linux/include/trace/events/vmscan.h

472 lines
12 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#undef TRACE_SYSTEM
#define TRACE_SYSTEM vmscan
#if !defined(_TRACE_VMSCAN_H) || defined(TRACE_HEADER_MULTI_READ)
#define _TRACE_VMSCAN_H
#include <linux/types.h>
#include <linux/tracepoint.h>
vmscan: implement swap token trace This is useful for observing swap token activity. example output: zsh-1845 [000] 598.962716: update_swap_token_priority: mm=ffff88015eaf7700 old_prio=1 new_prio=0 memtoy-1830 [001] 602.033900: update_swap_token_priority: mm=ffff880037a45880 old_prio=947 new_prio=949 memtoy-1830 [000] 602.041509: update_swap_token_priority: mm=ffff880037a45880 old_prio=949 new_prio=951 memtoy-1830 [000] 602.051959: update_swap_token_priority: mm=ffff880037a45880 old_prio=951 new_prio=953 memtoy-1830 [000] 602.052188: update_swap_token_priority: mm=ffff880037a45880 old_prio=953 new_prio=955 memtoy-1830 [001] 602.427184: put_swap_token: token_mm=ffff880037a45880 zsh-1789 [000] 602.427281: replace_swap_token: old_token_mm= (null) old_prio=0 new_token_mm=ffff88015eaf7018 new_prio=2 zsh-1789 [001] 602.433456: update_swap_token_priority: mm=ffff88015eaf7018 old_prio=2 new_prio=4 zsh-1789 [000] 602.437613: update_swap_token_priority: mm=ffff88015eaf7018 old_prio=4 new_prio=6 zsh-1789 [000] 602.443924: update_swap_token_priority: mm=ffff88015eaf7018 old_prio=6 new_prio=8 zsh-1789 [000] 602.451873: update_swap_token_priority: mm=ffff88015eaf7018 old_prio=8 new_prio=10 zsh-1789 [001] 602.462639: update_swap_token_priority: mm=ffff88015eaf7018 old_prio=10 new_prio=12 Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Rik van Riel<riel@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-15 22:08:14 +00:00
#include <linux/mm.h>
#include <linux/memcontrol.h>
mm, tracing: unify mm flags handling in tracepoints and printk In tracepoints, it's possible to print gfp flags in a human-friendly format through a macro show_gfp_flags(), which defines a translation array and passes is to __print_flags(). Since the following patch will introduce support for gfp flags printing in printk(), it would be nice to reuse the array. This is not straightforward, since __print_flags() can't simply reference an array defined in a .c file such as mm/debug.c - it has to be a macro to allow the macro magic to communicate the format to userspace tools such as trace-cmd. The solution is to create a macro __def_gfpflag_names which is used both in show_gfp_flags(), and to define the gfpflag_names[] array in mm/debug.c. On the other hand, mm/debug.c also defines translation tables for page flags and vma flags, and desire was expressed (but not implemented in this series) to use these also from tracepoints. Thus, this patch also renames the events/gfpflags.h file to events/mmflags.h and moves the table definitions there, using the same macro approach as for gfpflags. This allows translating all three kinds of mm-specific flags both in tracepoints and printk. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Michal Hocko <mhocko@suse.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 21:55:52 +00:00
#include <trace/events/mmflags.h>
#define RECLAIM_WB_ANON 0x0001u
#define RECLAIM_WB_FILE 0x0002u
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
#define RECLAIM_WB_MIXED 0x0010u
#define RECLAIM_WB_SYNC 0x0004u /* Unused, all reclaim async */
#define RECLAIM_WB_ASYNC 0x0008u
#define RECLAIM_WB_LRU (RECLAIM_WB_ANON|RECLAIM_WB_FILE)
#define show_reclaim_flags(flags) \
(flags) ? __print_flags(flags, "|", \
{RECLAIM_WB_ANON, "RECLAIM_WB_ANON"}, \
{RECLAIM_WB_FILE, "RECLAIM_WB_FILE"}, \
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
{RECLAIM_WB_MIXED, "RECLAIM_WB_MIXED"}, \
{RECLAIM_WB_SYNC, "RECLAIM_WB_SYNC"}, \
{RECLAIM_WB_ASYNC, "RECLAIM_WB_ASYNC"} \
) : "RECLAIM_WB_NONE"
#define trace_reclaim_flags(page) ( \
(page_is_file_cache(page) ? RECLAIM_WB_FILE : RECLAIM_WB_ANON) | \
(RECLAIM_WB_ASYNC) \
)
#define trace_shrink_flags(file) \
( \
(file ? RECLAIM_WB_FILE : RECLAIM_WB_ANON) | \
(RECLAIM_WB_ASYNC) \
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
)
TRACE_EVENT(mm_vmscan_kswapd_sleep,
TP_PROTO(int nid),
TP_ARGS(nid),
TP_STRUCT__entry(
__field( int, nid )
),
TP_fast_assign(
__entry->nid = nid;
),
TP_printk("nid=%d", __entry->nid)
);
TRACE_EVENT(mm_vmscan_kswapd_wake,
TP_PROTO(int nid, int zid, int order),
TP_ARGS(nid, zid, order),
TP_STRUCT__entry(
__field( int, nid )
__field( int, zid )
__field( int, order )
),
TP_fast_assign(
__entry->nid = nid;
__entry->zid = zid;
__entry->order = order;
),
TP_printk("nid=%d zid=%d order=%d", __entry->nid, __entry->zid, __entry->order)
);
TRACE_EVENT(mm_vmscan_wakeup_kswapd,
TP_PROTO(int nid, int zid, int order, gfp_t gfp_flags),
TP_ARGS(nid, zid, order, gfp_flags),
TP_STRUCT__entry(
__field( int, nid )
__field( int, zid )
__field( int, order )
__field( gfp_t, gfp_flags )
),
TP_fast_assign(
__entry->nid = nid;
__entry->zid = zid;
__entry->order = order;
__entry->gfp_flags = gfp_flags;
),
TP_printk("nid=%d zid=%d order=%d gfp_flags=%s",
__entry->nid,
__entry->zid,
__entry->order,
show_gfp_flags(__entry->gfp_flags))
);
DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_begin_template,
TP_PROTO(int order, int may_writepage, gfp_t gfp_flags, int classzone_idx),
TP_ARGS(order, may_writepage, gfp_flags, classzone_idx),
TP_STRUCT__entry(
__field( int, order )
__field( int, may_writepage )
__field( gfp_t, gfp_flags )
__field( int, classzone_idx )
),
TP_fast_assign(
__entry->order = order;
__entry->may_writepage = may_writepage;
__entry->gfp_flags = gfp_flags;
__entry->classzone_idx = classzone_idx;
),
TP_printk("order=%d may_writepage=%d gfp_flags=%s classzone_idx=%d",
__entry->order,
__entry->may_writepage,
show_gfp_flags(__entry->gfp_flags),
__entry->classzone_idx)
);
DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_direct_reclaim_begin,
TP_PROTO(int order, int may_writepage, gfp_t gfp_flags, int classzone_idx),
TP_ARGS(order, may_writepage, gfp_flags, classzone_idx)
);
#ifdef CONFIG_MEMCG
DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_reclaim_begin,
TP_PROTO(int order, int may_writepage, gfp_t gfp_flags, int classzone_idx),
TP_ARGS(order, may_writepage, gfp_flags, classzone_idx)
);
DEFINE_EVENT(mm_vmscan_direct_reclaim_begin_template, mm_vmscan_memcg_softlimit_reclaim_begin,
TP_PROTO(int order, int may_writepage, gfp_t gfp_flags, int classzone_idx),
TP_ARGS(order, may_writepage, gfp_flags, classzone_idx)
);
#endif /* CONFIG_MEMCG */
DECLARE_EVENT_CLASS(mm_vmscan_direct_reclaim_end_template,
TP_PROTO(unsigned long nr_reclaimed),
TP_ARGS(nr_reclaimed),
TP_STRUCT__entry(
__field( unsigned long, nr_reclaimed )
),
TP_fast_assign(
__entry->nr_reclaimed = nr_reclaimed;
),
TP_printk("nr_reclaimed=%lu", __entry->nr_reclaimed)
);
DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_direct_reclaim_end,
TP_PROTO(unsigned long nr_reclaimed),
TP_ARGS(nr_reclaimed)
);
#ifdef CONFIG_MEMCG
DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_reclaim_end,
TP_PROTO(unsigned long nr_reclaimed),
TP_ARGS(nr_reclaimed)
);
DEFINE_EVENT(mm_vmscan_direct_reclaim_end_template, mm_vmscan_memcg_softlimit_reclaim_end,
TP_PROTO(unsigned long nr_reclaimed),
TP_ARGS(nr_reclaimed)
);
#endif /* CONFIG_MEMCG */
TRACE_EVENT(mm_shrink_slab_start,
TP_PROTO(struct shrinker *shr, struct shrink_control *sc,
