linux/drivers/gpu/drm/imx/imx-drm-core.c

443 lines
11 KiB
C
Raw Normal View History

/*
* Freescale i.MX drm driver
*
* Copyright (C) 2011 Sascha Hauer, Pengutronix
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/component.h>
#include <linux/device.h>
#include <linux/dma-buf.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_of.h>
#include <video/imx-ipu-v3.h>
#include "imx-drm.h"
#include "ipuv3-plane.h"
#define MAX_CRTC 4
struct imx_drm_device {
struct drm_device *drm;
unsigned int pipes;
struct drm_fbdev_cma *fbhelper;
struct drm_atomic_state *state;
};
#if IS_ENABLED(CONFIG_DRM_FBDEV_EMULATION)
static int legacyfb_depth = 16;
module_param(legacyfb_depth, int, 0444);
#endif
static void imx_drm_driver_lastclose(struct drm_device *drm)
{
struct imx_drm_device *imxdrm = drm->dev_private;
drm_fbdev_cma_restore_mode(imxdrm->fbhelper);
}
DEFINE_DRM_GEM_CMA_FOPS(imx_drm_driver_fops);
void imx_drm_connector_destroy(struct drm_connector *connector)
{
drm_connector_unregister(connector);
drm_connector_cleanup(connector);
}
EXPORT_SYMBOL_GPL(imx_drm_connector_destroy);
void imx_drm_encoder_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
EXPORT_SYMBOL_GPL(imx_drm_encoder_destroy);
static void imx_drm_output_poll_changed(struct drm_device *drm)
{
struct imx_drm_device *imxdrm = drm->dev_private;
drm_fbdev_cma_hotplug_event(imxdrm->fbhelper);
}
static int imx_drm_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state)
{
int ret;
ret = drm_atomic_helper_check_modeset(dev, state);
if (ret)
return ret;
ret = drm_atomic_helper_check_planes(dev, state);
if (ret)
return ret;
/*
* Check modeset again in case crtc_state->mode_changed is
* updated in plane's ->atomic_check callback.
*/
ret = drm_atomic_helper_check_modeset(dev, state);
if (ret)
return ret;
/* Assign PRG/PRE channels and check if all constrains are satisfied. */
ret = ipu_planes_assign_pre(dev, state);
if (ret)
return ret;
return ret;
}
static const struct drm_mode_config_funcs imx_drm_mode_config_funcs = {
.fb_create = drm_gem_fb_create,
.output_poll_changed = imx_drm_output_poll_changed,
.atomic_check = imx_drm_atomic_check,
.atomic_commit = drm_atomic_helper_commit,
};
static void imx_drm_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_plane *plane;
struct drm_plane_state *old_plane_state, *new_plane_state;
bool plane_disabling = false;
int i;
drm_atomic_helper_commit_modeset_disables(dev, state);
drm_atomic_helper_commit_planes(dev, state,
DRM_PLANE_COMMIT_ACTIVE_ONLY |
DRM_PLANE_COMMIT_NO_DISABLE_AFTER_MODESET);
drm_atomic_helper_commit_modeset_enables(dev, state);
for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
if (drm_atomic_plane_disabling(old_plane_state, new_plane_state))
plane_disabling = true;
}
if (plane_disabling) {
drm_atomic_helper_wait_for_vblanks(dev, state);
for_each_old_plane_in_state(state, plane, old_plane_state, i)
ipu_plane_disable_deferred(plane);
}
drm_atomic_helper_commit_hw_done(state);
}
static const struct drm_mode_config_helper_funcs imx_drm_mode_config_helpers = {
.atomic_commit_tail = imx_drm_atomic_commit_tail,
};
int imx_drm_encoder_parse_of(struct drm_device *drm,
struct drm_encoder *encoder, struct device_node *np)
{
uint32_t crtc_mask = drm_of_find_possible_crtcs(drm, np);
/*
* If we failed to find the CRTC(s) which this encoder is
* supposed to be connected to, it's because the CRTC has
* not been registered yet. Defer probing, and hope that
* the required CRTC is added later.
