linux/drivers/gpu/drm/i915/intel_display.c

3191 lines
92 KiB
C
Raw Normal View History

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/i2c.h>
#include <linux/kernel.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_dp.h"
#include "drm_crtc_helper.h"
bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
static void intel_update_watermarks(struct drm_device *dev);
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
int, int, intel_clock_t *);
};
#define I8XX_DOT_MIN 25000
#define I8XX_DOT_MAX 350000
#define I8XX_VCO_MIN 930000
#define I8XX_VCO_MAX 1400000
#define I8XX_N_MIN 3
#define I8XX_N_MAX 16
#define I8XX_M_MIN 96
#define I8XX_M_MAX 140
#define I8XX_M1_MIN 18
#define I8XX_M1_MAX 26
#define I8XX_M2_MIN 6
#define I8XX_M2_MAX 16
#define I8XX_P_MIN 4
#define I8XX_P_MAX 128
#define I8XX_P1_MIN 2
#define I8XX_P1_MAX 33
#define I8XX_P1_LVDS_MIN 1
#define I8XX_P1_LVDS_MAX 6
#define I8XX_P2_SLOW 4
#define I8XX_P2_FAST 2
#define I8XX_P2_LVDS_SLOW 14
#define I8XX_P2_LVDS_FAST 14 /* No fast option */
#define I8XX_P2_SLOW_LIMIT 165000
#define I9XX_DOT_MIN 20000
#define I9XX_DOT_MAX 400000
#define I9XX_VCO_MIN 1400000
#define I9XX_VCO_MAX 2800000
#define IGD_VCO_MIN 1700000
#define IGD_VCO_MAX 3500000
#define I9XX_N_MIN 1
#define I9XX_N_MAX 6
/* IGD's Ncounter is a ring counter */
#define IGD_N_MIN 3
#define IGD_N_MAX 6
#define I9XX_M_MIN 70
#define I9XX_M_MAX 120
#define IGD_M_MIN 2
#define IGD_M_MAX 256
#define I9XX_M1_MIN 10
#define I9XX_M1_MAX 22
#define I9XX_M2_MIN 5
#define I9XX_M2_MAX 9
/* IGD M1 is reserved, and must be 0 */
#define IGD_M1_MIN 0
#define IGD_M1_MAX 0
#define IGD_M2_MIN 0
#define IGD_M2_MAX 254
#define I9XX_P_SDVO_DAC_MIN 5
#define I9XX_P_SDVO_DAC_MAX 80
#define I9XX_P_LVDS_MIN 7
#define I9XX_P_LVDS_MAX 98
#define IGD_P_LVDS_MIN 7
#define IGD_P_LVDS_MAX 112
#define I9XX_P1_MIN 1
#define I9XX_P1_MAX 8
#define I9XX_P2_SDVO_DAC_SLOW 10
#define I9XX_P2_SDVO_DAC_FAST 5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
#define I9XX_P2_LVDS_SLOW 14
#define I9XX_P2_LVDS_FAST 7
#define I9XX_P2_LVDS_SLOW_LIMIT 112000
/*The parameter is for SDVO on G4x platform*/
#define G4X_DOT_SDVO_MIN 25000
#define G4X_DOT_SDVO_MAX 270000
#define G4X_VCO_MIN 1750000
#define G4X_VCO_MAX 3500000
#define G4X_N_SDVO_MIN 1
#define G4X_N_SDVO_MAX 4
#define G4X_M_SDVO_MIN 104
#define G4X_M_SDVO_MAX 138
#define G4X_M1_SDVO_MIN 17
#define G4X_M1_SDVO_MAX 23
#define G4X_M2_SDVO_MIN 5
#define G4X_M2_SDVO_MAX 11
#define G4X_P_SDVO_MIN 10
#define G4X_P_SDVO_MAX 30
#define G4X_P1_SDVO_MIN 1
#define G4X_P1_SDVO_MAX 3
#define G4X_P2_SDVO_SLOW 10
#define G4X_P2_SDVO_FAST 10
#define G4X_P2_SDVO_LIMIT 270000
/*The parameter is for HDMI_DAC on G4x platform*/
#define G4X_DOT_HDMI_DAC_MIN 22000
#define G4X_DOT_HDMI_DAC_MAX 400000
#define G4X_N_HDMI_DAC_MIN 1
#define G4X_N_HDMI_DAC_MAX 4
#define G4X_M_HDMI_DAC_MIN 104
#define G4X_M_HDMI_DAC_MAX 138
#define G4X_M1_HDMI_DAC_MIN 16
#define G4X_M1_HDMI_DAC_MAX 23
#define G4X_M2_HDMI_DAC_MIN 5
#define G4X_M2_HDMI_DAC_MAX 11
#define G4X_P_HDMI_DAC_MIN 5
#define G4X_P_HDMI_DAC_MAX 80
#define G4X_P1_HDMI_DAC_MIN 1
#define G4X_P1_HDMI_DAC_MAX 8
#define G4X_P2_HDMI_DAC_SLOW 10
#define G4X_P2_HDMI_DAC_FAST 5
#define G4X_P2_HDMI_DAC_LIMIT 165000
/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
#define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
#define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
#define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
#define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
#define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
#define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
#define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
#define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
#define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
#define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
#define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
#define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
#define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
#define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
#define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
#define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
#define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
#define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
#define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
/*The parameter is for DISPLAY PORT on G4x platform*/
#define G4X_DOT_DISPLAY_PORT_MIN 161670
#define G4X_DOT_DISPLAY_PORT_MAX 227000
#define G4X_N_DISPLAY_PORT_MIN 1
#define G4X_N_DISPLAY_PORT_MAX 2
#define G4X_M_DISPLAY_PORT_MIN 97
#define G4X_M_DISPLAY_PORT_MAX 108
#define G4X_M1_DISPLAY_PORT_MIN 0x10
#define G4X_M1_DISPLAY_PORT_MAX 0x12
#define G4X_M2_DISPLAY_PORT_MIN 0x05
#define G4X_M2_DISPLAY_PORT_MAX 0x06
#define G4X_P_DISPLAY_PORT_MIN 10
#define G4X_P_DISPLAY_PORT_MAX 20
#define G4X_P1_DISPLAY_PORT_MIN 1
#define G4X_P1_DISPLAY_PORT_MAX 2
#define G4X_P2_DISPLAY_PORT_SLOW 10
#define G4X_P2_DISPLAY_PORT_FAST 10
#define G4X_P2_DISPLAY_PORT_LIMIT 0
/* IGDNG */
/* as we calculate clock using (register_value + 2) for
N/M1/M2, so here the range value for them is (actual_value-2).
