{
u32 remain = len;
u32 dmalen;
int ret = 0;
dma_addr_t daddr;
dma_addr_t save;
daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
return -1;
save = daddr;
while (remain > inline_threshold) {
if (remain < T4_ULPTX_MAX_DMA) {
if (remain & ~T4_ULPTX_MIN_IO)
dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
else
dmalen = remain;
} else
dmalen = T4_ULPTX_MAX_DMA;
remain -= dmalen;
ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
!remain);
if (ret)
goto out;
addr += dmalen >> 5;
data += dmalen;
daddr += dmalen;
}
if (remain)
ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
out:
dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
return ret;
}
/*
* write len bytes of data into addr (32B aligned address)
* If data is NULL, clear len byte of memory to zero.
*/
static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
void *data)
{
if (is_t5(rdev->lldi.adapter_type) && use_dsgl) {
if (len > inline_threshold) {
if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
printk_ratelimited(KERN_WARNING
"%s: dma map"
" failure (non fatal)\n",
pci_name(rdev->lldi.pdev));
return _c4iw_write_mem_inline(rdev, addr, len,
data);
} else
return 0;
} else
return _c4iw_write_mem_inline(rdev, addr, len, data);
} else
return _c4iw_write_mem_inline(rdev, addr, len, data);
}
/*
* Build and write a TPT entry.
* IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
* pbl_size and pbl_addr
* OUT: stag index
*/
static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
u32 *stag, u8 stag_state, u32 pdid,
enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
int bind_enabled, u32 zbva, u64 to,
u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
{
int err;
struct fw_ri_tpte tpt;
u32 stag_idx;
static atomic_t key;
if (c4iw_fatal_error(rdev))
return -EIO;
stag_state = stag_state > 0;
stag_idx = (*stag) >> 8;
if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
if (!stag_idx)
return -ENOMEM;
mutex_lock(&rdev->stats.lock);
rdev->stats.stag.cur += 32;
if (rdev->stats.stag.cur > rdev->stats.stag.max)
rdev->stats.stag.max = rdev->stats.stag.cur;
mutex_unlock(&rdev->stats.lock);
*stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
}
PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
__func__, stag_state, type, pdid, stag_idx);
/* write TPT entry */
if (reset_tpt_entry)
memset(&tpt, 0, sizeof(tpt));
else {
tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
V_FW_RI_TPTE_STAGSTATE(stag_state) |
V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
(bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
FW_RI_VA_BASED_TO))|
V_FW_RI_TPTE_PS(page_size));
tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
tpt.va_hi = cpu_to_be32((u32)(to >> 32));
tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
tpt.len_hi = cpu_to_be32((u32)(len >> 32));
}
err = write_adapter_mem(rdev, stag_idx +
(rdev->lldi.vr->stag.start >> 5),
sizeof(tpt), &tpt);
if (reset_tpt_entry) {
c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
mutex_lock(&rdev->stats.lock);
rdev->stats.stag.cur -= 32;
mutex_unlock(&rdev->stats.lock);
}
return err;
}
static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
u32 pbl_addr, u32 pbl_size)
{
int err;
PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
__func__, pbl_addr, rdev->lldi.vr->pbl.start,
pbl_size);
err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
return err;
}
static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
u32 pbl_addr)
{
return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
pbl_size, pbl_addr);
}
static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
{
*stag = T4_STAG_UNSET;
return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
0UL, 0, 0, 0, 0);
}
static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
{
return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
0);
}
static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
u32 pbl_size, u32 pbl_addr)
{
*stag = T4_STAG_UNSET;