*/
if (crtc_mask == 0)
return -EPROBE_DEFER;
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
encoder->possible_crtcs = crtc_mask;
/* FIXME: this is the mask of outputs which can clone this output. */
encoder->possible_clones = ~0;
return 0;
}
EXPORT_SYMBOL_GPL(imx_drm_encoder_parse_of);
static const struct drm_ioctl_desc imx_drm_ioctls[] = {
/* none so far */
};
static struct drm_driver imx_drm_driver = {
.driver_features = DRIVER_MODESET | DRIVER_GEM | DRIVER_PRIME |
DRIVER_ATOMIC,
.lastclose = imx_drm_driver_lastclose,
.gem_free_object_unlocked = drm_gem_cma_free_object,
.gem_vm_ops = &drm_gem_cma_vm_ops,
.dumb_create = drm_gem_cma_dumb_create,
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
.gem_prime_import = drm_gem_prime_import,
.gem_prime_export = drm_gem_prime_export,
.gem_prime_get_sg_table = drm_gem_cma_prime_get_sg_table,
.gem_prime_import_sg_table = drm_gem_cma_prime_import_sg_table,
.gem_prime_vmap = drm_gem_cma_prime_vmap,
.gem_prime_vunmap = drm_gem_cma_prime_vunmap,
.gem_prime_mmap = drm_gem_cma_prime_mmap,
.ioctls = imx_drm_ioctls,
.num_ioctls = ARRAY_SIZE(imx_drm_ioctls),
.fops = &imx_drm_driver_fops,
.name = "imx-drm",
.desc = "i.MX DRM graphics",
.date = "20120507",
.major = 1,
.minor = 0,
.patchlevel = 0,
};
static int compare_of(struct device *dev, void *data)
{
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
struct device_node *np = data;
/* Special case for DI, dev->of_node may not be set yet */
if (strcmp(dev->driver->name, "imx-ipuv3-crtc") == 0) {
struct ipu_client_platformdata *pdata = dev->platform_data;
return pdata->of_node == np;
}
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
/* Special case for LDB, one device for two channels */
if (of_node_cmp(np->name, "lvds-channel") == 0) {
np = of_get_parent(np);
of_node_put(np);
}
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
return dev->of_node == np;
}
static int imx_drm_bind(struct device *dev)
{
struct drm_device *drm;
struct imx_drm_device *imxdrm;
int ret;
drm = drm_dev_alloc(&imx_drm_driver, dev);
if (IS_ERR(drm))
return PTR_ERR(drm);
imxdrm = devm_kzalloc(dev, sizeof(*imxdrm), GFP_KERNEL);
if (!imxdrm) {
ret = -ENOMEM;
goto err_unref;
}
imxdrm->drm = drm;
drm->dev_private = imxdrm;
/*
* enable drm irq mode.
* - with irq_enabled = true, we can use the vblank feature.
*
* P.S. note that we wouldn't use drm irq handler but
* just specific driver own one instead because
* drm framework supports only one irq handler and
* drivers can well take care of their interrupts
*/
drm->irq_enabled = true;
/*
* set max width and height as default value(4096x4096).
* this value would be used to check framebuffer size limitation
* at drm_mode_addfb().
*/
drm->mode_config.min_width = 1;
drm->mode_config.min_height = 1;
drm->mode_config.max_width = 4096;
drm->mode_config.max_height = 4096;
drm->mode_config.funcs = &imx_drm_mode_config_funcs;
drm->mode_config.helper_private = &imx_drm_mode_config_helpers;
drm_mode_config_init(drm);
ret = drm_vblank_init(drm, MAX_CRTC);
if (ret)
goto err_kms;
dev_set_drvdata(dev, drm);
/* Now try and bind all our sub-components */
ret = component_bind_all(dev, drm);
if (ret)
goto err_kms;
drm_mode_config_reset(drm);
/*
* All components are now initialised, so setup the fb helper.
* The fb helper takes copies of key hardware information, so the
* crtcs/connectors/encoders must not change after this point.
*/
#if IS_ENABLED(CONFIG_DRM_FBDEV_EMULATION)
if (legacyfb_depth != 16 && legacyfb_depth != 32) {
dev_warn(dev, "Invalid legacyfb_depth. Defaulting to 16bpp\n");
legacyfb_depth = 16;
}
drm: Rely on mode_config data for fb_helper initialization Instead of receiving the num_crts as a parameter, we can read it directly from the mode_config structure. I audited the drivers that invoke this helper and I believe all of them initialize the mode_config struct accordingly, prior to calling the fb_helper. I used the following coccinelle hack to make this transformation, except for the function headers and comment updates. The first and second rules are split because I couldn't find a way to remove the unused temporary variables at the same time I removed the parameter. // <smpl> @r@ expression A,B,D,E; identifier C; @@ ( - drm_fb_helper_init(A,B,C,D) + drm_fb_helper_init(A,B,D) | - drm_fbdev_cma_init_with_funcs(A,B,C,D,E) + drm_fbdev_cma_init_with_funcs(A,B,D,E) | - drm_fbdev_cma_init(A,B,C,D) + drm_fbdev_cma_init(A,B,D) ) @@ expression A,B,C,D,E; @@ ( - drm_fb_helper_init(A,B,C,D) + drm_fb_helper_init(A,B,D) | - drm_fbdev_cma_init_with_funcs(A,B,C,D,E) + drm_fbdev_cma_init_with_funcs(A,B,D,E) | - drm_fbdev_cma_init(A,B,C,D) + drm_fbdev_cma_init(A,B,D) ) @@ identifier r.C; type T; expression V; @@ - T C; <... when != C - C = V; ...> // </smpl> Changes since v1: - Rebased on top of the tip of drm-misc-next. - Remove mention to sti since a proper fix got merged. Suggested-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.co.uk> Reviewed-by: Eric Anholt <eric@anholt.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/20170202162640.27261-1-krisman@collabora.co.uk