*/
#define IGDNG_DOT_MIN 25000
#define IGDNG_DOT_MAX 350000
#define IGDNG_VCO_MIN 1760000
#define IGDNG_VCO_MAX 3510000
#define IGDNG_N_MIN 1
#define IGDNG_N_MAX 5
#define IGDNG_M_MIN 79
#define IGDNG_M_MAX 118
#define IGDNG_M1_MIN 12
#define IGDNG_M1_MAX 23
#define IGDNG_M2_MIN 5
#define IGDNG_M2_MAX 9
#define IGDNG_P_SDVO_DAC_MIN 5
#define IGDNG_P_SDVO_DAC_MAX 80
#define IGDNG_P_LVDS_MIN 28
#define IGDNG_P_LVDS_MAX 112
#define IGDNG_P1_MIN 1
#define IGDNG_P1_MAX 8
#define IGDNG_P2_SDVO_DAC_SLOW 10
#define IGDNG_P2_SDVO_DAC_FAST 5
#define IGDNG_P2_LVDS_SLOW 14 /* single channel */
#define IGDNG_P2_LVDS_FAST 7 /* double channel */
#define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* The single-channel range is 25-112Mhz, and dual-channel
* is 80-224Mhz. Prefer single channel as much as possible.
*/
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
.find_pll = intel_find_best_PLL,
};
/* below parameter and function is for G4X Chipset Family*/
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
.m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
.m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
.m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
.p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
.p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
.p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
.p2_slow = G4X_P2_SDVO_SLOW,
.p2_fast = G4X_P2_SDVO_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
.vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
.n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
.m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
.m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
.m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
.p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
.p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
.p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
.p2_slow = G4X_P2_HDMI_DAC_SLOW,
.p2_fast = G4X_P2_HDMI_DAC_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX },
.n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
.m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
.m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
.m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
.p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
.p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
.max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
.p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
.p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
.p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX },
.n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
.m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
.m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
.m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
.p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
.p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
.max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
.p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
.p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
.p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_display_port = {
.dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
.max = G4X_DOT_DISPLAY_PORT_MAX },
.vco = { .min = G4X_VCO_MIN,
.max = G4X_VCO_MAX},
.n = { .min = G4X_N_DISPLAY_PORT_MIN,
.max = G4X_N_DISPLAY_PORT_MAX },
.m = { .min = G4X_M_DISPLAY_PORT_MIN,
.max = G4X_M_DISPLAY_PORT_MAX },
.m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
.max = G4X_M1_DISPLAY_PORT_MAX },
.m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
.max = G4X_M2_DISPLAY_PORT_MAX },
.p = { .min = G4X_P_DISPLAY_PORT_MIN,
.max = G4X_P_DISPLAY_PORT_MAX },
.p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
.max = G4X_P1_DISPLAY_PORT_MAX},
.p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
.p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
.p2_fast = G4X_P2_DISPLAY_PORT_FAST },
.find_pll = intel_find_pll_g4x_dp,
};
static const intel_limit_t intel_limits_igd_sdvo = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
.vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
.n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
.m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
.m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
.m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_igd_lvds = {
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
.n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
.m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
.m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
.m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
.p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* IGD only supports single-channel mode. */
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_igdng_sdvo = {
.dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
.vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
.n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
.m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
.m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
.m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
.p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
.p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
.p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
.p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
.p2_fast = IGDNG_P2_SDVO_DAC_FAST },
.find_pll = intel_igdng_find_best_PLL,
};
static const intel_limit_t intel_limits_igdng_lvds = {
.dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
.vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
.n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
.m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
.m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
.m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
.p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
.p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
.p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
.p2_slow = IGDNG_P2_LVDS_SLOW,
.p2_fast = IGDNG_P2_LVDS_FAST },
.find_pll = intel_igdng_find_best_PLL,
};
static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
{
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_igdng_lvds;
else
limit = &intel_limits_igdng_sdvo;
return limit;
}
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
/* LVDS with dual channel */
limit = &intel_limits_g4x_dual_channel_lvds;
else
/* LVDS with dual channel */
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
limit = &intel_limits_g4x_display_port;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
const intel_limit_t *limit;
if (IS_IGDNG(dev))
limit = intel_igdng_limit(crtc);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
} else if (IS_I9XX(dev) && !IS_IGD(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else if (IS_IGD(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_igd_lvds;
else