mm: use sc->priority for slab shrink targets Previously we were using the ratio of the number of lru pages scanned to the number of eligible lru pages to determine the number of slab objects to scan. The problem with this is that these two things have nothing to do with each other, so in slab heavy work loads where there is little to no page cache we can end up with the pages scanned being a very low number. This means that we reclaim next to no slab pages and waste a lot of time reclaiming small amounts of space. Consider the following scenario, where we have the following values and the rest of the memory usage is in slab Active: 58840 kB Inactive: 46860 kB Every time we do a get_scan_count() we do this scan = size >> sc->priority where sc->priority starts at DEF_PRIORITY, which is 12. The first loop through reclaim would result in a scan target of 2 pages to 11715 total inactive pages, and 3 pages to 14710 total active pages. This is a really really small target for a system that is entirely slab pages. And this is super optimistic, this assumes we even get to scan these pages. We don't increment sc->nr_scanned unless we 1) isolate the page, which assumes it's not in use, and 2) can lock the page. Under pressure these numbers could probably go down, I'm sure there's some random pages from daemons that aren't actually in use, so the targets get even smaller. Instead use sc->priority in the same way we use it to determine scan amounts for the lru's. This generally equates to pages. Consider the following slab_pages = (nr_objects * object_size) / PAGE_SIZE What we would like to do is scan = slab_pages >> sc->priority but we don't know the number of slab pages each shrinker controls, only the objects. However say that theoretically we knew how many pages a shrinker controlled, we'd still have to convert this to objects, which would look like the following scan = shrinker_pages >> sc->priority scan_objects = (PAGE_SIZE / object_size) * scan or written another way scan_objects = (shrinker_pages >> sc->priority) * (PAGE_SIZE / object_size) which can thus be written scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >> sc->priority which is just scan_objects = nr_objects >> sc->priority We don't need to know exactly how many pages each shrinker represents, it's objects are all the information we need. Making this change allows us to place an appropriate amount of pressure on the shrinker pools for their relative size. Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Chinner <david@fromorbit.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 00:16:26 +00:00
long nr_objects_to_shrink, unsigned long cache_items,
unsigned long long delta, unsigned long total_scan,
int priority),
mm: use sc->priority for slab shrink targets Previously we were using the ratio of the number of lru pages scanned to the number of eligible lru pages to determine the number of slab objects to scan. The problem with this is that these two things have nothing to do with each other, so in slab heavy work loads where there is little to no page cache we can end up with the pages scanned being a very low number. This means that we reclaim next to no slab pages and waste a lot of time reclaiming small amounts of space. Consider the following scenario, where we have the following values and the rest of the memory usage is in slab Active: 58840 kB Inactive: 46860 kB Every time we do a get_scan_count() we do this scan = size >> sc->priority where sc->priority starts at DEF_PRIORITY, which is 12. The first loop through reclaim would result in a scan target of 2 pages to 11715 total inactive pages, and 3 pages to 14710 total active pages. This is a really really small target for a system that is entirely slab pages. And this is super optimistic, this assumes we even get to scan these pages. We don't increment sc->nr_scanned unless we 1) isolate the page, which assumes it's not in use, and 2) can lock the page. Under pressure these numbers could probably go down, I'm sure there's some random pages from daemons that aren't actually in use, so the targets get even smaller. Instead use sc->priority in the same way we use it to determine scan amounts for the lru's. This generally equates to pages. Consider the following slab_pages = (nr_objects * object_size) / PAGE_SIZE What we would like to do is scan = slab_pages >> sc->priority but we don't know the number of slab pages each shrinker controls, only the objects. However say that theoretically we knew how many pages a shrinker controlled, we'd still have to convert this to objects, which would look like the following scan = shrinker_pages >> sc->priority scan_objects = (PAGE_SIZE / object_size) * scan or written another way scan_objects = (shrinker_pages >> sc->priority) * (PAGE_SIZE / object_size) which can thus be written scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >> sc->priority which is just scan_objects = nr_objects >> sc->priority We don't need to know exactly how many pages each shrinker represents, it's objects are all the information we need. Making this change allows us to place an appropriate amount of pressure on the shrinker pools for their relative size. Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Chinner <david@fromorbit.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 00:16:26 +00:00
TP_ARGS(shr, sc, nr_objects_to_shrink, cache_items, delta, total_scan,
priority),
TP_STRUCT__entry(
__field(struct shrinker *, shr)
__field(void *, shrink)
__field(int, nid)
__field(long, nr_objects_to_shrink)
__field(gfp_t, gfp_flags)
__field(unsigned long, cache_items)
__field(unsigned long long, delta)
__field(unsigned long, total_scan)
mm: use sc->priority for slab shrink targets Previously we were using the ratio of the number of lru pages scanned to the number of eligible lru pages to determine the number of slab objects to scan. The problem with this is that these two things have nothing to do with each other, so in slab heavy work loads where there is little to no page cache we can end up with the pages scanned being a very low number. This means that we reclaim next to no slab pages and waste a lot of time reclaiming small amounts of space. Consider the following scenario, where we have the following values and the rest of the memory usage is in slab Active: 58840 kB Inactive: 46860 kB Every time we do a get_scan_count() we do this scan = size >> sc->priority where sc->priority starts at DEF_PRIORITY, which is 12. The first loop through reclaim would result in a scan target of 2 pages to 11715 total inactive pages, and 3 pages to 14710 total active pages. This is a really really small target for a system that is entirely slab pages. And this is super optimistic, this assumes we even get to scan these pages. We don't increment sc->nr_scanned unless we 1) isolate the page, which assumes it's not in use, and 2) can lock the page. Under pressure these numbers could probably go down, I'm sure there's some random pages from daemons that aren't actually in use, so the targets get even smaller. Instead use sc->priority in the same way we use it to determine scan amounts for the lru's. This generally equates to pages. Consider the following slab_pages = (nr_objects * object_size) / PAGE_SIZE What we would like to do is scan = slab_pages >> sc->priority but we don't know the number of slab pages each shrinker controls, only the objects. However say that theoretically we knew how many pages a shrinker controlled, we'd still have to convert this to objects, which would look like the following scan = shrinker_pages >> sc->priority scan_objects = (PAGE_SIZE / object_size) * scan or written another way scan_objects = (shrinker_pages >> sc->priority) * (PAGE_SIZE / object_size) which can thus be written scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >> sc->priority which is just scan_objects = nr_objects >> sc->priority We don't need to know exactly how many pages each shrinker represents, it's objects are all the information we need. Making this change allows us to place an appropriate amount of pressure on the shrinker pools for their relative size. Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Chinner <david@fromorbit.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 00:16:26 +00:00
__field(int, priority)
),
TP_fast_assign(
__entry->shr = shr;
shrinker: Kill old ->shrink API. There are no more users of this API, so kill it dead, dead, dead and quietly bury the corpse in a shallow, unmarked grave in a dark forest deep in the hills... [glommer@openvz.org: added flowers to the grave] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:16 +00:00
