linux/arch/arm64/include/asm/smp.h

164 lines
4.5 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ASM_SMP_H
#define __ASM_SMP_H
#include <linux/const.h>
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* Values for secondary_data.status */
#define CPU_STUCK_REASON_SHIFT (8)
#define CPU_BOOT_STATUS_MASK ((UL(1) << CPU_STUCK_REASON_SHIFT) - 1)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
#define CPU_MMU_OFF (-1)
#define CPU_BOOT_SUCCESS (0)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* The cpu invoked ops->cpu_die, synchronise it with cpu_kill */
#define CPU_KILL_ME (1)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* The cpu couldn't die gracefully and is looping in the kernel */
#define CPU_STUCK_IN_KERNEL (2)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
/* Fatal system error detected by secondary CPU, crash the system */
#define CPU_PANIC_KERNEL (3)
#define CPU_STUCK_REASON_52_BIT_VA (UL(1) << CPU_STUCK_REASON_SHIFT)
#define CPU_STUCK_REASON_NO_GRAN (UL(2) << CPU_STUCK_REASON_SHIFT)
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
#ifndef __ASSEMBLY__
#include <asm/percpu.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/thread_info.h>
DECLARE_PER_CPU_READ_MOSTLY(int, cpu_number);
/*
* We don't use this_cpu_read(cpu_number) as that has implicit writes to
* preempt_count, and associated (compiler) barriers, that we'd like to avoid
* the expense of. If we're preemptible, the value can be stale at use anyway.
* And we can't use this_cpu_ptr() either, as that winds up recursing back
* here under CONFIG_DEBUG_PREEMPT=y.
*/
#define raw_smp_processor_id() (*raw_cpu_ptr(&cpu_number))
struct seq_file;
/*
* generate IPI list text
*/
extern void show_ipi_list(struct seq_file *p, int prec);
/*
* Called from C code, this handles an IPI.
*/
extern void handle_IPI(int ipinr, struct pt_regs *regs);
/*
* Discover the set of possible CPUs and determine their
* SMP operations.
*/
extern void smp_init_cpus(void);
/*
* Provide a function to raise an IPI cross call on CPUs in callmap.
*/
extern void set_smp_cross_call(void (*)(const struct cpumask *, unsigned int));
extern void (*__smp_cross_call)(const struct cpumask *, unsigned int);
/*
* Called from the secondary holding pen, this is the secondary CPU entry point.
*/
asmlinkage void secondary_start_kernel(void);
/*
* Initial data for bringing up a secondary CPU.
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
* @stack - sp for the secondary CPU
* @status - Result passed back from the secondary CPU to
* indicate failure.
*/
struct secondary_data {
void *stack;
arm64: split thread_info from task stack This patch moves arm64's struct thread_info from the task stack into task_struct. This protects thread_info from corruption in the case of stack overflows, and makes its address harder to determine if stack addresses are leaked, making a number of attacks more difficult. Precise detection and handling of overflow is left for subsequent patches. Largely, this involves changing code to store the task_struct in sp_el0, and acquire the thread_info from the task struct. Core code now implements current_thread_info(), and as noted in <linux/sched.h> this relies on offsetof(task_struct, thread_info) == 0, enforced by core code. This change means that the 'tsk' register used in entry.S now points to a task_struct, rather than a thread_info as it used to. To make this clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets appropriately updated to account for the structural change. Userspace clobbers sp_el0, and we can no longer restore this from the stack. Instead, the current task is cached in a per-cpu variable that we can safely access from early assembly as interrupts are disabled (and we are thus not preemptible). Both secondary entry and idle are updated to stash the sp and task pointer separately. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-03 20:23:13 +00:00
struct task_struct *task;
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
long status;
};
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
extern struct secondary_data secondary_data;
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
extern long __early_cpu_boot_status;
extern void secondary_entry(void);
extern void arch_send_call_function_single_ipi(int cpu);
extern void arch_send_call_function_ipi_mask(const struct cpumask *mask);