limit = &intel_limits_igd_sdvo;
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else
limit = &intel_limits_i8xx_dvo;
}
return limit;
}
/* m1 is reserved as 0 in IGD, n is a ring counter */
static void igd_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / clock->n;
clock->dot = clock->vco / clock->p;
}
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
if (IS_IGD(dev)) {
igd_clock(refclk, clock);
return;
}
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *l_entry;
list_for_each_entry(l_entry, &mode_config->connector_list, head) {
if (l_entry->encoder &&
l_entry->encoder->crtc == crtc) {
struct intel_output *intel_output = to_intel_output(l_entry);
if (intel_output->type == type)
return true;
}
}
return false;
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
{
const intel_limit_t *limit = intel_limit (crtc);
struct drm_device *dev = crtc->dev;
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid ("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid ("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid ("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid ("m1 out of range\n");
if (clock->m1 <= clock->m2 && !IS_IGD(dev))
INTELPllInvalid ("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid ("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid ("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid ("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid ("dot out of range\n");
return true;
}
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int err = target;
if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset (best_clock, 0, sizeof (*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
/* m1 is always 0 in IGD */
if (clock.m2 >= clock.m1 && !IS_IGD(dev))
break;
for (clock.n = limit->n.min; clock.n <= limit->n.max;
clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00488 */
int err_most = (target >> 8) + (target >> 10);
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requriment prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirment prefere larger m1,m2, p1 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs(clock.dot - target) ;
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
static bool
intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int max_n;
bool found;
int err_most = 47;
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requriment prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirment prefere larger m1,m2, p1 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(crtc, &clock))
continue;
this_err = abs((10000 - (target*10000/clock.dot)));
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
/* found on first matching */
goto out;
}
}
}
}
}
out:
return found;
}
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 2;
clock.m1 = 23;
clock.m2 = 8;
} else {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 1;
clock.m1 = 14;
clock.m2 = 2;
}
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
clock.p = (clock.p1 * clock.p2);
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
void
intel_wait_for_vblank(struct drm_device *dev)
{
/* Wait for 20ms, i.e. one cycle at 50hz. */
mdelay(20);
}
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj_priv;
struct drm_gem_object *obj;
int pipe = intel_crtc->pipe;
unsigned long Start, Offset;
int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
u32 dspcntr, alignment;
int ret;
/* no fb bound */
if (!crtc->fb) {
DRM_DEBUG("No FB bound\n");
return 0;
}
switch (pipe) {
case 0:
case 1:
break;
default:
DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(crtc->fb);
obj = intel_fb->obj;
obj_priv = obj->driver_private;
switch (obj_priv->tiling_mode) {
case I915_TILING_NONE:
alignment = 64 * 1024;
break;
case I915_TILING_X:
/* pin() will align the object as required by fence */
alignment = 0;
break;
case I915_TILING_Y:
/* FIXME: Is this true? */
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
return -EINVAL;
default:
BUG();
}
mutex_lock(&dev->struct_mutex);
ret = i915_gem_object_pin(obj, alignment);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
if (ret != 0) {
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* Pre-i965 needs to install a fence for tiled scan-out */
if (!IS_I965G(dev) &&
obj_priv->fence_reg == I915_FENCE_REG_NONE &&
obj_priv->tiling_mode != I915_TILING_NONE) {
ret = i915_gem_object_get_fence_reg(obj);
if (ret != 0) {
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return ret;
}
}
dspcntr = I915_READ(dspcntr_reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (crtc->fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (crtc->fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth\n");
i915_gem_object_unpin(obj);
mutex_unlock(&dev->struct_mutex);
return -EINVAL;
}
if (IS_I965G(dev)) {
if (obj_priv->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
}
I915_WRITE(dspcntr_reg, dspcntr);
Start = obj_priv->gtt_offset;
Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
I915_WRITE(dspstride, crtc->fb->pitch);
if (IS_I965G(dev)) {
I915_WRITE(dspbase, Offset);
I915_READ(dspbase);
I915_WRITE(dspsurf, Start);
I915_READ(dspsurf);
I915_WRITE(dsptileoff, (y << 16) | x);
} else {
I915_WRITE(dspbase, Start + Offset);
I915_READ(dspbase);
}
intel_wait_for_vblank(dev);
if (old_fb) {
intel_fb = to_intel_framebuffer(old_fb);
i915_gem_object_unpin(intel_fb->obj);
}
mutex_unlock(&dev->struct_mutex);
if (!dev->primary->master)
return 0;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return 0;
if (pipe) {
master_priv->sarea_priv->pipeB_x = x;
master_priv->sarea_priv->pipeB_y = y;
} else {
master_priv->sarea_priv->pipeA_x = x;
master_priv->sarea_priv->pipeA_y = y;
}
return 0;
}
static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
u32 temp;
int tries = 5, j;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
DRM_DEBUG("crtc %d dpms on\n", pipe);
/* enable PCH DPLL */
temp = I915_READ(pch_dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(pch_dpll_reg);
}
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
temp = I915_READ(fdi_rx_reg);
I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
FDI_SEL_PCDCLK |
FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
I915_READ(fdi_rx_reg);
udelay(200);
/* Enable CPU FDI TX PLL, always on for IGDNG */
temp = I915_READ(fdi_tx_reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
I915_READ(fdi_tx_reg);
udelay(100);
}
/* Enable CPU pipe */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0) {
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
udelay(100);
}
/* configure and enable CPU plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
}
/* enable CPU FDI TX and PCH FDI RX */
temp = I915_READ(fdi_tx_reg);
temp |= FDI_TX_ENABLE;
temp |= FDI_DP_PORT_WIDTH_X4; /* default */
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_tx_reg, temp);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
I915_READ(fdi_rx_reg);
udelay(150);
/* Train FDI. */
/* umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