__entry->shrink = shr->scan_objects;
__entry->nid = sc->nid;
__entry->nr_objects_to_shrink = nr_objects_to_shrink;
__entry->gfp_flags = sc->gfp_mask;
__entry->cache_items = cache_items;
__entry->delta = delta;
__entry->total_scan = total_scan;
mm: use sc->priority for slab shrink targets Previously we were using the ratio of the number of lru pages scanned to the number of eligible lru pages to determine the number of slab objects to scan. The problem with this is that these two things have nothing to do with each other, so in slab heavy work loads where there is little to no page cache we can end up with the pages scanned being a very low number. This means that we reclaim next to no slab pages and waste a lot of time reclaiming small amounts of space. Consider the following scenario, where we have the following values and the rest of the memory usage is in slab Active: 58840 kB Inactive: 46860 kB Every time we do a get_scan_count() we do this scan = size >> sc->priority where sc->priority starts at DEF_PRIORITY, which is 12. The first loop through reclaim would result in a scan target of 2 pages to 11715 total inactive pages, and 3 pages to 14710 total active pages. This is a really really small target for a system that is entirely slab pages. And this is super optimistic, this assumes we even get to scan these pages. We don't increment sc->nr_scanned unless we 1) isolate the page, which assumes it's not in use, and 2) can lock the page. Under pressure these numbers could probably go down, I'm sure there's some random pages from daemons that aren't actually in use, so the targets get even smaller. Instead use sc->priority in the same way we use it to determine scan amounts for the lru's. This generally equates to pages. Consider the following slab_pages = (nr_objects * object_size) / PAGE_SIZE What we would like to do is scan = slab_pages >> sc->priority but we don't know the number of slab pages each shrinker controls, only the objects. However say that theoretically we knew how many pages a shrinker controlled, we'd still have to convert this to objects, which would look like the following scan = shrinker_pages >> sc->priority scan_objects = (PAGE_SIZE / object_size) * scan or written another way scan_objects = (shrinker_pages >> sc->priority) * (PAGE_SIZE / object_size) which can thus be written scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >> sc->priority which is just scan_objects = nr_objects >> sc->priority We don't need to know exactly how many pages each shrinker represents, it's objects are all the information we need. Making this change allows us to place an appropriate amount of pressure on the shrinker pools for their relative size. Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Chinner <david@fromorbit.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 00:16:26 +00:00
__entry->priority = priority;
),
mm: use sc->priority for slab shrink targets Previously we were using the ratio of the number of lru pages scanned to the number of eligible lru pages to determine the number of slab objects to scan. The problem with this is that these two things have nothing to do with each other, so in slab heavy work loads where there is little to no page cache we can end up with the pages scanned being a very low number. This means that we reclaim next to no slab pages and waste a lot of time reclaiming small amounts of space. Consider the following scenario, where we have the following values and the rest of the memory usage is in slab Active: 58840 kB Inactive: 46860 kB Every time we do a get_scan_count() we do this scan = size >> sc->priority where sc->priority starts at DEF_PRIORITY, which is 12. The first loop through reclaim would result in a scan target of 2 pages to 11715 total inactive pages, and 3 pages to 14710 total active pages. This is a really really small target for a system that is entirely slab pages. And this is super optimistic, this assumes we even get to scan these pages. We don't increment sc->nr_scanned unless we 1) isolate the page, which assumes it's not in use, and 2) can lock the page. Under pressure these numbers could probably go down, I'm sure there's some random pages from daemons that aren't actually in use, so the targets get even smaller. Instead use sc->priority in the same way we use it to determine scan amounts for the lru's. This generally equates to pages. Consider the following slab_pages = (nr_objects * object_size) / PAGE_SIZE What we would like to do is scan = slab_pages >> sc->priority but we don't know the number of slab pages each shrinker controls, only the objects. However say that theoretically we knew how many pages a shrinker controlled, we'd still have to convert this to objects, which would look like the following scan = shrinker_pages >> sc->priority scan_objects = (PAGE_SIZE / object_size) * scan or written another way scan_objects = (shrinker_pages >> sc->priority) * (PAGE_SIZE / object_size) which can thus be written scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >> sc->priority which is just scan_objects = nr_objects >> sc->priority We don't need to know exactly how many pages each shrinker represents, it's objects are all the information we need. Making this change allows us to place an appropriate amount of pressure on the shrinker pools for their relative size. Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Chinner <david@fromorbit.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 00:16:26 +00:00
TP_printk("%pF %p: nid: %d objects to shrink %ld gfp_flags %s cache items %ld delta %lld total_scan %ld priority %d",
__entry->shrink,
__entry->shr,
__entry->nid,
__entry->nr_objects_to_shrink,
show_gfp_flags(__entry->gfp_flags),
__entry->cache_items,
__entry->delta,
mm: use sc->priority for slab shrink targets Previously we were using the ratio of the number of lru pages scanned to the number of eligible lru pages to determine the number of slab objects to scan. The problem with this is that these two things have nothing to do with each other, so in slab heavy work loads where there is little to no page cache we can end up with the pages scanned being a very low number. This means that we reclaim next to no slab pages and waste a lot of time reclaiming small amounts of space. Consider the following scenario, where we have the following values and the rest of the memory usage is in slab Active: 58840 kB Inactive: 46860 kB Every time we do a get_scan_count() we do this scan = size >> sc->priority where sc->priority starts at DEF_PRIORITY, which is 12. The first loop through reclaim would result in a scan target of 2 pages to 11715 total inactive pages, and 3 pages to 14710 total active pages. This is a really really small target for a system that is entirely slab pages. And this is super optimistic, this assumes we even get to scan these pages. We don't increment sc->nr_scanned unless we 1) isolate the page, which assumes it's not in use, and 2) can lock the page. Under pressure these numbers could probably go down, I'm sure there's some random pages from daemons that aren't actually in use, so the targets get even smaller. Instead use sc->priority in the same way we use it to determine scan amounts for the lru's. This generally equates to pages. Consider the following slab_pages = (nr_objects * object_size) / PAGE_SIZE What we would like to do is scan = slab_pages >> sc->priority but we don't know the number of slab pages each shrinker controls, only the objects. However say that theoretically we knew how many pages a shrinker controlled, we'd still have to convert this to objects, which would look like the following scan = shrinker_pages >> sc->priority scan_objects = (PAGE_SIZE / object_size) * scan or written another way scan_objects = (shrinker_pages >> sc->priority) * (PAGE_SIZE / object_size) which can thus be written scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >> sc->priority which is just scan_objects = nr_objects >> sc->priority We don't need to know exactly how many pages each shrinker represents, it's objects are all the information we need. Making this change allows us to place an appropriate amount of pressure on the shrinker pools for their relative size. Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com Signed-off-by: Josef Bacik <jbacik@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Dave Chinner <david@fromorbit.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-01 00:16:26 +00:00
__entry->total_scan,
__entry->priority)
);
TRACE_EVENT(mm_shrink_slab_end,
TP_PROTO(struct shrinker *shr, int nid, int shrinker_retval,
