1245 lines
36 KiB
C
1245 lines
36 KiB
C
|
/* Freescale Enhanced Local Bus Controller NAND driver
|
||
|
*
|
||
|
* Copyright (c) 2006-2007 Freescale Semiconductor
|
||
|
*
|
||
|
* Authors: Nick Spence <nick.spence@freescale.com>,
|
||
|
* Scott Wood <scottwood@freescale.com>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/of_platform.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
|
||
|
#include <linux/mtd/mtd.h>
|
||
|
#include <linux/mtd/nand.h>
|
||
|
#include <linux/mtd/nand_ecc.h>
|
||
|
#include <linux/mtd/partitions.h>
|
||
|
|
||
|
#include <asm/io.h>
|
||
|
|
||
|
|
||
|
#define MAX_BANKS 8
|
||
|
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
|
||
|
#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
|
||
|
|
||
|
struct elbc_bank {
|
||
|
__be32 br; /**< Base Register */
|
||
|
#define BR_BA 0xFFFF8000
|
||
|
#define BR_BA_SHIFT 15
|
||
|
#define BR_PS 0x00001800
|
||
|
#define BR_PS_SHIFT 11
|
||
|
#define BR_PS_8 0x00000800 /* Port Size 8 bit */
|
||
|
#define BR_PS_16 0x00001000 /* Port Size 16 bit */
|
||
|
#define BR_PS_32 0x00001800 /* Port Size 32 bit */
|
||
|
#define BR_DECC 0x00000600
|
||
|
#define BR_DECC_SHIFT 9
|
||
|
#define BR_DECC_OFF 0x00000000 /* HW ECC checking and generation off */
|
||
|
#define BR_DECC_CHK 0x00000200 /* HW ECC checking on, generation off */
|
||
|
#define BR_DECC_CHK_GEN 0x00000400 /* HW ECC checking and generation on */
|
||
|
#define BR_WP 0x00000100
|
||
|
#define BR_WP_SHIFT 8
|
||
|
#define BR_MSEL 0x000000E0
|
||
|
#define BR_MSEL_SHIFT 5
|
||
|
#define BR_MS_GPCM 0x00000000 /* GPCM */
|
||
|
#define BR_MS_FCM 0x00000020 /* FCM */
|
||
|
#define BR_MS_SDRAM 0x00000060 /* SDRAM */
|
||
|
#define BR_MS_UPMA 0x00000080 /* UPMA */
|
||
|
#define BR_MS_UPMB 0x000000A0 /* UPMB */
|
||
|
#define BR_MS_UPMC 0x000000C0 /* UPMC */
|
||
|
#define BR_V 0x00000001
|
||
|
#define BR_V_SHIFT 0
|
||
|
#define BR_RES ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)
|
||
|
|
||
|
__be32 or; /**< Base Register */
|
||
|
#define OR0 0x5004
|
||
|
#define OR1 0x500C
|
||
|
#define OR2 0x5014
|
||
|
#define OR3 0x501C
|
||
|
#define OR4 0x5024
|
||
|
#define OR5 0x502C
|
||
|
#define OR6 0x5034
|
||
|
#define OR7 0x503C
|
||
|
|
||
|
#define OR_FCM_AM 0xFFFF8000
|
||
|
#define OR_FCM_AM_SHIFT 15
|
||
|
#define OR_FCM_BCTLD 0x00001000
|
||
|
#define OR_FCM_BCTLD_SHIFT 12
|
||
|
#define OR_FCM_PGS 0x00000400
|
||
|
#define OR_FCM_PGS_SHIFT 10
|
||
|
#define OR_FCM_CSCT 0x00000200
|
||
|
#define OR_FCM_CSCT_SHIFT 9
|
||
|
#define OR_FCM_CST 0x00000100
|
||
|
#define OR_FCM_CST_SHIFT 8
|
||
|
#define OR_FCM_CHT 0x00000080
|
||
|
#define OR_FCM_CHT_SHIFT 7
|
||
|
#define OR_FCM_SCY 0x00000070
|
||
|
#define OR_FCM_SCY_SHIFT 4
|
||
|
#define OR_FCM_SCY_1 0x00000010
|
||
|
#define OR_FCM_SCY_2 0x00000020
|
||
|
#define OR_FCM_SCY_3 0x00000030
|
||
|
#define OR_FCM_SCY_4 0x00000040
|
||
|
#define OR_FCM_SCY_5 0x00000050
|
||
|
#define OR_FCM_SCY_6 0x00000060