2017-02-02 16:26:40 +00:00
imxdrm->fbhelper = drm_fbdev_cma_init(drm, legacyfb_depth, MAX_CRTC);
if (IS_ERR(imxdrm->fbhelper)) {
ret = PTR_ERR(imxdrm->fbhelper);
imxdrm->fbhelper = NULL;
goto err_unbind;
}
#endif
drm_kms_helper_poll_init(drm);
ret = drm_dev_register(drm, 0);
if (ret)
goto err_fbhelper;
return 0;
err_fbhelper:
drm_kms_helper_poll_fini(drm);
#if IS_ENABLED(CONFIG_DRM_FBDEV_EMULATION)
if (imxdrm->fbhelper)
drm_fbdev_cma_fini(imxdrm->fbhelper);
err_unbind:
#endif
component_unbind_all(drm->dev, drm);
err_kms:
drm_mode_config_cleanup(drm);
err_unref:
drm_dev_unref(drm);
return ret;
}
static void imx_drm_unbind(struct device *dev)
{
struct drm_device *drm = dev_get_drvdata(dev);
struct imx_drm_device *imxdrm = drm->dev_private;
drm_dev_unregister(drm);
drm_kms_helper_poll_fini(drm);
if (imxdrm->fbhelper)
drm_fbdev_cma_fini(imxdrm->fbhelper);
drm_mode_config_cleanup(drm);
component_unbind_all(drm->dev, drm);
dev_set_drvdata(dev, NULL);
drm_dev_unref(drm);
}
static const struct component_master_ops imx_drm_ops = {
.bind = imx_drm_bind,
.unbind = imx_drm_unbind,
};
static int imx_drm_platform_probe(struct platform_device *pdev)
{
int ret = drm_of_component_probe(&pdev->dev, compare_of, &imx_drm_ops);
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
if (!ret)
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
return ret;
}
static int imx_drm_platform_remove(struct platform_device *pdev)
{
component_master_del(&pdev->dev, &imx_drm_ops);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int imx_drm_suspend(struct device *dev)
{
struct drm_device *drm_dev = dev_get_drvdata(dev);
struct imx_drm_device *imxdrm;
/* The drm_dev is NULL before .load hook is called */
if (drm_dev == NULL)
return 0;
drm_kms_helper_poll_disable(drm_dev);
imxdrm = drm_dev->dev_private;
imxdrm->state = drm_atomic_helper_suspend(drm_dev);
if (IS_ERR(imxdrm->state)) {
drm_kms_helper_poll_enable(drm_dev);
return PTR_ERR(imxdrm->state);
}
return 0;
}
static int imx_drm_resume(struct device *dev)
{
struct drm_device *drm_dev = dev_get_drvdata(dev);
struct imx_drm_device *imx_drm;
if (drm_dev == NULL)
return 0;
imx_drm = drm_dev->dev_private;
drm_atomic_helper_resume(drm_dev, imx_drm->state);
drm_kms_helper_poll_enable(drm_dev);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(imx_drm_pm_ops, imx_drm_suspend, imx_drm_resume);
static const struct of_device_id imx_drm_dt_ids[] = {
staging: imx-drm-core: Use OF graph to find components and connections between encoder and crtcs This patch adds support to find the involved components connected to the IPU display interface ports using the OF graph bindings documented in Documentation/devicetree/bindings/media/video-interfaces.txt. It makes use of the of_graph (formerly v4l2_of) parsing helpers and thus depends on the patch that moves those out to drivers/of. Each display interface needs to have an associated port node in the device tree. We can associate this node with the crtc platform device and use it to find the crtc corresponding to a given port node instead of using a combination of parent device node and id number, as before. Explicitly converting the void* cookie to the port device tree node allows to get rid of the ipu_id and di_id fields. The multiplexer setting on i.MX6 now can be obtained from the port id (reg property) in the device tree. The imx-drm node now needs a ports property that contains phandles to each of the IPU display interface port nodes. From there, all attached encoders are scanned and enabled encoders are added to a waiting list. The bind order makes sure that once all components are probed, crtcs are bound before encoders, so that imx_drm_encoder_parse_of can be called from the encoder bind callbacks. For parsing the OF graph, temporary copies of the V4L2 OF graph helpers are used, that can be removed again once those are available at a generic place. Signed-off-by: Philipp Zabel <p.zabel@pengutronix.de> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2014-03-05 09:20:52 +00:00
{ .compatible = "fsl,imx-display-subsystem", },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, imx_drm_dt_ids);
static struct platform_driver imx_drm_pdrv = {
.probe = imx_drm_platform_probe,
.remove = imx_drm_platform_remove,
.driver = {
.name = "imx-drm",
.pm = &imx_drm_pm_ops,
.of_match_table = imx_drm_dt_ids,
},
};
static struct platform_driver * const drivers[] = {
&imx_drm_pdrv,
&ipu_drm_driver,
};
static int __init imx_drm_init(void)
{
return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
}
module_init(imx_drm_init);
static void __exit imx_drm_exit(void)
{
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
}
module_exit(imx_drm_exit);
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX drm driver core");
MODULE_LICENSE("GPL");