mm: shrinker trace points: fix negatives I was looking at a trace of the slab shrinkers (attachment in this comment): https://bugs.freedesktop.org/show_bug.cgi?id=72742#c67 and noticed that "total_scan" can go negative in some cases. We used to dump out the "total_scan" variable directly, but some of the shrinker modifications along the way changed that. This patch just dumps it out directly, again. It doesn't make any sense to derive it from new_nr and nr any more since there are now other shrinkers that can be running in parallel and mucking with those values. Here's an example of the negative numbers in the output: > kswapd0-840 [000] 160.869398: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 10 new scan count 39 total_scan 29 last shrinker return val 256 > kswapd0-840 [000] 160.869618: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 39 new scan count 102 total_scan 63 last shrinker return val 256 > kswapd0-840 [000] 160.870031: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 102 new scan count 47 total_scan -55 last shrinker return val 768 > kswapd0-840 [000] 160.870464: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 47 new scan count 45 total_scan -2 last shrinker return val 768 > kswapd0-840 [000] 163.384144: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 45 new scan count 56 total_scan 11 last shrinker return val 0 > kswapd0-840 [000] 163.384297: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 56 new scan count 15 total_scan -41 last shrinker return val 256 > kswapd0-840 [000] 163.384414: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 15 new scan count 117 total_scan 102 last shrinker return val 0 > kswapd0-840 [000] 163.384657: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 117 new scan count 36 total_scan -81 last shrinker return val 512 > kswapd0-840 [000] 163.384880: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 36 new scan count 111 total_scan 75 last shrinker return val 256 > kswapd0-840 [000] 163.385256: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 111 new scan count 34 total_scan -77 last shrinker return val 768 > kswapd0-840 [000] 163.385598: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 34 new scan count 122 total_scan 88 last shrinker return val 512 Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Dave Chinner <david@fromorbit.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:08:06 +00:00
long unused_scan_cnt, long new_scan_cnt, long total_scan),
TP_ARGS(shr, nid, shrinker_retval, unused_scan_cnt, new_scan_cnt,
total_scan),
TP_STRUCT__entry(
__field(struct shrinker *, shr)
__field(int, nid)
__field(void *, shrink)
__field(long, unused_scan)
__field(long, new_scan)
__field(int, retval)
__field(long, total_scan)
),
TP_fast_assign(
__entry->shr = shr;
__entry->nid = nid;
shrinker: Kill old ->shrink API. There are no more users of this API, so kill it dead, dead, dead and quietly bury the corpse in a shallow, unmarked grave in a dark forest deep in the hills... [glommer@openvz.org: added flowers to the grave] Signed-off-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Glauber Costa <glommer@openvz.org> Reviewed-by: Greg Thelen <gthelen@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Cc: Arve Hjønnevåg <arve@android.com> Cc: Carlos Maiolino <cmaiolino@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chuck Lever <chuck.lever@oracle.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: J. Bruce Fields <bfields@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: Jerome Glisse <jglisse@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Kent Overstreet <koverstreet@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Thomas Hellstrom <thellstrom@vmware.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-08-28 00:18:16 +00:00
__entry->shrink = shr->scan_objects;
__entry->unused_scan = unused_scan_cnt;
__entry->new_scan = new_scan_cnt;
__entry->retval = shrinker_retval;
mm: shrinker trace points: fix negatives I was looking at a trace of the slab shrinkers (attachment in this comment): https://bugs.freedesktop.org/show_bug.cgi?id=72742#c67 and noticed that "total_scan" can go negative in some cases. We used to dump out the "total_scan" variable directly, but some of the shrinker modifications along the way changed that. This patch just dumps it out directly, again. It doesn't make any sense to derive it from new_nr and nr any more since there are now other shrinkers that can be running in parallel and mucking with those values. Here's an example of the negative numbers in the output: > kswapd0-840 [000] 160.869398: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 10 new scan count 39 total_scan 29 last shrinker return val 256 > kswapd0-840 [000] 160.869618: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 39 new scan count 102 total_scan 63 last shrinker return val 256 > kswapd0-840 [000] 160.870031: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 102 new scan count 47 total_scan -55 last shrinker return val 768 > kswapd0-840 [000] 160.870464: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 47 new scan count 45 total_scan -2 last shrinker return val 768 > kswapd0-840 [000] 163.384144: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 45 new scan count 56 total_scan 11 last shrinker return val 0 > kswapd0-840 [000] 163.384297: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 56 new scan count 15 total_scan -41 last shrinker return val 256 > kswapd0-840 [000] 163.384414: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 15 new scan count 117 total_scan 102 last shrinker return val 0 > kswapd0-840 [000] 163.384657: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 117 new scan count 36 total_scan -81 last shrinker return val 512 > kswapd0-840 [000] 163.384880: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 36 new scan count 111 total_scan 75 last shrinker return val 256 > kswapd0-840 [000] 163.385256: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 111 new scan count 34 total_scan -77 last shrinker return val 768 > kswapd0-840 [000] 163.385598: mm_shrink_slab_end: i915_gem_inactive_scan+0x0 0xffff8800037cbc68: unused scan count 34 new scan count 122 total_scan 88 last shrinker return val 512 Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Dave Chinner <david@fromorbit.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 23:08:06 +00:00
__entry->total_scan = total_scan;
),
TP_printk("%pF %p: nid: %d unused scan count %ld new scan count %ld total_scan %ld last shrinker return val %d",
__entry->shrink,
__entry->shr,
__entry->nid,
__entry->unused_scan,
__entry->new_scan,
__entry->total_scan,
__entry->retval)
);
mm, vmscan: remove unused mm_vmscan_memcg_isolate Patch series "vm, vmscan: enahance vmscan tracepoints", v2. While debugging [2] I've realized that there is some room for improvements in the tracepoints set we offer currently. I had hard times to make any conclusion from the existing ones. The resulting problem turned out to be active list aging [3] and we are missing at least two tracepoints to debug such a problem. Some existing tracepoints could export more information to see _why_ the reclaim progress cannot be made not only _how much_ we could reclaim. The later could be seen quite reasonably from the vmstat counters already. It can be argued that we are showing too many implementation details in those tracepoints but I consider them way too lowlevel already to be usable by any kernel independent userspace. I would be _really_ surprised if anything but debugging tools have used them. Any feedback is highly appreciated. [1] http://lkml.kernel.org/r/20161228153032.10821-1-mhocko@kernel.org [2] http://lkml.kernel.org/r/20161215225702.GA27944@boerne.fritz.box [3] http://lkml.kernel.org/r/20161223105157.GB23109@dhcp22.suse.cz This patch (of 8): The trace point is not used since 925b7673cce3 ("mm: make per-memcg LRU lists exclusive") so it can be removed. Link: http://lkml.kernel.org/r/20170104101942.4860-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 23:44:15 +00:00
TRACE_EVENT(mm_vmscan_lru_isolate,
TP_PROTO(int classzone_idx,
int order,
unsigned long nr_requested,
unsigned long nr_scanned,
unsigned long nr_skipped,
unsigned long nr_taken,
