linux/drivers/platform/x86/intel_scu_ipc.c

460 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Intel SCU IPC mechanism
*
* (C) Copyright 2008-2010,2015 Intel Corporation
* Author: Sreedhara DS (sreedhara.ds@intel.com)
*
* SCU running in ARC processor communicates with other entity running in IA
* core through IPC mechanism which in turn messaging between IA core ad SCU.
* SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
* SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
* IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
* along with other APIs.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/pm.h>
#include <linux/sfi.h>
#include <asm/intel-mid.h>
#include <asm/intel_scu_ipc.h>
/* IPC defines the following message types */
#define IPCMSG_PCNTRL 0xff /* Power controller unit read/write */
/* Command id associated with message IPCMSG_PCNTRL */
#define IPC_CMD_PCNTRL_W 0 /* Register write */
#define IPC_CMD_PCNTRL_R 1 /* Register read */
#define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
/*
* IPC register summary
*
* IPC register blocks are memory mapped at fixed address of PCI BAR 0.
* To read or write information to the SCU, driver writes to IPC-1 memory
* mapped registers. The following is the IPC mechanism
*
* 1. IA core cDMI interface claims this transaction and converts it to a
* Transaction Layer Packet (TLP) message which is sent across the cDMI.
*
* 2. South Complex cDMI block receives this message and writes it to
* the IPC-1 register block, causing an interrupt to the SCU
*
* 3. SCU firmware decodes this interrupt and IPC message and the appropriate
* message handler is called within firmware.
*/
#define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
#define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
#define IPC_IOC 0x100 /* IPC command register IOC bit */
struct intel_scu_ipc_dev {
struct device *dev;
void __iomem *ipc_base;
struct completion cmd_complete;
u8 irq_mode;
};
static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
#define IPC_STATUS 0x04
#define IPC_STATUS_IRQ BIT(2)
#define IPC_STATUS_ERR BIT(1)
#define IPC_STATUS_BUSY BIT(0)
/*
* IPC Write/Read Buffers:
* 16 byte buffer for sending and receiving data to and from SCU.
*/
#define IPC_WRITE_BUFFER 0x80
#define IPC_READ_BUFFER 0x90
/* Timeout in jiffies */
#define IPC_TIMEOUT (3 * HZ)
static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
/*
* Send ipc command
* Command Register (Write Only):
* A write to this register results in an interrupt to the SCU core processor
* Format:
* |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
*/
static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
{
reinit_completion(&scu->cmd_complete);
writel(cmd | IPC_IOC, scu->ipc_base);
}
/*
* Write ipc data
* IPC Write Buffer (Write Only):
* 16-byte buffer for sending data associated with IPC command to
* SCU. Size of the data is specified in the IPC_COMMAND_REG register
*/
static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
{
writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
}
/*
* Status Register (Read Only):
* Driver will read this register to get the ready/busy status of the IPC
* block and error status of the IPC command that was just processed by SCU
* Format:
* |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
*/
static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
{
return __raw_readl(scu->ipc_base + IPC_STATUS);
}
/* Read ipc byte data */
static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
{
return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
}
/* Read ipc u32 data */
static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
{
return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
}
/* Wait till scu status is busy */
static inline int busy_loop(struct intel_scu_ipc_dev *scu)
{
unsigned long end = jiffies + msecs_to_jiffies(IPC_TIMEOUT);
do {
u32 status;
status = ipc_read_status(scu);
if (!(status & IPC_STATUS_BUSY))
return (status & IPC_STATUS_ERR) ? -EIO : 0;
usleep_range(50, 100);
} while (time_before(jiffies, end));
dev_err(scu->dev, "IPC timed out");
return -ETIMEDOUT;
}
/* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
{
int status;
if (!wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT)) {
dev_err(scu->dev, "IPC timed out\n");
return -ETIMEDOUT;
}
status = ipc_read_status(scu);
if (status & IPC_STATUS_ERR)
return -EIO;
return 0;
}
static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
{
return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
}
/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
{
struct intel_scu_ipc_dev *scu = &ipcdev;
int nc;
u32 offset = 0;
int err;
u8 cbuf[IPC_WWBUF_SIZE];
u32 *wbuf = (u32 *)&cbuf;
memset(cbuf, 0, sizeof(cbuf));
mutex_lock(&ipclock);
if (scu->dev == NULL) {
mutex_unlock(&ipclock);
return -ENODEV;
}
for (nc = 0; nc < count; nc++, offset += 2) {
cbuf[offset] = addr[nc];
cbuf[offset + 1] = addr[nc] >> 8;
}
if (id == IPC_CMD_PCNTRL_R) {
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
ipc_data_writel(scu, wbuf[nc], offset);
ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
} else if (id == IPC_CMD_PCNTRL_W) {
for (nc = 0; nc < count; nc++, offset += 1)
cbuf[offset] = data[nc];
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
ipc_data_writel(scu, wbuf[nc], offset);
ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
} else if (id == IPC_CMD_PCNTRL_M) {
cbuf[offset] = data[0];
cbuf[offset + 1] = data[1];
ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
}
err = intel_scu_ipc_check_status(scu);
if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
/* Workaround: values are read as 0 without memcpy_fromio */
memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
for (nc = 0; nc < count; nc++)
data[nc] = ipc_data_readb(scu, nc);
}
mutex_unlock(&ipclock);
return err;
}
/**
* intel_scu_ipc_ioread8 - read a word via the SCU
* @addr: Register on SCU
* @data: Return pointer for read byte
*
* Read a single register. Returns %0 on success or an error code. All
* locking between SCU accesses is handled for the caller.