return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
0UL, 0, 0, pbl_size, pbl_addr);
}
static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
{
u32 mmid;
mhp->attr.state = 1;
mhp->attr.stag = stag;
mmid = stag >> 8;
mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
}
static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
struct c4iw_mr *mhp, int shift)
{
u32 stag = T4_STAG_UNSET;
int ret;
ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
FW_RI_STAG_NSMR, mhp->attr.perms,
mhp->attr.mw_bind_enable, mhp->attr.zbva,
mhp->attr.va_fbo, mhp->attr.len, shift - 12,
mhp->attr.pbl_size, mhp->attr.pbl_addr);
if (ret)
return ret;
ret = finish_mem_reg(mhp, stag);
if (ret)
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
return ret;
}
static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
struct c4iw_mr *mhp, int shift, int npages)
{
u32 stag;
int ret;
if (npages > mhp->attr.pbl_size)
return -ENOMEM;
stag = mhp->attr.stag;
ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
FW_RI_STAG_NSMR, mhp->attr.perms,
mhp->attr.mw_bind_enable, mhp->attr.zbva,
mhp->attr.va_fbo, mhp->attr.len, shift - 12,
mhp->attr.pbl_size, mhp->attr.pbl_addr);
if (ret)
return ret;
ret = finish_mem_reg(mhp, stag);
if (ret)
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
return ret;
}
static int alloc_pbl(struct c4iw_mr *mhp, int npages)
{
mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
npages << 3);
if (!mhp->attr.pbl_addr)
return -ENOMEM;
mhp->attr.pbl_size = npages;
return 0;
}
static int build_phys_page_list(struct ib_phys_buf *buffer_list,
int num_phys_buf, u64 *iova_start,
u64 *total_size, int *npages,
int *shift, __be64 **page_list)
{
u64 mask;
int i, j, n;
mask = 0;
*total_size = 0;
for (i = 0; i < num_phys_buf; ++i) {
if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
return -EINVAL;
if (i != 0 && i != num_phys_buf - 1 &&
(buffer_list[i].size & ~PAGE_MASK))
return -EINVAL;
*total_size += buffer_list[i].size;
if (i > 0)
mask |= buffer_list[i].addr;
else
mask |= buffer_list[i].addr & PAGE_MASK;
if (i != num_phys_buf - 1)
mask |= buffer_list[i].addr + buffer_list[i].size;
else
mask |= (buffer_list[i].addr + buffer_list[i].size +
PAGE_SIZE - 1) & PAGE_MASK;
}
if (*total_size > 0xFFFFFFFFULL)
return -ENOMEM;
/* Find largest page shift we can use to cover buffers */
for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
if ((1ULL << *shift) & mask)
break;
buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
buffer_list[0].addr &= ~0ull << *shift;
*npages = 0;
for (i = 0; i < num_phys_buf; ++i)
*npages += (buffer_list[i].size +
(1ULL << *shift) - 1) >> *shift;
if (!*npages)
return -EINVAL;
*page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
if (!*page_list)
return -ENOMEM;
n = 0;
for (i = 0; i < num_phys_buf; ++i)
for (j = 0;
j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
++j)
(*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
((u64) j << *shift));
PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
__func__, (unsigned long long)*iova_start,
(unsigned long long)mask, *shift, (unsigned long long)*total_size,
*npages);
return 0;
}
int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
struct ib_pd *pd, struct ib_phys_buf *buffer_list,
int num_phys_buf, int acc, u64 *iova_start)
{
struct c4iw_mr mh, *mhp;
struct c4iw_pd *php;
struct c4iw_dev *rhp;
__be64 *page_list = NULL;
int shift = 0;
u64 total_size;
int npages;
int ret;
PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
/* There can be no memory windows */
if (atomic_read(&mr->usecnt))
return -EINVAL;
mhp = to_c4iw_mr(mr);
rhp = mhp->rhp;
php = to_c4iw_pd(mr->pd);
/* make sure we are on the same adapter */
if (rhp != php->rhp)
return -EINVAL;
memcpy(&mh, mhp, sizeof *mhp);
if (mr_rereg_mask & IB_MR_REREG_PD)
php = to_c4iw_pd(pd);
if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
mh.attr.perms = c4iw_ib_to_tpt_access(acc);
mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