isolate_mode_t isolate_mode,
int lru),
TP_ARGS(classzone_idx, order, nr_requested, nr_scanned, nr_skipped, nr_taken, isolate_mode, lru),
TP_STRUCT__entry(
__field(int, classzone_idx)
__field(int, order)
__field(unsigned long, nr_requested)
__field(unsigned long, nr_scanned)
__field(unsigned long, nr_skipped)
__field(unsigned long, nr_taken)
__field(isolate_mode_t, isolate_mode)
__field(int, lru)
),
TP_fast_assign(
__entry->classzone_idx = classzone_idx;
__entry->order = order;
__entry->nr_requested = nr_requested;
__entry->nr_scanned = nr_scanned;
__entry->nr_skipped = nr_skipped;
__entry->nr_taken = nr_taken;
__entry->isolate_mode = isolate_mode;
__entry->lru = lru;
),
TP_printk("isolate_mode=%d classzone=%d order=%d nr_requested=%lu nr_scanned=%lu nr_skipped=%lu nr_taken=%lu lru=%s",
__entry->isolate_mode,
__entry->classzone_idx,
__entry->order,
__entry->nr_requested,
__entry->nr_scanned,
__entry->nr_skipped,
__entry->nr_taken,
__print_symbolic(__entry->lru, LRU_NAMES))
);
TRACE_EVENT(mm_vmscan_writepage,
TP_PROTO(struct page *page),
TP_ARGS(page),
TP_STRUCT__entry(
__field(unsigned long, pfn)
__field(int, reclaim_flags)
),
TP_fast_assign(
__entry->pfn = page_to_pfn(page);
__entry->reclaim_flags = trace_reclaim_flags(page);
),
TP_printk("page=%p pfn=%lu flags=%s",
pfn_to_page(__entry->pfn),
__entry->pfn,
show_reclaim_flags(__entry->reclaim_flags))
);
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
TRACE_EVENT(mm_vmscan_lru_shrink_inactive,
mm, vmscan: move LRU lists to node This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:45:31 +00:00
TP_PROTO(int nid,
unsigned long nr_scanned, unsigned long nr_reclaimed,
mm, vmscan, tracing: use pointer to reclaim_stat struct in trace event The trace event trace_mm_vmscan_lru_shrink_inactive() currently has 12 parameters! Seven of them are from the reclaim_stat structure. This structure is currently local to mm/vmscan.c. By moving it to the global vmstat.h header, we can also reference it from the vmscan tracepoints. In moving it, it brings down the overhead of passing so many arguments to the trace event. In the future, we may limit the number of arguments that a trace event may pass (ideally just 6, but more realistically it may be 8). Before this patch, the code to call the trace event is this: 0f 83 aa fe ff ff jae ffffffff811e6261 <shrink_inactive_list+0x1e1> 48 8b 45 a0 mov -0x60(%rbp),%rax 45 8b 64 24 20 mov 0x20(%r12),%r12d 44 8b 6d d4 mov -0x2c(%rbp),%r13d 8b 4d d0 mov -0x30(%rbp),%ecx 44 8b 75 cc mov -0x34(%rbp),%r14d 44 8b 7d c8 mov -0x38(%rbp),%r15d 48 89 45 90 mov %rax,-0x70(%rbp) 8b 83 b8 fe ff ff mov -0x148(%rbx),%eax 8b 55 c0 mov -0x40(%rbp),%edx 8b 7d c4 mov -0x3c(%rbp),%edi 8b 75 b8 mov -0x48(%rbp),%esi 89 45 80 mov %eax,-0x80(%rbp) 65 ff 05 e4 f7 e2 7e incl %gs:0x7ee2f7e4(%rip) # 15bd0 <__preempt_count> 48 8b 05 75 5b 13 01 mov 0x1135b75(%rip),%rax # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 48 85 c0 test %rax,%rax 74 72 je ffffffff811e646a <shrink_inactive_list+0x3ea> 48 89 c3 mov %rax,%rbx 4c 8b 10 mov (%rax),%r10 89 f8 mov %edi,%eax 48 89 85 68 ff ff ff mov %rax,-0x98(%rbp) 89 f0 mov %esi,%eax 48 89 85 60 ff ff ff mov %rax,-0xa0(%rbp) 89 c8 mov %ecx,%eax 48 89 85 78 ff ff ff mov %rax,-0x88(%rbp) 89 d0 mov %edx,%eax 48 89 85 70 ff ff ff mov %rax,-0x90(%rbp) 8b 45 8c mov -0x74(%rbp),%eax 48 8b 7b 08 mov 0x8(%rbx),%rdi 48 83 c3 18 add $0x18,%rbx 50 push %rax 41 54 push %r12 41 55 push %r13 ff b5 78 ff ff ff pushq -0x88(%rbp) 41 56 push %r14 41 57 push %r15 ff b5 70 ff ff ff pushq -0x90(%rbp) 4c 8b 8d 68 ff ff ff mov -0x98(%rbp),%r9 4c 8b 85 60 ff ff ff mov -0xa0(%rbp),%r8 48 8b 4d 98 mov -0x68(%rbp),%rcx 48 8b 55 90 mov -0x70(%rbp),%rdx 8b 75 80 mov -0x80(%rbp),%esi 41 ff d2 callq *%r10 After the patch: 0f 83 a8 fe ff ff jae ffffffff811e626d <shrink_inactive_list+0x1cd> 8b 9b b8 fe ff ff mov -0x148(%rbx),%ebx 45 8b 64 24 20 mov 0x20(%r12),%r12d 4c 8b 6d a0 mov -0x60(%rbp),%r13 65 ff 05 f5 f7 e2 7e incl %gs:0x7ee2f7f5(%rip) # 15bd0 <__preempt_count> 4c 8b 35 86 5b 13 01 mov 0x1135b86(%rip),%r14 # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 4d 85 f6 test %r14,%r14 74 2a je ffffffff811e6411 <shrink_inactive_list+0x371> 49 8b 06 mov (%r14),%rax 8b 4d 8c mov -0x74(%rbp),%ecx 49 8b 7e 08 mov 0x8(%r14),%rdi 49 83 c6 18 add $0x18,%r14 4c 89 ea mov %r13,%rdx 45 89 e1 mov %r12d,%r9d 4c 8d 45 b8 lea -0x48(%rbp),%r8 89 de mov %ebx,%esi 51 push %rcx 48 8b 4d 98 mov -0x68(%rbp),%rcx ff d0 callq *%rax Link: http://lkml.kernel.org/r/2559d7cb-ec60-1200-2362-04fa34fd02bb@fb.com Link: http://lkml.kernel.org/r/20180322121003.4177af15@gandalf.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reported-by: Alexei Starovoitov <ast@fb.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 23:28:07 +00:00
struct reclaim_stat *stat, int priority, int file),
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
mm, vmscan, tracing: use pointer to reclaim_stat struct in trace event The trace event trace_mm_vmscan_lru_shrink_inactive() currently has 12 parameters! Seven of them are from the reclaim_stat structure. This structure is currently local to mm/vmscan.c. By moving it to the global vmstat.h header, we can also reference it from the vmscan tracepoints. In moving it, it brings down the overhead of passing so many arguments to the trace event. In the future, we may limit the number of arguments that a trace event may pass (ideally just 6, but more realistically it may be 8). Before this patch, the code to call the trace event is this: 0f 83 aa fe ff ff jae ffffffff811e6261 <shrink_inactive_list+0x1e1> 48 8b 45 a0 mov -0x60(%rbp),%rax 45 8b 64 24 20 mov 0x20(%r12),%r12d 44 8b 6d d4 mov -0x2c(%rbp),%r13d 8b 4d d0 mov -0x30(%rbp),%ecx 44 8b 75 cc mov -0x34(%rbp),%r14d 44 8b 7d c8 mov -0x38(%rbp),%r15d 48 89 45 90 mov %rax,-0x70(%rbp) 8b 83 b8 fe ff ff mov -0x148(%rbx),%eax 8b 55 c0 mov -0x40(%rbp),%edx 8b 7d c4 mov -0x3c(%rbp),%edi 8b 75 b8 mov -0x48(%rbp),%esi 89 45 80 mov %eax,-0x80(%rbp) 65 ff 05 e4 f7 e2 7e incl %gs:0x7ee2f7e4(%rip) # 15bd0 <__preempt_count> 48 8b 05 75 5b 13 01 mov 0x1135b75(%rip),%rax # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 48 85 c0 test %rax,%rax 74 72 je ffffffff811e646a <shrink_inactive_list+0x3ea> 48 89 c3 mov %rax,%rbx 4c 8b 10 mov (%rax),%r10 89 f8 mov %edi,%eax 48 89 85 68 ff ff ff mov %rax,-0x98(%rbp) 89 f0 mov %esi,%eax 48 89 85 60 ff ff ff mov %rax,-0xa0(%rbp) 89 c8 mov %ecx,%eax 48 89 85 78 ff ff ff mov %rax,-0x88(%rbp) 89 d0 mov %edx,%eax 48 89 85 70 ff ff ff mov %rax,-0x90(%rbp) 8b 45 8c mov -0x74(%rbp),%eax 48 8b 7b 08 mov 0x8(%rbx),%rdi 48 83 c3 18 add $0x18,%rbx 50 push %rax 41 54 push %r12 41 55 push %r13 ff b5 78 ff ff ff pushq -0x88(%rbp) 41 56 push %r14 41 57 push %r15 ff b5 70 ff ff ff pushq -0x90(%rbp) 4c 8b 8d 68 ff ff ff mov -0x98(%rbp),%r9 4c 8b 85 60 ff ff ff mov -0xa0(%rbp),%r8 48 8b 4d 98 mov -0x68(%rbp),%rcx 48 8b 55 90 mov -0x70(%rbp),%rdx 8b 75 80 mov -0x80(%rbp),%esi 41 ff d2 callq *%r10 After the patch: 0f 83 a8 fe ff ff jae ffffffff811e626d <shrink_inactive_list+0x1cd> 8b 9b b8 fe ff ff mov -0x148(%rbx),%ebx 45 8b 64 24 20 mov 0x20(%r12),%r12d 4c 8b 6d a0 mov -0x60(%rbp),%r13 65 ff 05 f5 f7 e2 7e incl %gs:0x7ee2f7f5(%rip) # 15bd0 <__preempt_count> 4c 8b 35 86 5b 13 01 mov 0x1135b86(%rip),%r14 # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 4d 85 f6 test %r14,%r14 74 2a je ffffffff811e6411 <shrink_inactive_list+0x371> 49 8b 06 mov (%r14),%rax 8b 4d 8c mov -0x74(%rbp),%ecx 49 8b 7e 08 mov 0x8(%r14),%rdi 49 83 c6 18 add $0x18,%r14 4c 89 ea mov %r13,%rdx 45 89 e1 mov %r12d,%r9d 4c 8d 45 b8 lea -0x48(%rbp),%r8 89 de mov %ebx,%esi 51 push %rcx 48 8b 4d 98 mov -0x68(%rbp),%rcx ff d0 callq *%rax Link: http://lkml.kernel.org/r/2559d7cb-ec60-1200-2362-04fa34fd02bb@fb.com Link: http://lkml.kernel.org/r/20180322121003.4177af15@gandalf.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reported-by: Alexei Starovoitov <ast@fb.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 23:28:07 +00:00
TP_ARGS(nid, nr_scanned, nr_reclaimed, stat, priority, file),
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
TP_STRUCT__entry(