temp = I915_READ(fdi_rx_imr_reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(fdi_rx_imr_reg, temp);
I915_READ(fdi_rx_imr_reg);
udelay(150);
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK) == 0) {
for (j = 0; j < tries; j++) {
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK)
break;
udelay(200);
}
if (j != tries)
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_BIT_LOCK);
else
DRM_DEBUG("train 1 fail\n");
} else {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_BIT_LOCK);
DRM_DEBUG("train 1 ok 2!\n");
}
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(fdi_tx_reg, temp);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(fdi_rx_reg, temp);
udelay(150);
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
for (j = 0; j < tries; j++) {
temp = I915_READ(fdi_rx_iir_reg);
DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK)
break;
udelay(200);
}
if (j != tries) {
I915_WRITE(fdi_rx_iir_reg,
temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG("train 2 ok 1!\n");
} else
DRM_DEBUG("train 2 fail\n");
} else {
I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG("train 2 ok 2!\n");
}
DRM_DEBUG("train done\n");
/* set transcoder timing */
I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
/* enable PCH transcoder */
temp = I915_READ(transconf_reg);
I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
I915_READ(transconf_reg);
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
;
/* enable normal */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
FDI_TX_ENHANCE_FRAME_ENABLE);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
FDI_RX_ENHANCE_FRAME_ENABLE);
I915_READ(fdi_rx_reg);
/* wait one idle pattern time */
udelay(100);
intel_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_OFF:
DRM_DEBUG("crtc %d dpms off\n", pipe);
/* Disable the VGA plane that we never use */
I915_WRITE(CPU_VGACNTRL, VGA_DISP_DISABLE);
/* Disable display plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
I915_READ(dspbase_reg);
}
/* disable cpu pipe, disable after all planes disabled */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
/* wait for cpu pipe off, pipe state */
while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0)
;
} else
DRM_DEBUG("crtc %d is disabled\n", pipe);
/* IGDNG-A : disable cpu panel fitter ? */
temp = I915_READ(pf_ctl_reg);
if ((temp & PF_ENABLE) != 0) {
I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
I915_READ(pf_ctl_reg);
}
/* disable CPU FDI tx and PCH FDI rx */
temp = I915_READ(fdi_tx_reg);
I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
I915_READ(fdi_tx_reg);
temp = I915_READ(fdi_rx_reg);
I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
I915_READ(fdi_rx_reg);
/* still set train pattern 1 */
temp = I915_READ(fdi_tx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_tx_reg, temp);
temp = I915_READ(fdi_rx_reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(fdi_rx_reg, temp);
/* disable PCH transcoder */
temp = I915_READ(transconf_reg);
if ((temp & TRANS_ENABLE) != 0) {
I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
I915_READ(transconf_reg);
/* wait for PCH transcoder off, transcoder state */
while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0)
;
}
/* disable PCH DPLL */
temp = I915_READ(pch_dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
I915_READ(pch_dpll_reg);
}
temp = I915_READ(fdi_rx_reg);
if ((temp & FDI_RX_PLL_ENABLE) != 0) {
temp &= ~FDI_SEL_PCDCLK;
temp &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(fdi_rx_reg, temp);
I915_READ(fdi_rx_reg);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
}
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
u32 temp;
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
/* Enable the DPLL */
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0) {
I915_WRITE(dpll_reg, temp);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
}
/* Enable the pipe */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0)
I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
/* Enable the plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
}
intel_crtc_load_lut(crtc);
/* Give the overlay scaler a chance to enable if it's on this pipe */
//intel_crtc_dpms_video(crtc, true); TODO
intel_update_watermarks(dev);
break;
case DRM_MODE_DPMS_OFF:
intel_update_watermarks(dev);
/* Give the overlay scaler a chance to disable if it's on this pipe */
//intel_crtc_dpms_video(crtc, FALSE); TODO
/* Disable the VGA plane that we never use */
I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
/* Disable display plane */
temp = I915_READ(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
I915_READ(dspbase_reg);
}
if (!IS_I9XX(dev)) {
/* Wait for vblank for the disable to take effect */
intel_wait_for_vblank(dev);
}
/* Next, disable display pipes */
temp = I915_READ(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
I915_READ(pipeconf_reg);
}
/* Wait for vblank for the disable to take effect. */
intel_wait_for_vblank(dev);
temp = I915_READ(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
}
/* Wait for the clocks to turn off. */
udelay(150);
break;
}
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool enabled;
if (IS_IGDNG(dev))
igdng_crtc_dpms(crtc, mode);
else
i9xx_crtc_dpms(crtc, mode);
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
break;
}
intel_crtc->dpms_mode = mode;
}
static void intel_crtc_prepare (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void intel_crtc_commit (struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
void intel_encoder_prepare (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of prepare see intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}
void intel_encoder_commit (struct drm_encoder *encoder)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of commit see intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
if (IS_IGDNG(dev)) {
/* FDI link clock is fixed at 2.7G */
if (mode->clock * 3 > 27000 * 4)
return MODE_CLOCK_HIGH;
}
return true;
}
/** Returns the core display clock speed for i830 - i945 */
static int intel_get_core_clock_speed(struct drm_device *dev)
{
/* Core clock values taken from the published datasheets.
* The 830 may go up to 166 Mhz, which we should check.
*/
if (IS_I945G(dev))
return 400000;
else if (IS_I915G(dev))
return 333000;
else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
return 200000;
else if (IS_I915GM(dev)) {
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
} else if (IS_I865G(dev))
return 266000;
else if (IS_I855(dev)) {
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
} else /* 852, 830 */
return 133000;
return 0; /* Silence gcc warning */
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
static int intel_panel_fitter_pipe (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pfit_control;
/* i830 doesn't have a panel fitter */
if (IS_I830(dev))
return -1;
pfit_control = I915_READ(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