*
* This function may sleep.
*/
int intel_scu_ipc_ioread8(u16 addr, u8 *data)
{
return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_ioread8);
/**
* intel_scu_ipc_iowrite8 - write a byte via the SCU
* @addr: Register on SCU
* @data: Byte to write
*
* Write a single register. Returns %0 on success or an error code. All
* locking between SCU accesses is handled for the caller.
*
* This function may sleep.
*/
int intel_scu_ipc_iowrite8(u16 addr, u8 data)
{
return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
/**
* intel_scu_ipc_readvv - read a set of registers
* @addr: Register list
* @data: Bytes to return
* @len: Length of array
*
* Read registers. Returns %0 on success or an error code. All locking
* between SCU accesses is handled for the caller.
*
* The largest array length permitted by the hardware is 5 items.
*
* This function may sleep.
*/
int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
{
return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_readv);
/**
* intel_scu_ipc_writev - write a set of registers
* @addr: Register list
* @data: Bytes to write
* @len: Length of array
*
* Write registers. Returns %0 on success or an error code. All locking
* between SCU accesses is handled for the caller.
*
* The largest array length permitted by the hardware is 5 items.
*
* This function may sleep.
*/
int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
{
return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_writev);
/**
* intel_scu_ipc_update_register - r/m/w a register
* @addr: Register address
* @bits: Bits to update
* @mask: Mask of bits to update
*
* Read-modify-write power control unit register. The first data argument
* must be register value and second is mask value mask is a bitmap that
* indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
* modify this bit. returns %0 on success or an error code.
*
* This function may sleep. Locking between SCU accesses is handled
* for the caller.
*/
int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
{
u8 data[2] = { bits, mask };
return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
}
EXPORT_SYMBOL(intel_scu_ipc_update_register);
/**
* intel_scu_ipc_simple_command - send a simple command
* @cmd: Command
* @sub: Sub type
*
* Issue a simple command to the SCU. Do not use this interface if you must
* then access data as any data values may be overwritten by another SCU
* access by the time this function returns.
*
* This function may sleep. Locking for SCU accesses is handled for the
* caller.
*/
int intel_scu_ipc_simple_command(int cmd, int sub)
{
struct intel_scu_ipc_dev *scu = &ipcdev;
int err;
mutex_lock(&ipclock);
if (scu->dev == NULL) {
mutex_unlock(&ipclock);
return -ENODEV;
}
ipc_command(scu, sub << 12 | cmd);
err = intel_scu_ipc_check_status(scu);
mutex_unlock(&ipclock);
return err;
}
EXPORT_SYMBOL(intel_scu_ipc_simple_command);
/**
* intel_scu_ipc_command - command with data
* @cmd: Command
* @sub: Sub type
* @in: Input data
* @inlen: Input length in dwords
* @out: Output data
* @outlen: Output length in dwords
*
* Issue a command to the SCU which involves data transfers. Do the
* data copies under the lock but leave it for the caller to interpret.
*/
int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
u32 *out, int outlen)
{
struct intel_scu_ipc_dev *scu = &ipcdev;
int i, err;
mutex_lock(&ipclock);
if (scu->dev == NULL) {
mutex_unlock(&ipclock);
return -ENODEV;
}
for (i = 0; i < inlen; i++)
ipc_data_writel(scu, *in++, 4 * i);
ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
err = intel_scu_ipc_check_status(scu);
if (!err) {
for (i = 0; i < outlen; i++)
*out++ = ipc_data_readl(scu, 4 * i);
}
mutex_unlock(&ipclock);
return err;
}
EXPORT_SYMBOL(intel_scu_ipc_command);
/*
* Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
* When ioc bit is set to 1, caller api must wait for interrupt handler called
* which in turn unlocks the caller api. Currently this is not used
*
* This is edge triggered so we need take no action to clear anything
*/
static irqreturn_t ioc(int irq, void *dev_id)
{
struct intel_scu_ipc_dev *scu = dev_id;
int status = ipc_read_status(scu);
writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
complete(&scu->cmd_complete);
return IRQ_HANDLED;
}
/**
* ipc_probe - probe an Intel SCU IPC
* @pdev: the PCI device matching
* @id: entry in the match table
*
* Enable and install an intel SCU IPC. This appears in the PCI space
* but uses some hard coded addresses as well.
*/
static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
int err;
struct intel_scu_ipc_dev *scu = &ipcdev;
if (scu->dev) /* We support only one SCU */
return -EBUSY;
err = pcim_enable_device(pdev);
if (err)
return err;
err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
if (err)
return err;
init_completion(&scu->cmd_complete);
scu->ipc_base = pcim_iomap_table(pdev)[0];
err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
scu);
if (err)
return err;
/* Assign device at last */
scu->dev = &pdev->dev;
2010-11-09 11:22:58 +00:00
intel_scu_devices_create();
pci_set_drvdata(pdev, scu);
return 0;
}
static const struct pci_device_id pci_ids[] = {
{ PCI_VDEVICE(INTEL, 0x080e) },
{ PCI_VDEVICE(INTEL, 0x08ea) },
{ PCI_VDEVICE(INTEL, 0x11a0) },
{}
};
static struct pci_driver ipc_driver = {
.driver = {
.suppress_bind_attrs = true,
},
.name = "intel_scu_ipc",
.id_table = pci_ids,
.probe = ipc_probe,
};
builtin_pci_driver(ipc_driver);