__field(int, nid)
__field(unsigned long, nr_scanned)
__field(unsigned long, nr_reclaimed)
__field(unsigned long, nr_dirty)
__field(unsigned long, nr_writeback)
__field(unsigned long, nr_congested)
__field(unsigned long, nr_immediate)
__field(unsigned long, nr_activate)
__field(unsigned long, nr_ref_keep)
__field(unsigned long, nr_unmap_fail)
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
__field(int, priority)
__field(int, reclaim_flags)
),
TP_fast_assign(
mm, vmscan: move LRU lists to node This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:45:31 +00:00
__entry->nid = nid;
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
__entry->nr_scanned = nr_scanned;
__entry->nr_reclaimed = nr_reclaimed;
mm, vmscan, tracing: use pointer to reclaim_stat struct in trace event The trace event trace_mm_vmscan_lru_shrink_inactive() currently has 12 parameters! Seven of them are from the reclaim_stat structure. This structure is currently local to mm/vmscan.c. By moving it to the global vmstat.h header, we can also reference it from the vmscan tracepoints. In moving it, it brings down the overhead of passing so many arguments to the trace event. In the future, we may limit the number of arguments that a trace event may pass (ideally just 6, but more realistically it may be 8). Before this patch, the code to call the trace event is this: 0f 83 aa fe ff ff jae ffffffff811e6261 <shrink_inactive_list+0x1e1> 48 8b 45 a0 mov -0x60(%rbp),%rax 45 8b 64 24 20 mov 0x20(%r12),%r12d 44 8b 6d d4 mov -0x2c(%rbp),%r13d 8b 4d d0 mov -0x30(%rbp),%ecx 44 8b 75 cc mov -0x34(%rbp),%r14d 44 8b 7d c8 mov -0x38(%rbp),%r15d 48 89 45 90 mov %rax,-0x70(%rbp) 8b 83 b8 fe ff ff mov -0x148(%rbx),%eax 8b 55 c0 mov -0x40(%rbp),%edx 8b 7d c4 mov -0x3c(%rbp),%edi 8b 75 b8 mov -0x48(%rbp),%esi 89 45 80 mov %eax,-0x80(%rbp) 65 ff 05 e4 f7 e2 7e incl %gs:0x7ee2f7e4(%rip) # 15bd0 <__preempt_count> 48 8b 05 75 5b 13 01 mov 0x1135b75(%rip),%rax # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 48 85 c0 test %rax,%rax 74 72 je ffffffff811e646a <shrink_inactive_list+0x3ea> 48 89 c3 mov %rax,%rbx 4c 8b 10 mov (%rax),%r10 89 f8 mov %edi,%eax 48 89 85 68 ff ff ff mov %rax,-0x98(%rbp) 89 f0 mov %esi,%eax 48 89 85 60 ff ff ff mov %rax,-0xa0(%rbp) 89 c8 mov %ecx,%eax 48 89 85 78 ff ff ff mov %rax,-0x88(%rbp) 89 d0 mov %edx,%eax 48 89 85 70 ff ff ff mov %rax,-0x90(%rbp) 8b 45 8c mov -0x74(%rbp),%eax 48 8b 7b 08 mov 0x8(%rbx),%rdi 48 83 c3 18 add $0x18,%rbx 50 push %rax 41 54 push %r12 41 55 push %r13 ff b5 78 ff ff ff pushq -0x88(%rbp) 41 56 push %r14 41 57 push %r15 ff b5 70 ff ff ff pushq -0x90(%rbp) 4c 8b 8d 68 ff ff ff mov -0x98(%rbp),%r9 4c 8b 85 60 ff ff ff mov -0xa0(%rbp),%r8 48 8b 4d 98 mov -0x68(%rbp),%rcx 48 8b 55 90 mov -0x70(%rbp),%rdx 8b 75 80 mov -0x80(%rbp),%esi 41 ff d2 callq *%r10 After the patch: 0f 83 a8 fe ff ff jae ffffffff811e626d <shrink_inactive_list+0x1cd> 8b 9b b8 fe ff ff mov -0x148(%rbx),%ebx 45 8b 64 24 20 mov 0x20(%r12),%r12d 4c 8b 6d a0 mov -0x60(%rbp),%r13 65 ff 05 f5 f7 e2 7e incl %gs:0x7ee2f7f5(%rip) # 15bd0 <__preempt_count> 4c 8b 35 86 5b 13 01 mov 0x1135b86(%rip),%r14 # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28> 4d 85 f6 test %r14,%r14 74 2a je ffffffff811e6411 <shrink_inactive_list+0x371> 49 8b 06 mov (%r14),%rax 8b 4d 8c mov -0x74(%rbp),%ecx 49 8b 7e 08 mov 0x8(%r14),%rdi 49 83 c6 18 add $0x18,%r14 4c 89 ea mov %r13,%rdx 45 89 e1 mov %r12d,%r9d 4c 8d 45 b8 lea -0x48(%rbp),%r8 89 de mov %ebx,%esi 51 push %rcx 48 8b 4d 98 mov -0x68(%rbp),%rcx ff d0 callq *%rax Link: http://lkml.kernel.org/r/2559d7cb-ec60-1200-2362-04fa34fd02bb@fb.com Link: http://lkml.kernel.org/r/20180322121003.4177af15@gandalf.local.home Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Reported-by: Alexei Starovoitov <ast@fb.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexei Starovoitov <ast@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-10 23:28:07 +00:00
__entry->nr_dirty = stat->nr_dirty;
__entry->nr_writeback = stat->nr_writeback;
__entry->nr_congested = stat->nr_congested;
__entry->nr_immediate = stat->nr_immediate;
__entry->nr_activate = stat->nr_activate;
__entry->nr_ref_keep = stat->nr_ref_keep;
__entry->nr_unmap_fail = stat->nr_unmap_fail;
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
__entry->priority = priority;
__entry->reclaim_flags = trace_shrink_flags(file);
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
),
TP_printk("nid=%d nr_scanned=%ld nr_reclaimed=%ld nr_dirty=%ld nr_writeback=%ld nr_congested=%ld nr_immediate=%ld nr_activate=%ld nr_ref_keep=%ld nr_unmap_fail=%ld priority=%d flags=%s",
mm, vmscan: move LRU lists to node This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 22:45:31 +00:00
__entry->nid,
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
__entry->nr_scanned, __entry->nr_reclaimed,
__entry->nr_dirty, __entry->nr_writeback,
__entry->nr_congested, __entry->nr_immediate,
__entry->nr_activate, __entry->nr_ref_keep,
__entry->nr_unmap_fail, __entry->priority,
tracing, vmscan: add trace events for LRU list shrinking There have been numerous reports of stalls that pointed at the problem being somewhere in the VM. There are multiple roots to the problems which means dealing with any of the root problems in isolation is tricky to justify on their own and they would still need integration testing. This patch series puts together two different patch sets which in combination should tackle some of the root causes of latency problems being reported. Patch 1 adds a tracepoint for shrink_inactive_list. For this series, the most important results is being able to calculate the scanning/reclaim ratio as a measure of the amount of work being done by page reclaim. Patch 2 accounts for time spent in congestion_wait. Patches 3-6 were originally developed by Kosaki Motohiro but reworked for this series. It has been noted that lumpy reclaim is far too aggressive and trashes the system somewhat. As SLUB uses high-order allocations, a large cost incurred by lumpy reclaim will be noticeable. It was also reported during transparent hugepage support testing that lumpy reclaim was trashing the system and these patches should mitigate that problem without disabling lumpy reclaim. Patch 7 adds wait_iff_congested() and replaces some callers of congestion_wait(). wait_iff_congested() only sleeps if there is a BDI that is currently congested. Patch 8 notes that any BDI being congested is not necessarily a problem because there could be multiple BDIs of varying speeds and numberous zones. It attempts to track when a zone being reclaimed contains many pages backed by a congested BDI and if so, reclaimers wait on the congestion queue. I ran a number of tests with monitoring on X86, X86-64 and PPC64. Each machine had 3G of RAM and the CPUs were X86: Intel P4 2-core X86-64: AMD Phenom 4-core PPC64: PPC970MP Each used a single disk and the onboard IO controller. Dirty ratio was left at 20. I'm just going to report for X86-64 and PPC64 in a vague attempt to keep this report short. Four kernels were tested each based on v2.6.36-rc4 traceonly-v2r2: Patches 1 and 2 to instrument vmscan reclaims and congestion_wait lowlumpy-v2r3: Patches 1-6 to test if lumpy reclaim is better waitcongest-v2r3: Patches 1-7 to only wait on congestion waitwriteback-v2r4: Patches 1-8 to detect when a zone is congested nocongest-v1r5: Patches 1-3 for testing wait_iff_congestion nodirect-v1r5: Patches 1-10 to disable filesystem writeback for better IO The tests run were as follows kernbench compile-based benchmark. Smoke test performance sysbench OLTP read-only benchmark. Will be re-run in the future as read-write micro-mapped-file-stream This is a micro-benchmark from Johannes Weiner that accesses a large sparse-file through mmap(). It was configured to run in only single-CPU mode but can be indicative of how well page reclaim identifies suitable pages. stress-highalloc Tries to allocate huge pages under heavy load. kernbench, iozone and sysbench did not report any performance regression on any machine. sysbench did pressure the system lightly and there was reclaim activity but there were no difference of major interest between the kernels. X86-64 micro-mapped-file-stream traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 pgalloc_dma 1639.00 ( 0.00%) 667.00 (-145.73%) 1167.00 ( -40.45%) 578.00 (-183.56%) pgalloc_dma32 2842410.00 ( 0.00%) 2842626.00 ( 0.01%) 2843043.00 ( 0.02%) 2843014.00 ( 0.02%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 729.00 ( 0.00%) 85.00 (-757.65%) 609.00 ( -19.70%) 125.00 (-483.20%) pgsteal_dma32 2338721.00 ( 0.00%) 2447354.00 ( 4.44%) 2429536.00 ( 3.74%) 2436772.00 ( 4.02%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 1469.00 ( 0.00%) 532.00 (-176.13%) 1078.00 ( -36.27%) 220.00 (-567.73%) pgscan_kswapd_dma32 4597713.00 ( 0.00%) 4503597.00 ( -2.09%) 4295673.00 ( -7.03%) 3891686.00 ( -18.14%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 71.00 ( 0.00%) 134.00 ( 47.01%) 243.00 ( 70.78%) 352.00 ( 79.83%) pgscan_direct_dma32 305820.00 ( 0.00%) 280204.00 ( -9.14%) 600518.00 ( 49.07%) 957485.00 ( 68.06%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 16296.00 ( 0.00%) 21254.00 ( 23.33%) 18447.00 ( 11.66%) 20067.00 ( 18.79%) allocstall 443.00 ( 0.00%) 273.00 ( -62.27%) 513.00 ( 13.65%) 1568.00 ( 71.75%) These are based on the raw figures taken from /proc/vmstat. It's a rough measure of reclaim activity. Note that allocstall counts are higher because we are entering direct reclaim more often as a result of not sleeping in congestion. In itself, it's not necessarily a bad thing. It's easier to get a view of what happened from the vmscan tracepoint report. FTrace Reclaim Statistics: vmscan traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3 waitwriteback-v2r4 Direct reclaims 443 273 513 1568 Direct reclaim pages scanned 305968 280402 600825 957933 Direct reclaim pages reclaimed 43503 19005 30327 117191 Direct reclaim write file async I/O 0 0 0 0 Direct reclaim write anon async I/O 0 3 4 12 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 187649 132338 191695 267701 Kswapd wakeups 3 1 4 1 Kswapd pages scanned 4599269 4454162 4296815 3891906 Kswapd pages reclaimed 2295947 2428434 2399818 2319706 Kswapd reclaim write file async I/O 1 0 1 1 Kswapd reclaim write anon async I/O 59 187 41 222 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4.34 2.52 6.63 2.96 Time kswapd awake (seconds) 11.15 10.25 11.01 10.19 Total pages scanned 4905237 4734564 4897640 4849839 Total pages reclaimed 2339450 2447439 2430145 2436897 %age total pages scanned/reclaimed 47.69% 51.69% 49.62% 50.25% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 29.23% 19.02% 38.48% 20.25% Percentage Time kswapd Awake 78.58% 78.85% 76.83% 79.86% What is interesting here for nocongest in particular is that while direct reclaim scans more pages, the overall number of pages scanned remains the same and the ratio of pages scanned to pages reclaimed is more or less the same. In other words, while we are sleeping less, reclaim is not doing more work and as direct reclaim and kswapd is awake for less time, it would appear to be doing less work. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 87 196 64 0 Direct time congest waited 4604ms 4732ms 5420ms 0ms Direct full congest waited 72 145 53 0 Direct number conditional waited 0 0 324 1315 Direct time conditional waited 0ms 0ms 0ms 0ms Direct full conditional waited 0 0 0 0 KSwapd number congest waited 20 10 15 7 KSwapd time congest waited 1264ms 536ms 884ms 284ms KSwapd full congest waited 10 4 6 2 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 8 seconds asleep in direct reclaim and no time at all asleep with the patches. MMTests Statistics: duration User/Sys Time Running Test (seconds) 10.51 10.73 10.6 11.66 Total Elapsed Time (seconds) 14.19 13.00 14.33 12.76 Overall, the tests completed faster. It is interesting to note that backing off further when a zone is congested and not just a BDI was more efficient overall. PPC64 micro-mapped-file-stream pgalloc_dma 3024660.00 ( 0.00%) 3027185.00 ( 0.08%) 3025845.00 ( 0.04%) 3026281.00 ( 0.05%) pgalloc_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgsteal_dma 2508073.00 ( 0.00%) 2565351.00 ( 2.23%) 2463577.00 ( -1.81%) 2532263.00 ( 0.96%) pgsteal_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_kswapd_dma 4601307.00 ( 0.00%) 4128076.00 ( -11.46%) 3912317.00 ( -17.61%) 3377165.00 ( -36.25%) pgscan_kswapd_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pgscan_direct_dma 629825.00 ( 0.00%) 971622.00 ( 35.18%) 1063938.00 ( 40.80%) 1711935.00 ( 63.21%) pgscan_direct_normal 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) pageoutrun 27776.00 ( 0.00%) 20458.00 ( -35.77%) 18763.00 ( -48.04%) 18157.00 ( -52.98%) allocstall 977.00 ( 0.00%) 2751.00 ( 64.49%) 2098.00 ( 53.43%) 5136.00 ( 80.98%) Similar trends to x86-64. allocstalls are up but it's not necessarily bad. FTrace Reclaim Statistics: vmscan Direct reclaims 977 2709 2098 5136 Direct reclaim pages scanned 629825 963814 1063938 1711935 Direct reclaim pages reclaimed 75550 242538 150904 387647 Direct reclaim write file async I/O 0 0 0 2 Direct reclaim write anon async I/O 0 10 0 4 Direct reclaim write file sync I/O 0 0 0 0 Direct reclaim write anon sync I/O 0 0 0 0 Wake kswapd requests 392119 1201712 571935 571921 Kswapd wakeups 3 2 3 3 Kswapd pages scanned 4601307 4128076 3912317 3377165 Kswapd pages reclaimed 2432523 2318797 2312673 2144616 Kswapd reclaim write file async I/O 20 1 1 1 Kswapd reclaim write anon async I/O 57 132 11 121 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 6.19 7.30 13.04 10.88 Time kswapd awake (seconds) 21.73 26.51 25.55 23.90 Total pages scanned 5231132 5091890 4976255 5089100 Total pages reclaimed 2508073 2561335 2463577 2532263 %age total pages scanned/reclaimed 47.95% 50.30% 49.51% 49.76% %age total pages scanned/written 0.00% 0.00% 0.00% 0.00% %age file pages scanned/written 0.00% 0.00% 0.00% 0.00% Percentage Time Spent Direct Reclaim 18.89% 20.65% 32.65% 27.65% Percentage Time kswapd Awake 72.39% 80.68% 78.21% 77.40% Again, a similar trend that the congestion_wait changes mean that direct reclaim scans more pages but the overall number of pages scanned while slightly reduced, are very similar. The ratio of scanning/reclaimed remains roughly similar. The downside is that kswapd and direct reclaim was awake longer and for a larger percentage of the overall workload. It's possible there were big differences in the amount of time spent reclaiming slab pages between the different kernels which is plausible considering that the micro tests runs after fsmark and sysbench. Trace Reclaim Statistics: congestion_wait Direct number congest waited 845 1312 104 0 Direct time congest waited 19416ms 26560ms 7544ms 0ms Direct full congest waited 745 1105 72 0 Direct number conditional waited 0 0 1322 2935 Direct time conditional waited 0ms 0ms 12ms 312ms Direct full conditional waited 0 0 0 3 KSwapd number congest waited 39 102 75 63 KSwapd time congest waited 2484ms 6760ms 5756ms 3716ms KSwapd full congest waited 20 48 46 25 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 The vanilla kernel spent 20 seconds asleep in direct reclaim and only 312ms asleep with the patches. The time kswapd spent congest waited was also reduced by a large factor. MMTests Statistics: duration ser/Sys Time Running Test (seconds) 26.58 28.05 26.9 28.47 Total Elapsed Time (seconds) 30.02 32.86 32.67 30.88 With all patches applies, the completion times are very similar. X86-64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 82.00 ( 0.00%) 84.00 ( 2.00%) 85.00 ( 3.00%) 85.00 ( 3.00%) Pass 2 90.00 ( 0.00%) 87.00 (-3.00%) 88.00 (-2.00%) 89.00 (-1.00%) At Rest 92.00 ( 0.00%) 90.00 (-2.00%) 90.00 (-2.00%) 91.00 (-1.00%) Success figures across the board are broadly similar. traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 1045 944 886 887 Direct reclaim pages scanned 135091 119604 109382 101019 Direct reclaim pages reclaimed 88599 47535 47863 46671 Direct reclaim write file async I/O 494 283 465 280 Direct reclaim write anon async I/O 29357 13710 16656 13462 Direct reclaim write file sync I/O 154 2 2 3 Direct reclaim write anon sync I/O 14594 571 509 561 Wake kswapd requests 7491 933 872 892 Kswapd wakeups 814 778 731 780 Kswapd pages scanned 7290822 15341158 11916436 13703442 Kswapd pages reclaimed 3587336 3142496 3094392 3187151 Kswapd reclaim write file async I/O 91975 32317 28022 29628 Kswapd reclaim write anon async