/* 965 can place panel fitter on either pipe */
if (IS_I965G(dev))
return (pfit_control >> 29) & 0x3;
/* older chips can only use pipe 1 */
return 1;
}
struct fdi_m_n {
u32 tu;
u32 gmch_m;
u32 gmch_n;
u32 link_m;
u32 link_n;
};
static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
#define DATA_N 0x800000
#define LINK_N 0x80000
static void
igdng_compute_m_n(int bytes_per_pixel, int nlanes,
int pixel_clock, int link_clock,
struct fdi_m_n *m_n)
{
u64 temp;
m_n->tu = 64; /* default size */
temp = (u64) DATA_N * pixel_clock;
temp = div_u64(temp, link_clock);
m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
m_n->gmch_n = DATA_N;
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
temp = (u64) LINK_N * pixel_clock;
m_n->link_m = div_u64(temp, link_clock);
m_n->link_n = LINK_N;
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
struct intel_watermark_params {
unsigned long fifo_size;
unsigned long max_wm;
unsigned long default_wm;
unsigned long guard_size;
unsigned long cacheline_size;
};
/* IGD has different values for various configs */
static struct intel_watermark_params igd_display_wm = {
IGD_DISPLAY_FIFO,
IGD_MAX_WM,
IGD_DFT_WM,
IGD_GUARD_WM,
IGD_FIFO_LINE_SIZE
};
static struct intel_watermark_params igd_display_hplloff_wm = {
IGD_DISPLAY_FIFO,
IGD_MAX_WM,
IGD_DFT_HPLLOFF_WM,
IGD_GUARD_WM,
IGD_FIFO_LINE_SIZE
};
static struct intel_watermark_params igd_cursor_wm = {
IGD_CURSOR_FIFO,
IGD_CURSOR_MAX_WM,
IGD_CURSOR_DFT_WM,
IGD_CURSOR_GUARD_WM,
IGD_FIFO_LINE_SIZE,
};
static struct intel_watermark_params igd_cursor_hplloff_wm = {
IGD_CURSOR_FIFO,
IGD_CURSOR_MAX_WM,
IGD_CURSOR_DFT_WM,
IGD_CURSOR_GUARD_WM,
IGD_FIFO_LINE_SIZE
};
static struct intel_watermark_params i945_wm_info = {
I915_FIFO_LINE_SIZE,
I915_MAX_WM,
1,
0,
IGD_FIFO_LINE_SIZE
};
static struct intel_watermark_params i915_wm_info = {
I945_FIFO_SIZE,
I915_MAX_WM,
1,
0,
I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i855_wm_info = {
I855GM_FIFO_SIZE,
I915_MAX_WM,
1,
0,
I830_FIFO_LINE_SIZE
};
static struct intel_watermark_params i830_wm_info = {
I830_FIFO_SIZE,
I915_MAX_WM,
1,
0,
I830_FIFO_LINE_SIZE
};
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
struct intel_watermark_params *wm,
int pixel_size,
unsigned long latency_ns)
{
unsigned long bytes_required, wm_size;
bytes_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
bytes_required /= wm->cacheline_size;
wm_size = wm->fifo_size - bytes_required - wm->guard_size;
if (wm_size > wm->max_wm)
wm_size = wm->max_wm;
if (wm_size == 0)
wm_size = wm->default_wm;
return wm_size;
}
struct cxsr_latency {
int is_desktop;
unsigned long fsb_freq;
unsigned long mem_freq;
unsigned long display_sr;
unsigned long display_hpll_disable;
unsigned long cursor_sr;
unsigned long cursor_hpll_disable;
};
static struct cxsr_latency cxsr_latency_table[] = {
{1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
};
static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
int mem)
{
int i;
struct cxsr_latency *latency;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
break;
}
if (i >= ARRAY_SIZE(cxsr_latency_table)) {
DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
return latency;
}
static void igd_disable_cxsr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
/* deactivate cxsr */
reg = I915_READ(DSPFW3);
reg &= ~(IGD_SELF_REFRESH_EN);
I915_WRITE(DSPFW3, reg);
DRM_INFO("Big FIFO is disabled\n");
}
static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
unsigned long wm;
struct cxsr_latency *latency;
latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
igd_disable_cxsr(dev);
return;
}
/* Display SR */
wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= 0x7fffff;
reg |= wm << 23;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG("DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~(0x3f << 24);
reg |= (wm & 0x3f) << 24;
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
reg = I915_READ(DSPFW3);
reg &= 0xfffffe00;
reg |= wm & 0x1ff;
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~(0x3f << 16);
reg |= (wm & 0x3f) << 16;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG("DSPFW3 register is %x\n", reg);
/* activate cxsr */
reg = I915_READ(DSPFW3);
reg |= IGD_SELF_REFRESH_EN;
I915_WRITE(DSPFW3, reg);
DRM_INFO("Big FIFO is enabled\n");
return;
}
const static int latency_ns = 5000; /* default for non-igd platforms */
static void i965_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
/* 965 has limitations... */
I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
}
static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
int planeb_clock, int sr_hdisplay, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
uint32_t fwater_hi = I915_READ(FW_BLC2) & LM_FIFO_WATERMARK;
int bsize, asize, cwm, bwm = 1, awm = 1, srwm = 1;
uint32_t dsparb = I915_READ(DSPARB);
int planea_entries, planeb_entries;
struct intel_watermark_params *wm_params;
unsigned long line_time_us;
int sr_clock, sr_entries = 0;
if (IS_I965GM(dev) || IS_I945GM(dev))
wm_params = &i945_wm_info;
else if (IS_I9XX(dev))
wm_params = &i915_wm_info;
else
wm_params = &i855_wm_info;
planea_entries = intel_calculate_wm(planea_clock, wm_params,
pixel_size, latency_ns);
planeb_entries = intel_calculate_wm(planeb_clock, wm_params,
pixel_size, latency_ns);
DRM_DEBUG("FIFO entries - A: %d, B: %d\n", planea_entries,
planeb_entries);
if (IS_I9XX(dev)) {
asize = dsparb & 0x7f;
bsize = (dsparb >> DSPARB_CSTART_SHIFT) & 0x7f;
} else {
asize = dsparb & 0x1ff;
bsize = (dsparb >> DSPARB_BEND_SHIFT) & 0x1ff;
}
DRM_DEBUG("FIFO size - A: %d, B: %d\n", asize, bsize);
/* Two extra entries for padding */
awm = asize - (planea_entries + 2);
bwm = bsize - (planeb_entries + 2);
/* Sanity check against potentially bad FIFO allocations */
if (awm <= 0) {
/* pipe is on but has too few FIFO entries */
if (planea_entries != 0)
DRM_DEBUG("plane A needs more FIFO entries\n");
awm = 1;
}
if (bwm <= 0) {
if (planeb_entries != 0)
DRM_DEBUG("plane B needs more FIFO entries\n");
bwm = 1;
}
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Calc sr entries for one pipe configs */
if (!planea_clock || !planeb_clock) {
sr_clock = planea_clock ? planea_clock : planeb_clock;
line_time_us = (sr_hdisplay * 1000) / sr_clock;
sr_entries = (((latency_ns / line_time_us) + 1) * pixel_size *
sr_hdisplay) / 1000;
sr_entries = roundup(sr_entries / wm_params->cacheline_size, 1);
if (sr_entries < wm_params->fifo_size)
srwm = wm_params->fifo_size - sr_entries;
}
DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
awm, bwm, cwm, srwm);
fwater_lo = fwater_lo | ((bwm & 0x3f) << 16) | (awm & 0x3f);
fwater_hi = fwater_hi | (cwm & 0x1f);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
if (IS_I9XX(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
}
static void i830_update_wm(struct drm_device *dev, int planea_clock,
int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
uint32_t fwater_lo = I915_READ(FW_BLC) & MM_FIFO_WATERMARK;
unsigned int asize, awm;