IB_ACCESS_MW_BIND;
}
if (mr_rereg_mask & IB_MR_REREG_TRANS) {
ret = build_phys_page_list(buffer_list, num_phys_buf,
iova_start,
&total_size, &npages,
&shift, &page_list);
if (ret)
return ret;
}
ret = reregister_mem(rhp, php, &mh, shift, npages);
kfree(page_list);
if (ret)
return ret;
if (mr_rereg_mask & IB_MR_REREG_PD)
mhp->attr.pdid = php->pdid;
if (mr_rereg_mask & IB_MR_REREG_ACCESS)
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
if (mr_rereg_mask & IB_MR_REREG_TRANS) {
mhp->attr.zbva = 0;
mhp->attr.va_fbo = *iova_start;
mhp->attr.page_size = shift - 12;
mhp->attr.len = (u32) total_size;
mhp->attr.pbl_size = npages;
}
return 0;
}
struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
struct ib_phys_buf *buffer_list,
int num_phys_buf, int acc, u64 *iova_start)
{
__be64 *page_list;
int shift;
u64 total_size;
int npages;
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
int ret;
PDBG("%s ib_pd %p\n", __func__, pd);
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
/* First check that we have enough alignment */
if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
ret = -EINVAL;
goto err;
}
if (num_phys_buf > 1 &&
((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
ret = -EINVAL;
goto err;
}
ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
&total_size, &npages, &shift,
&page_list);
if (ret)
goto err;
ret = alloc_pbl(mhp, npages);
if (ret) {
kfree(page_list);
goto err;
}
ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
npages);
kfree(page_list);
if (ret)
goto err_pbl;
mhp->attr.pdid = php->pdid;
mhp->attr.zbva = 0;
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
mhp->attr.va_fbo = *iova_start;
mhp->attr.page_size = shift - 12;
mhp->attr.len = (u32) total_size;
mhp->attr.pbl_size = npages;
ret = register_mem(rhp, php, mhp, shift);
if (ret)
goto err_pbl;
return &mhp->ibmr;
err_pbl:
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
err:
kfree(mhp);
return ERR_PTR(ret);
}
struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
{
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
int ret;
u32 stag = T4_STAG_UNSET;
PDBG("%s ib_pd %p\n", __func__, pd);
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
mhp->attr.pdid = php->pdid;
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
mhp->attr.zbva = 0;
mhp->attr.va_fbo = 0;
mhp->attr.page_size = 0;
mhp->attr.len = ~0UL;
mhp->attr.pbl_size = 0;
ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
FW_RI_STAG_NSMR, mhp->attr.perms,
mhp->attr.mw_bind_enable, 0, 0, ~0UL, 0, 0, 0);
if (ret)
goto err1;
ret = finish_mem_reg(mhp, stag);
if (ret)
goto err2;
return &mhp->ibmr;
err2:
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
err1:
kfree(mhp);
return ERR_PTR(ret);
}
struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 virt, int acc, struct ib_udata *udata)
{
__be64 *pages;
int shift, n, len;
int i, j, k;
int err = 0;
struct ib_umem_chunk *chunk;
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
PDBG("%s ib_pd %p\n", __func__, pd);
if (length == ~0ULL)
return ERR_PTR(-EINVAL);
if ((length + start) < start)
return ERR_PTR(-EINVAL);
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
mhp->rhp = rhp;
mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
if (IS_ERR(mhp->umem)) {
err = PTR_ERR(mhp->umem);
kfree(mhp);
return ERR_PTR(err);
}
shift = ffs(mhp->umem->page_size) - 1;
n = 0;
list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
n += chunk->nents;
err = alloc_pbl(mhp, n);
if (err)
goto err;
pages = (__be64 *) __get_free_page(GFP_KERNEL);
if (!pages) {
err = -ENOMEM;
goto err_pbl;
}
i = n = 0;
list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
for (j = 0; j < chunk->nmap; ++j) {
len = sg_dma_len(&chunk->page_list[j]) >> shift;
for (k = 0; k < len; ++k) {
pages[i++] = cpu_to_be64(sg_dma_address(
&chunk->page_list[j]) +
mhp->umem->page_size * k);
if (i == PAGE_SIZE / sizeof *pages) {
err = write_pbl(&mhp->rhp->rdev,
pages,
mhp->attr.pbl_addr + (n << 3), i);