I/O 1992022 789307 829745 849769 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 4588.93 2467.16 2495.41 2547.07 Time kswapd awake (seconds) 2497.66 1020.16 1098.06 1176.82 Total pages scanned 7425913 15460762 12025818 13804461 Total pages reclaimed 3675935 3190031 3142255 3233822 %age total pages scanned/reclaimed 49.50% 20.63% 26.13% 23.43% %age total pages scanned/written 28.66% 5.41% 7.28% 6.47% %age file pages scanned/written 1.25% 0.21% 0.24% 0.22% Percentage Time Spent Direct Reclaim 57.33% 42.15% 42.41% 42.99% Percentage Time kswapd Awake 43.56% 27.87% 29.76% 31.25% Scanned/reclaimed ratios again look good with big improvements in efficiency. The Scanned/written ratios also look much improved. With a better scanned/written ration, there is an expectation that IO would be more efficient and indeed, the time spent in direct reclaim is much reduced by the full series and kswapd spends a little less time awake. Overall, indications here are that allocations were happening much faster and this can be seen with a graph of the latency figures as the allocations were taking place http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-hydra-mean.ps FTrace Reclaim Statistics: congestion_wait Direct number congest waited 1333 204 169 4 Direct time congest waited 78896ms 8288ms 7260ms 200ms Direct full congest waited 756 92 69 2 Direct number conditional waited 0 0 26 186 Direct time conditional waited 0ms 0ms 0ms 2504ms Direct full conditional waited 0 0 0 25 KSwapd number congest waited 4 395 227 282 KSwapd time congest waited 384ms 25136ms 10508ms 18380ms KSwapd full congest waited 3 232 98 176 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 KSwapd full conditional waited 318 0 312 9 Overall, the time spent speeping is reduced. kswapd is still hitting congestion_wait() but that is because there are callers remaining where it wasn't clear in advance if they should be changed to wait_iff_congested() or not. Overall the sleep imes are reduced though - from 79ish seconds to about 19. MMTests Statistics: duration User/Sys Time Running Test (seconds) 3415.43 3386.65 3388.39 3377.5 Total Elapsed Time (seconds) 5733.48 3660.33 3689.41 3765.39 With the full series, the time to complete the tests are reduced by 30% PPC64 STRESS-HIGHALLOC traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Pass 1 17.00 ( 0.00%) 34.00 (17.00%) 38.00 (21.00%) 43.00 (26.00%) Pass 2 25.00 ( 0.00%) 37.00 (12.00%) 42.00 (17.00%) 46.00 (21.00%) At Rest 49.00 ( 0.00%) 43.00 (-6.00%) 45.00 (-4.00%) 51.00 ( 2.00%) Success rates there are *way* up particularly considering that the 16MB huge pages on PPC64 mean that it's always much harder to allocate them. FTrace Reclaim Statistics: vmscan stress-highalloc stress-highalloc stress-highalloc stress-highalloc traceonly-v2r2 lowlumpy-v2r3 waitcongest-v2r3waitwriteback-v2r4 Direct reclaims 499 505 564 509 Direct reclaim pages scanned 223478 41898 51818 45605 Direct reclaim pages reclaimed 137730 21148 27161 23455 Direct reclaim write file async I/O 399 136 162 136 Direct reclaim write anon async I/O 46977 2865 4686 3998 Direct reclaim write file sync I/O 29 0 1 3 Direct reclaim write anon sync I/O 31023 159 237 239 Wake kswapd requests 420 351 360 326 Kswapd wakeups 185 294 249 277 Kswapd pages scanned 15703488 16392500 17821724 17598737 Kswapd pages reclaimed 5808466 2908858 3139386 3145435 Kswapd reclaim write file async I/O 159938 18400 18717 13473 Kswapd reclaim write anon async I/O 3467554 228957 322799 234278 Kswapd reclaim write file sync I/O 0 0 0 0 Kswapd reclaim write anon sync I/O 0 0 0 0 Time stalled direct reclaim (seconds) 9665.35 1707.81 2374.32 1871.23 Time kswapd awake (seconds) 9401.21 1367.86 1951.75 1328.88 Total pages scanned 15926966 16434398 17873542 17644342 Total pages reclaimed 5946196 2930006 3166547 3168890 %age total pages scanned/reclaimed 37.33% 17.83% 17.72% 17.96% %age total pages scanned/written 23.27% 1.52% 1.94% 1.43% %age file pages scanned/written 1.01% 0.11% 0.11% 0.08% Percentage Time Spent Direct Reclaim 44.55% 35.10% 41.42% 36.91% Percentage Time kswapd Awake 86.71% 43.58% 52.67% 41.14% While the scanning rates are slightly up, the scanned/reclaimed and scanned/written figures are much improved. The time spent in direct reclaim and with kswapd are massively reduced, mostly by the lowlumpy patches. FTrace Reclaim Statistics: congestion_wait Direct number congest waited 725 303 126 3 Direct time congest waited 45524ms 9180ms 5936ms 300ms Direct full congest waited 487 190 52 3 Direct number conditional waited 0 0 200 301 Direct time conditional waited 0ms 0ms 0ms 1904ms Direct full conditional waited 0 0 0 19 KSwapd number congest waited 0 2 23 4 KSwapd time congest waited 0ms 200ms 420ms 404ms KSwapd full congest waited 0 2 2 4 KSwapd number conditional waited 0 0 0 0 KSwapd time conditional waited 0ms 0ms 0ms 0ms KSwapd full conditional waited 0 0 0 0 Not as dramatic a story here but the time spent asleep is reduced and we can still see what wait_iff_congested is going to sleep when necessary. MMTests Statistics: duration User/Sys Time Running Test (seconds) 12028.09 3157.17 3357.79 3199.16 Total Elapsed Time (seconds) 10842.07 3138.72 3705.54 3229.85 The time to complete this test goes way down. With the full series, we are allocating over twice the number of huge pages in 30% of the time and there is a corresponding impact on the allocation latency graph available at. http://www.csn.ul.ie/~mel/postings/vmscanreduce-20101509/highalloc-interlatency-powyah-mean.ps This patch: Add a trace event for shrink_inactive_list() and updates the sample postprocessing script appropriately. It can be used to determine how many pages were reclaimed and for non-lumpy reclaim where exactly the pages were reclaimed from. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 21:21:40 +00:00
show_reclaim_flags(__entry->reclaim_flags))
);
TRACE_EVENT(mm_vmscan_lru_shrink_active,
TP_PROTO(int nid, unsigned long nr_taken,
unsigned long nr_active, unsigned long nr_deactivated,
unsigned long nr_referenced, int priority, int file),
TP_ARGS(nid, nr_taken, nr_active, nr_deactivated, nr_referenced, priority, file),
TP_STRUCT__entry(
__field(int, nid)
__field(unsigned long, nr_taken)
__field(unsigned long, nr_active)
__field(unsigned long, nr_deactivated)
__field(unsigned long, nr_referenced)
__field(int, priority)
__field(int, reclaim_flags)
),
TP_fast_assign(
__entry->nid = nid;
__entry->nr_taken = nr_taken;
__entry->nr_active = nr_active;
__entry->nr_deactivated = nr_deactivated;
__entry->nr_referenced = nr_referenced;
__entry->priority = priority;
__entry->reclaim_flags = trace_shrink_flags(file);
),
TP_printk("nid=%d nr_taken=%ld nr_active=%ld nr_deactivated=%ld nr_referenced=%ld priority=%d flags=%s",
__entry->nid,
__entry->nr_taken,
__entry->nr_active, __entry->nr_deactivated, __entry->nr_referenced,
__entry->priority,
show_reclaim_flags(__entry->reclaim_flags))
);
TRACE_EVENT(mm_vmscan_inactive_list_is_low,
TP_PROTO(int nid, int reclaim_idx,
unsigned long total_inactive, unsigned long inactive,
unsigned long total_active, unsigned long active,
unsigned long ratio, int file),
TP_ARGS(nid, reclaim_idx, total_inactive, inactive, total_active, active, ratio, file),
TP_STRUCT__entry(
__field(int, nid)
__field(int, reclaim_idx)
__field(unsigned long, total_inactive)
__field(unsigned long, inactive)
__field(unsigned long, total_active)
__field(unsigned long, active)
__field(unsigned long, ratio)
__field(int, reclaim_flags)
),
TP_fast_assign(
__entry->nid = nid;
__entry->reclaim_idx = reclaim_idx;
__entry->total_inactive = total_inactive;
__entry->inactive = inactive;
__entry->total_active = total_active;
__entry->active = active;
__entry->ratio = ratio;
__entry->reclaim_flags = trace_shrink_flags(file) & RECLAIM_WB_LRU;
),
TP_printk("nid=%d reclaim_idx=%d total_inactive=%ld inactive=%ld total_active=%ld active=%ld ratio=%ld flags=%s",
__entry->nid,
__entry->reclaim_idx,
__entry->total_inactive, __entry->inactive,
__entry->total_active, __entry->active,
__entry->ratio,
show_reclaim_flags(__entry->reclaim_flags))
);
#endif /* _TRACE_VMSCAN_H */
/* This part must be outside protection */
#include <trace/define_trace.h>