int planea_entries;
planea_entries = intel_calculate_wm(planea_clock, &i830_wm_info,
pixel_size, latency_ns);
asize = dsparb & 0x7f;
awm = asize - planea_entries;
fwater_lo = fwater_lo | awm;
I915_WRITE(FW_BLC, fwater_lo);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
static void intel_update_watermarks(struct drm_device *dev)
{
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
int sr_hdisplay = 0;
unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
int enabled = 0, pixel_size = 0;
if (DSPARB_HWCONTROL(dev))
return;
/* Get the clock config from both planes */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
intel_crtc = to_intel_crtc(crtc);
if (crtc->enabled) {
enabled++;
if (intel_crtc->plane == 0) {
DRM_DEBUG("plane A (pipe %d) clock: %d\n",
intel_crtc->pipe, crtc->mode.clock);
planea_clock = crtc->mode.clock;
} else {
DRM_DEBUG("plane B (pipe %d) clock: %d\n",
intel_crtc->pipe, crtc->mode.clock);
planeb_clock = crtc->mode.clock;
}
sr_hdisplay = crtc->mode.hdisplay;
sr_clock = crtc->mode.clock;
if (crtc->fb)
pixel_size = crtc->fb->bits_per_pixel / 8;
else
pixel_size = 4; /* by default */
}
}
if (enabled <= 0)
return;
/* Single pipe configs can enable self refresh */
if (enabled == 1 && IS_IGD(dev))
igd_enable_cxsr(dev, sr_clock, pixel_size);
else if (IS_IGD(dev))
igd_disable_cxsr(dev);
if (IS_I965G(dev))
i965_update_wm(dev);
else if (IS_I9XX(dev) || IS_MOBILE(dev))
i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
pixel_size);
else
i830_update_wm(dev, planea_clock, pixel_size);
}
static int intel_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int fp_reg = (pipe == 0) ? FPA0 : FPB0;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
int refclk, num_outputs = 0;
intel_clock_t clock;
u32 dpll = 0, fp = 0, dspcntr, pipeconf;
bool ok, is_sdvo = false, is_dvo = false;
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
const intel_limit_t *limit;
int ret;
struct fdi_m_n m_n = {0};
int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
int lvds_reg = LVDS;
u32 temp;
int sdvo_pixel_multiply;
drm_vblank_pre_modeset(dev, pipe);
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
if (!connector->encoder || connector->encoder->crtc != crtc)
continue;
switch (intel_output->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (intel_output->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_DVO:
is_dvo = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
}
num_outputs++;
}
if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
refclk = dev_priv->lvds_ssc_freq * 1000;
DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
} else if (IS_I9XX(dev)) {
refclk = 96000;
if (IS_IGDNG(dev))
refclk = 120000; /* 120Mhz refclk */
} else {
refclk = 48000;
}
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
drm_vblank_post_modeset(dev, pipe);
return -EINVAL;
}
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (is_sdvo && is_tv) {
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 3;
clock.m1 = 16;
clock.m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 6;
clock.m1 = 12;
clock.m2 = 8;
}
}
/* FDI link */
if (IS_IGDNG(dev))
igdng_compute_m_n(3, 4, /* lane num 4 */
adjusted_mode->clock,
270000, /* lane clock */
&m_n);
if (IS_IGD(dev))
fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
else
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
if (!IS_IGDNG(dev))
dpll = DPLL_VGA_MODE_DIS;
if (IS_I9XX(dev)) {
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
dpll |= DPLL_DVO_HIGH_SPEED;
sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
if (IS_I945G(dev) || IS_I945GM(dev))
dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
else if (IS_IGDNG(dev))
dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
}
if (is_dp)
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_IGD(dev))
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
else {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
if (IS_IGDNG(dev))
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (IS_I965G(dev) && !IS_IGDNG(dev))
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
} else {
if (is_lvds) {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock.p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock.p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
}
if (is_sdvo && is_tv)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (is_tv)
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
/* setup pipeconf */
pipeconf = I915_READ(pipeconf_reg);
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
/* IGDNG's plane is forced to pipe, bit 24 is to
enable color space conversion */
if (!IS_IGDNG(dev)) {
if (pipe == 0)
dspcntr |= DISPPLANE_SEL_PIPE_A;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
}
if (pipe == 0 && !IS_I965G(dev)) {
/* Enable pixel doubling when the dot clock is > 90% of the (display)
* core speed.
*
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
* pipe == 0 check?
*/
if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
pipeconf |= PIPEACONF_DOUBLE_WIDE;
else
pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
}
dspcntr |= DISPLAY_PLANE_ENABLE;
pipeconf |= PIPEACONF_ENABLE;
dpll |= DPLL_VCO_ENABLE;
/* Disable the panel fitter if it was on our pipe */
if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
I915_WRITE(PFIT_CONTROL, 0);
DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
drm_mode_debug_printmodeline(mode);
/* assign to IGDNG registers */
if (IS_IGDNG(dev)) {
fp_reg = pch_fp_reg;
dpll_reg = pch_dpll_reg;
}
if (dpll & DPLL_VCO_ENABLE) {
I915_WRITE(fp_reg, fp);
I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
I915_READ(dpll_reg);
udelay(150);
}
if (IS_IGDNG(dev)) {
/* enable PCH clock reference source */
/* XXX need to change the setting for other outputs */
u32 temp;
temp = I915_READ(PCH_DREF_CONTROL);
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
temp |= DREF_NONSPREAD_CK505_ENABLE;
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_ENABLE;
temp &= ~DREF_SSC1_ENABLE;
/* if no eDP, disable source output to CPU */
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
}
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
u32 lvds;
if (IS_IGDNG(dev))
lvds_reg = PCH_LVDS;
lvds = I915_READ(lvds_reg);
lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock.p2 == 7)
lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
I915_WRITE(lvds_reg, lvds);
I915_READ(lvds_reg);
}
if (is_dp)
intel_dp_set_m_n(crtc, mode, adjusted_mode);
I915_WRITE(fp_reg, fp);
I915_WRITE(dpll_reg, dpll);
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
if (IS_I965G(dev) && !IS_IGDNG(dev)) {
sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
} else {
/* write it again -- the BIOS does, after all */
I915_WRITE(dpll_reg, dpll);
}
I915_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
udelay(150);
I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc and dspsize control the size that is scaled from, which should
* always be the user's requested size.