arm64: kernel: implement ACPI parking protocol The SBBR and ACPI specifications allow ACPI based systems that do not implement PSCI (eg systems with no EL3) to boot through the ACPI parking protocol specification[1]. This patch implements the ACPI parking protocol CPU operations, and adds code that eases parsing the parking protocol data structures to the ARM64 SMP initializion carried out at the same time as cpus enumeration. To wake-up the CPUs from the parked state, this patch implements a wakeup IPI for ARM64 (ie arch_send_wakeup_ipi_mask()) that mirrors the ARM one, so that a specific IPI is sent for wake-up purpose in order to distinguish it from other IPI sources. Given the current ACPI MADT parsing API, the patch implements a glue layer that helps passing MADT GICC data structure from SMP initialization code to the parking protocol implementation somewhat overriding the CPU operations interfaces. This to avoid creating a completely trasparent DT/ACPI CPU operations layer that would require creating opaque structure handling for CPUs data (DT represents CPU through DT nodes, ACPI through static MADT table entries), which seems overkill given that ACPI on ARM64 mandates only two booting protocols (PSCI and parking protocol), so there is no need for further protocol additions. Based on the original work by Mark Salter <msalter@redhat.com> [1] https://acpica.org/sites/acpica/files/MP%20Startup%20for%20ARM%20platforms.docx Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Tested-by: Loc Ho <lho@apm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Hanjun Guo <hanjun.guo@linaro.org> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mark Salter <msalter@redhat.com> Cc: Al Stone <ahs3@redhat.com> [catalin.marinas@arm.com: Added WARN_ONCE(!acpi_parking_protocol_valid() on the IPI] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-26 11:10:38 +00:00
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
extern void arch_send_wakeup_ipi_mask(const struct cpumask *mask);
#else
static inline void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
{
BUILD_BUG();
}
#endif
extern int __cpu_disable(void);
extern void __cpu_die(unsigned int cpu);
extern void cpu_die(void);
extern void cpu_die_early(void);
static inline void cpu_park_loop(void)
{
for (;;) {
wfe();
wfi();
}
}
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
static inline void update_cpu_boot_status(int val)
{
WRITE_ONCE(secondary_data.status, val);
/* Ensure the visibility of the status update */
dsb(ishst);
}
/*
* The calling secondary CPU has detected serious configuration mismatch,
* which calls for a kernel panic. Update the boot status and park the calling
* CPU.
*/
static inline void cpu_panic_kernel(void)
{
update_cpu_boot_status(CPU_PANIC_KERNEL);
cpu_park_loop();
}
/*
* If a secondary CPU enters the kernel but fails to come online,
* (e.g. due to mismatched features), and cannot exit the kernel,
* we increment cpus_stuck_in_kernel and leave the CPU in a
* quiesecent loop within the kernel text. The memory containing
* this loop must not be re-used for anything else as the 'stuck'
* core is executing it.
*
* This function is used to inhibit features like kexec and hibernate.
*/
bool cpus_are_stuck_in_kernel(void);
arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores Commit 0ee5941 : (x86/panic: replace smp_send_stop() with kdump friendly version in panic path) introduced crash_smp_send_stop() which is a weak function and can be overridden by architecture codes to fix the side effect caused by commit f06e515 : (kernel/panic.c: add "crash_kexec_post_ notifiers" option). ARM64 architecture uses the weak version function and the problem is that the weak function simply calls smp_send_stop() which makes other CPUs offline and takes away the chance to save crash information for nonpanic CPUs in machine_crash_shutdown() when crash_kexec_post_notifiers kernel option is enabled. Calling smp_send_crash_stop() in machine_crash_shutdown() is useless because all nonpanic CPUs are already offline by smp_send_stop() in this case and smp_send_crash_stop() only works against online CPUs. The result is that secondary CPUs registers are not saved by crash_save_cpu() and the vmcore file misreports these CPUs as being offline. crash_smp_send_stop() is implemented to fix this problem by replacing the existing smp_send_crash_stop() and adding a check for multiple calling to the function. The function (strong symbol version) saves crash information for nonpanic CPUs and machine_crash_shutdown() tries to save crash information for nonpanic CPUs only when crash_kexec_post_notifiers kernel option is disabled. * crash_kexec_post_notifiers : false panic() __crash_kexec() machine_crash_shutdown() crash_smp_send_stop() <= save crash dump for nonpanic cores * crash_kexec_post_notifiers : true panic() crash_smp_send_stop() <= save crash dump for nonpanic cores __crash_kexec() machine_crash_shutdown() crash_smp_send_stop() <= just return. Signed-off-by: Hoeun Ryu <hoeun.ryu@gmail.com> Reviewed-by: James Morse <james.morse@arm.com> Tested-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-08-17 02:24:27 +00:00
extern void crash_smp_send_stop(void);
extern bool smp_crash_stop_failed(void);
arm64: Handle early CPU boot failures A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-02-23 10:31:42 +00:00
#endif /* ifndef __ASSEMBLY__ */
#endif /* ifndef __ASM_SMP_H */