if (err)
goto pbl_done;
n += i;
i = 0;
}
}
}
if (i)
err = write_pbl(&mhp->rhp->rdev, pages,
mhp->attr.pbl_addr + (n << 3), i);
pbl_done:
free_page((unsigned long) pages);
if (err)
goto err_pbl;
mhp->attr.pdid = php->pdid;
mhp->attr.zbva = 0;
mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
mhp->attr.va_fbo = virt;
mhp->attr.page_size = shift - 12;
mhp->attr.len = length;
err = register_mem(rhp, php, mhp, shift);
if (err)
goto err_pbl;
return &mhp->ibmr;
err_pbl:
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
err:
ib_umem_release(mhp->umem);
kfree(mhp);
return ERR_PTR(err);
}
IB/core: Add "type 2" memory windows support This patch enhances the IB core support for Memory Windows (MWs). MWs allow an application to have better/flexible control over remote access to memory. Two types of MWs are supported, with the second type having two flavors: Type 1 - associated with PD only Type 2A - associated with QPN only Type 2B - associated with PD and QPN Applications can allocate a MW once, and then repeatedly bind the MW to different ranges in MRs that are associated to the same PD. Type 1 windows are bound through a verb, while type 2 windows are bound by posting a work request. The 32-bit memory key is composed of a 24-bit index and an 8-bit key. The key is changed with each bind, thus allowing more control over the peer's use of the memory key. The changes introduced are the following: * add memory window type enum and a corresponding parameter to ib_alloc_mw. * type 2 memory window bind work request support. * create a struct that contains the common part of the bind verb struct ibv_mw_bind and the bind work request into a single struct. * add the ib_inc_rkey helper function to advance the tag part of an rkey. Consumer interface details: * new device capability flags IB_DEVICE_MEM_WINDOW_TYPE_2A and IB_DEVICE_MEM_WINDOW_TYPE_2B are added to indicate device support for these features. Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B memory windows. It can set neither to indicate it doesn't support type 2 windows at all. * modify existing provides and consumers code to the new param of ib_alloc_mw and the ib_mw_bind_info structure Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Shani Michaeli <shanim@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-02-06 16:19:12 +00:00
struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type)
{
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mw *mhp;
u32 mmid;
u32 stag = 0;
int ret;
IB/core: Add "type 2" memory windows support This patch enhances the IB core support for Memory Windows (MWs). MWs allow an application to have better/flexible control over remote access to memory. Two types of MWs are supported, with the second type having two flavors: Type 1 - associated with PD only Type 2A - associated with QPN only Type 2B - associated with PD and QPN Applications can allocate a MW once, and then repeatedly bind the MW to different ranges in MRs that are associated to the same PD. Type 1 windows are bound through a verb, while type 2 windows are bound by posting a work request. The 32-bit memory key is composed of a 24-bit index and an 8-bit key. The key is changed with each bind, thus allowing more control over the peer's use of the memory key. The changes introduced are the following: * add memory window type enum and a corresponding parameter to ib_alloc_mw. * type 2 memory window bind work request support. * create a struct that contains the common part of the bind verb struct ibv_mw_bind and the bind work request into a single struct. * add the ib_inc_rkey helper function to advance the tag part of an rkey. Consumer interface details: * new device capability flags IB_DEVICE_MEM_WINDOW_TYPE_2A and IB_DEVICE_MEM_WINDOW_TYPE_2B are added to indicate device support for these features. Devices can set either IB_DEVICE_MEM_WINDOW_TYPE_2A or IB_DEVICE_MEM_WINDOW_TYPE_2B if it supports type 2A or type 2B memory windows. It can set neither to indicate it doesn't support type 2 windows at all. * modify existing provides and consumers code to the new param of ib_alloc_mw and the ib_mw_bind_info structure Signed-off-by: Haggai Eran <haggaie@mellanox.com> Signed-off-by: Shani Michaeli <shanim@mellanox.com> Signed-off-by: Or Gerlitz <ogerlitz@mellanox.com> Signed-off-by: Roland Dreier <roland@purestorage.com>