*/
if (!IS_IGDNG(dev)) {
I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
(mode->hdisplay - 1));
I915_WRITE(dsppos_reg, 0);
}
I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
if (IS_IGDNG(dev)) {
I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
I915_WRITE(link_m1_reg, m_n.link_m);
I915_WRITE(link_n1_reg, m_n.link_n);
/* enable FDI RX PLL too */
temp = I915_READ(fdi_rx_reg);
I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
udelay(200);
}
I915_WRITE(pipeconf_reg, pipeconf);
I915_READ(pipeconf_reg);
intel_wait_for_vblank(dev);
I915_WRITE(dspcntr_reg, dspcntr);
/* Flush the plane changes */
ret = intel_pipe_set_base(crtc, x, y, old_fb);
intel_update_watermarks(dev);
drm_vblank_post_modeset(dev, pipe);
return ret;
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
return;
/* use legacy palette for IGDNG */
if (IS_IGDNG(dev))
palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
LGC_PALETTE_B;
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
}
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_gem_object *bo;
struct drm_i915_gem_object *obj_priv;
int pipe = intel_crtc->pipe;
uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
uint32_t temp = I915_READ(control);
size_t addr;
int ret;
DRM_DEBUG("\n");
/* if we want to turn off the cursor ignore width and height */
if (!handle) {
DRM_DEBUG("cursor off\n");
if (IS_MOBILE(dev) || IS_I9XX(dev)) {
temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
temp |= CURSOR_MODE_DISABLE;
} else {
temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
}
addr = 0;
bo = NULL;
mutex_lock(&dev->struct_mutex);
goto finish;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
DRM_ERROR("we currently only support 64x64 cursors\n");
return -EINVAL;
}
bo = drm_gem_object_lookup(dev, file_priv, handle);
if (!bo)
return -ENOENT;
obj_priv = bo->driver_private;
if (bo->size < width * height * 4) {
DRM_ERROR("buffer is to small\n");
ret = -ENOMEM;
goto fail;
}
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!dev_priv->cursor_needs_physical) {
ret = i915_gem_object_pin(bo, PAGE_SIZE);
if (ret) {
DRM_ERROR("failed to pin cursor bo\n");
goto fail_locked;
}
addr = obj_priv->gtt_offset;
} else {
ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
if (ret) {
DRM_ERROR("failed to attach phys object\n");
goto fail_locked;
}
addr = obj_priv->phys_obj->handle->busaddr;
}
if (!IS_I9XX(dev))
I915_WRITE(CURSIZE, (height << 12) | width);
/* Hooray for CUR*CNTR differences */
if (IS_MOBILE(dev) || IS_I9XX(dev)) {
temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
temp |= (pipe << 28); /* Connect to correct pipe */
} else {
temp &= ~(CURSOR_FORMAT_MASK);
temp |= CURSOR_ENABLE;
temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
}
finish:
I915_WRITE(control, temp);
I915_WRITE(base, addr);
if (intel_crtc->cursor_bo) {
if (dev_priv->cursor_needs_physical) {
if (intel_crtc->cursor_bo != bo)
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
} else
i915_gem_object_unpin(intel_crtc->cursor_bo);
drm_gem_object_unreference(intel_crtc->cursor_bo);
}
mutex_unlock(&dev->struct_mutex);
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = bo;
return 0;
fail:
mutex_lock(&dev->struct_mutex);
fail_locked:
drm_gem_object_unreference(bo);
mutex_unlock(&dev->struct_mutex);
return ret;
}
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t temp = 0;
uint32_t adder;
if (x < 0) {
temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
if (y < 0) {
temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
temp |= x << CURSOR_X_SHIFT;
temp |= y << CURSOR_Y_SHIFT;
adder = intel_crtc->cursor_addr;
I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
return 0;
}
/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->lut_r[regno] = red >> 8;
intel_crtc->lut_g[regno] = green >> 8;
intel_crtc->lut_b[regno] = blue >> 8;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int i;
if (size != 256)
return;
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/**
* Get a pipe with a simple mode set on it for doing load-based monitor
* detection.
*
* It will be up to the load-detect code to adjust the pipe as appropriate for
* its requirements. The pipe will be connected to no other outputs.
*
* Currently this code will only succeed if there is a pipe with no outputs
* configured for it. In the future, it could choose to temporarily disable
* some outputs to free up a pipe for its use.
*
* \return crtc, or NULL if no pipes are available.
*/
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
struct drm_display_mode *mode,
int *dpms_mode)
{
struct intel_crtc *intel_crtc;
struct drm_crtc *possible_crtc;
struct drm_crtc *supported_crtc =NULL;
struct drm_encoder *encoder = &intel_output->enc;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs;
int i = -1;
/*
* Algorithm gets a little messy:
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
* - if there are no unused crtcs available, try to use the first
* one we found that supports the connector
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
/* Make sure the crtc and connector are running */
intel_crtc = to_intel_crtc(crtc);
*dpms_mode = intel_crtc->dpms_mode;
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
return crtc;
}
/* Find an unused one (if possible) */
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (!possible_crtc->enabled) {
crtc = possible_crtc;
break;
}
if (!supported_crtc)
supported_crtc = possible_crtc;
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
return NULL;
}
encoder->crtc = crtc;
intel_output->base.encoder = encoder;
intel_output->load_detect_temp = true;
intel_crtc = to_intel_crtc(crtc);
*dpms_mode = intel_crtc->dpms_mode;
if (!crtc->enabled) {
if (!mode)
mode = &load_detect_mode;
drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
} else {
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}
/* Add this connector to the crtc */
encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
encoder_funcs->commit(encoder);
}
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev);
return crtc;
}
void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
{
struct drm_encoder *encoder = &intel_output->enc;
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
if (intel_output->load_detect_temp) {
encoder->crtc = NULL;
intel_output->base.encoder = NULL;
intel_output->load_detect_temp = false;
crtc->enabled = drm_helper_crtc_in_use(crtc);
drm_helper_disable_unused_functions(dev);
}
/* Switch crtc and output back off if necessary */
if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
if (encoder->crtc == crtc)
encoder_funcs->dpms(encoder, dpms_mode);
crtc_funcs->dpms(crtc, dpms_mode);
}
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
u32 fp;
intel_clock_t clock;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
else
fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_IGD(dev)) {
clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (IS_I9XX(dev)) {
if (IS_IGD(dev))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return 0;
}
/* XXX: Handle the 100Mhz refclk */
intel_clock(dev, 96000, &clock);
} else {
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
/* XXX: might not be 66MHz */
intel_clock(dev, 66000, &clock);
} else
intel_clock(dev, 48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
intel_clock(dev, 48000, &clock);
}
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config connector
* configuration being accurate, which it isn't necessarily.
*/
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct drm_display_mode *mode;
int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
mode->clock = intel_crtc_clock_get(dev, crtc);
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
drm_mode_set_crtcinfo(mode, 0);
return mode;
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (intel_crtc->mode_set.mode)
drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
.dpms = intel_crtc_dpms,
.mode_fixup = intel_crtc_mode_fixup,
.mode_set = intel_crtc_mode_set,
.mode_set_base = intel_pipe_set_base,
.prepare = intel_crtc_prepare,
.commit = intel_crtc_commit,
};
static const struct drm_crtc_funcs intel_crtc_funcs = {
.cursor_set = intel_crtc_cursor_set,
.cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = intel_crtc_destroy,
};
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
struct intel_crtc *intel_crtc;
int i;
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
intel_crtc->cursor_addr = 0;
intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
intel_crtc->mode_set.crtc = &intel_crtc->base;
intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
intel_crtc->mode_set.num_connectors = 0;
if (i915_fbpercrtc) {
}
}
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_crtc *crtc = NULL;
int pipe = -1;
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
}
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
pipe = intel_crtc->pipe;
break;
}
}
if (pipe == -1) {
DRM_ERROR("no such CRTC id\n");
return -EINVAL;
}
pipe_from_crtc_id->pipe = pipe;
return 0;
}
struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
{
struct drm_crtc *crtc = NULL;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (intel_crtc->pipe == pipe)
break;
}
return crtc;
}
static int intel_connector_clones(struct drm_device *dev, int type_mask)
{
int index_mask = 0;
struct drm_connector *connector;
int entry = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
if (type_mask & (1 << intel_output->type))
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
intel_crt_init(dev);
/* Set up integrated LVDS */
if (IS_MOBILE(dev) && !IS_I830(dev))
intel_lvds_init(dev);
if (IS_IGDNG(dev)) {
int found;
if (I915_READ(HDMIB) & PORT_DETECTED) {
/* check SDVOB */
/* found = intel_sdvo_init(dev, HDMIB); */
found = 0;
if (!found)
intel_hdmi_init(dev, HDMIB);
}
if (I915_READ(HDMIC) & PORT_DETECTED)
intel_hdmi_init(dev, HDMIC);
if (I915_READ(HDMID) & PORT_DETECTED)
intel_hdmi_init(dev, HDMID);
} else if (IS_I9XX(dev)) {
int found;
u32 reg;
if (I915_READ(SDVOB) & SDVO_DETECTED) {
found = intel_sdvo_init(dev, SDVOB);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
intel_hdmi_init(dev, SDVOB);
if (!found && SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_B);
}
/* Before G4X SDVOC doesn't have its own detect register */
if (IS_G4X(dev))
reg = SDVOC;
else
reg = SDVOB;
if (I915_READ(reg) & SDVO_DETECTED) {
found = intel_sdvo_init(dev, SDVOC);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
intel_hdmi_init(dev, SDVOC);
if (!found && SUPPORTS_INTEGRATED_DP(dev))
intel_dp_init(dev, DP_C);
}
if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
intel_dp_init(dev, DP_D);
} else
intel_dvo_init(dev);
if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
intel_tv_init(dev);
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
struct intel_output *intel_output = to_intel_output(connector);
struct drm_encoder *encoder = &intel_output->enc;
int crtc_mask = 0, clone_mask = 0;
/* valid crtcs */
switch(intel_output->type) {
case INTEL_OUTPUT_HDMI:
crtc_mask = ((1 << 0)|
(1 << 1));
clone_mask = ((1 << INTEL_OUTPUT_HDMI));
break;
case INTEL_OUTPUT_DVO:
case INTEL_OUTPUT_SDVO:
crtc_mask = ((1 << 0)|
(1 << 1));
clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
(1 << INTEL_OUTPUT_DVO) |
(1 << INTEL_OUTPUT_SDVO));
break;
case INTEL_OUTPUT_ANALOG:
crtc_mask = ((1 << 0)|
(1 << 1));
clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
(1 << INTEL_OUTPUT_DVO) |
(1 << INTEL_OUTPUT_SDVO));
break;
case INTEL_OUTPUT_LVDS:
crtc_mask = (1 << 1);
clone_mask = (1 << INTEL_OUTPUT_LVDS);
break;
case INTEL_OUTPUT_TVOUT:
crtc_mask = ((1 << 0) |
(1 << 1));
clone_mask = (1 << INTEL_OUTPUT_TVOUT);
break;
case INTEL_OUTPUT_DISPLAYPORT:
crtc_mask = ((1 << 0) |
(1 << 1));
clone_mask = (1 << INTEL_OUTPUT_DISPLAYPORT);
break;
}
encoder->possible_crtcs = crtc_mask;
encoder->possible_clones = intel_connector_clones(dev, clone_mask);
}
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_device *dev = fb->dev;
if (fb->fbdev)
intelfb_remove(dev, fb);
drm_framebuffer_cleanup(fb);
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(intel_fb->obj);
mutex_unlock(&dev->struct_mutex);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_gem_object *object = intel_fb->obj;
return drm_gem_handle_create(file_priv, object, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
int intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd *mode_cmd,
struct drm_framebuffer **fb,
struct drm_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb)
return -ENOMEM;
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
*fb = &intel_fb->base;
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd *mode_cmd)
{
struct drm_gem_object *obj;
struct drm_framebuffer *fb;
int ret;
obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
if (!obj)
return NULL;
ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
if (ret) {
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(obj);
mutex_unlock(&dev->struct_mutex);
return NULL;
}
return fb;
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.fb_changed = intelfb_probe,
};
void intel_modeset_init(struct drm_device *dev)
{
int num_pipe;
int i;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.funcs = (void *)&intel_mode_funcs;
if (IS_I965G(dev)) {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
} else {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
}
/* set memory base */
if (IS_I9XX(dev))
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
else
dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
if (IS_MOBILE(dev) || IS_I9XX(dev))
num_pipe = 2;
else
num_pipe = 1;
DRM_DEBUG("%d display pipe%s available.\n",
num_pipe, num_pipe > 1 ? "s" : "");
for (i = 0; i < num_pipe; i++) {
intel_crtc_init(dev, i);
}
intel_setup_outputs(dev);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
drm_mode_config_cleanup(dev);
}
/* current intel driver doesn't take advantage of encoders
always give back the encoder for the connector
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
struct intel_output *intel_output = to_intel_output(connector);
return &intel_output->enc;
}