2013-02-06 16:19:12 +00:00
if (type != IB_MW_TYPE_1)
return ERR_PTR(-EINVAL);
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp)
return ERR_PTR(-ENOMEM);
ret = allocate_window(&rhp->rdev, &stag, php->pdid);
if (ret) {
kfree(mhp);
return ERR_PTR(ret);
}
mhp->rhp = rhp;
mhp->attr.pdid = php->pdid;
mhp->attr.type = FW_RI_STAG_MW;
mhp->attr.stag = stag;
mmid = (stag) >> 8;
mhp->ibmw.rkey = stag;
if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
deallocate_window(&rhp->rdev, mhp->attr.stag);
kfree(mhp);
return ERR_PTR(-ENOMEM);
}
PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
return &(mhp->ibmw);
}
int c4iw_dealloc_mw(struct ib_mw *mw)
{
struct c4iw_dev *rhp;
struct c4iw_mw *mhp;
u32 mmid;
mhp = to_c4iw_mw(mw);
rhp = mhp->rhp;
mmid = (mw->rkey) >> 8;
remove_handle(rhp, &rhp->mmidr, mmid);
deallocate_window(&rhp->rdev, mhp->attr.stag);
kfree(mhp);
PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
return 0;
}
struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth)
{
struct c4iw_dev *rhp;
struct c4iw_pd *php;
struct c4iw_mr *mhp;
u32 mmid;
u32 stag = 0;
int ret = 0;
php = to_c4iw_pd(pd);
rhp = php->rhp;
mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
if (!mhp) {
ret = -ENOMEM;
goto err;
}
mhp->rhp = rhp;
ret = alloc_pbl(mhp, pbl_depth);
if (ret)
goto err1;
mhp->attr.pbl_size = pbl_depth;
ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
mhp->attr.pbl_size, mhp->attr.pbl_addr);
if (ret)
goto err2;
mhp->attr.pdid = php->pdid;
mhp->attr.type = FW_RI_STAG_NSMR;
mhp->attr.stag = stag;
mhp->attr.state = 1;
mmid = (stag) >> 8;
mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
ret = -ENOMEM;
goto err3;
}
PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
return &(mhp->ibmr);
err3:
dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
err2:
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
err1:
kfree(mhp);
err:
return ERR_PTR(ret);
}
struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device,
int page_list_len)
{
struct c4iw_fr_page_list *c4pl;
struct c4iw_dev *dev = to_c4iw_dev(device);
dma_addr_t dma_addr;
int pll_len = roundup(page_list_len * sizeof(u64), 32);
c4pl = kmalloc(sizeof(*c4pl), GFP_KERNEL);
if (!c4pl)
return ERR_PTR(-ENOMEM);
c4pl->ibpl.page_list = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev,
pll_len, &dma_addr,
GFP_KERNEL);
if (!c4pl->ibpl.page_list) {
kfree(c4pl);
return ERR_PTR(-ENOMEM);
}
dma_unmap_addr_set(c4pl, mapping, dma_addr);
c4pl->dma_addr = dma_addr;
c4pl->dev = dev;
c4pl->ibpl.max_page_list_len = pll_len;
return &c4pl->ibpl;
}
void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl)
{
struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl);
dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev,
c4pl->ibpl.max_page_list_len,
c4pl->ibpl.page_list, dma_unmap_addr(c4pl, mapping));
kfree(c4pl);
}
int c4iw_dereg_mr(struct ib_mr *ib_mr)
{
struct c4iw_dev *rhp;
struct c4iw_mr *mhp;
u32 mmid;
PDBG("%s ib_mr %p\n", __func__, ib_mr);
/* There can be no memory windows */
if (atomic_read(&ib_mr->usecnt))
return -EINVAL;
mhp = to_c4iw_mr(ib_mr);
rhp = mhp->rhp;
mmid = mhp->attr.stag >> 8;
remove_handle(rhp, &rhp->mmidr, mmid);
dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
mhp->attr.pbl_addr);
if (mhp->attr.pbl_size)
c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
mhp->attr.pbl_size << 3);
if (mhp->kva)
kfree((void *) (unsigned long) mhp->kva);
if (mhp->umem)
ib_umem_release(mhp->umem);
PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
kfree(mhp);
return 0;
}