|
||
|
#define OR_FCM_SCY_7 0x00000070
|
||
|
#define OR_FCM_RST 0x00000008
|
||
|
#define OR_FCM_RST_SHIFT 3
|
||
|
#define OR_FCM_TRLX 0x00000004
|
||
|
#define OR_FCM_TRLX_SHIFT 2
|
||
|
#define OR_FCM_EHTR 0x00000002
|
||
|
#define OR_FCM_EHTR_SHIFT 1
|
||
|
};
|
||
|
|
||
|
struct elbc_regs {
|
||
|
struct elbc_bank bank[8];
|
||
|
u8 res0[0x28];
|
||
|
__be32 mar; /**< UPM Address Register */
|
||
|
u8 res1[0x4];
|
||
|
__be32 mamr; /**< UPMA Mode Register */
|
||
|
__be32 mbmr; /**< UPMB Mode Register */
|
||
|
__be32 mcmr; /**< UPMC Mode Register */
|
||
|
u8 res2[0x8];
|
||
|
__be32 mrtpr; /**< Memory Refresh Timer Prescaler Register */
|
||
|
__be32 mdr; /**< UPM Data Register */
|
||
|
u8 res3[0x4];
|
||
|
__be32 lsor; /**< Special Operation Initiation Register */
|
||
|
__be32 lsdmr; /**< SDRAM Mode Register */
|
||
|
u8 res4[0x8];
|
||
|
__be32 lurt; /**< UPM Refresh Timer */
|
||
|
__be32 lsrt; /**< SDRAM Refresh Timer */
|
||
|
u8 res5[0x8];
|
||
|
__be32 ltesr; /**< Transfer Error Status Register */
|
||
|
#define LTESR_BM 0x80000000
|
||
|
#define LTESR_FCT 0x40000000
|
||
|
#define LTESR_PAR 0x20000000
|
||
|
#define LTESR_WP 0x04000000
|
||
|
#define LTESR_ATMW 0x00800000
|
||
|
#define LTESR_ATMR 0x00400000
|
||
|
#define LTESR_CS 0x00080000
|
||
|
#define LTESR_CC 0x00000001
|
||
|
#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
|
||
|
__be32 ltedr; /**< Transfer Error Disable Register */
|
||
|
__be32 lteir; /**< Transfer Error Interrupt Register */
|
||
|
__be32 lteatr; /**< Transfer Error Attributes Register */
|
||
|
__be32 ltear; /**< Transfer Error Address Register */
|
||
|
u8 res6[0xC];
|
||
|
__be32 lbcr; /**< Configuration Register */
|
||
|
#define LBCR_LDIS 0x80000000
|
||
|
#define LBCR_LDIS_SHIFT 31
|
||
|
#define LBCR_BCTLC 0x00C00000
|
||
|
#define LBCR_BCTLC_SHIFT 22
|
||
|
#define LBCR_AHD 0x00200000
|
||
|
#define LBCR_LPBSE 0x00020000
|
||
|
#define LBCR_LPBSE_SHIFT 17
|
||
|
#define LBCR_EPAR 0x00010000
|
||
|
#define LBCR_EPAR_SHIFT 16
|
||
|
#define LBCR_BMT 0x0000FF00
|
||
|
#define LBCR_BMT_SHIFT 8
|
||
|
#define LBCR_INIT 0x00040000
|
||
|
__be32 lcrr; /**< Clock Ratio Register */
|
||
|
#define LCRR_DBYP 0x80000000
|
||
|
#define LCRR_DBYP_SHIFT 31
|
||
|
#define LCRR_BUFCMDC 0x30000000
|
||
|
#define LCRR_BUFCMDC_SHIFT 28
|
||
|
#define LCRR_ECL 0x03000000
|
||
|
#define LCRR_ECL_SHIFT 24
|
||
|
#define LCRR_EADC 0x00030000
|
||
|
#define LCRR_EADC_SHIFT 16
|
||
|
#define LCRR_CLKDIV 0x0000000F
|
||
|
#define LCRR_CLKDIV_SHIFT 0
|
||
|
u8 res7[0x8];
|
||
|
__be32 fmr; /**< Flash Mode Register */
|
||
|
#define FMR_CWTO 0x0000F000
|
||
|
#define FMR_CWTO_SHIFT 12
|
||
|
#define FMR_BOOT 0x00000800
|
||
|
#define FMR_ECCM 0x00000100
|
||
|
#define FMR_AL 0x00000030
|
||
|
#define FMR_AL_SHIFT 4
|
||
|
#define FMR_OP 0x00000003
|
||
|
#define FMR_OP_SHIFT 0
|
||
|
__be32 fir; /**< Flash Instruction Register */
|
||
|
#define FIR_OP0 0xF0000000
|
||
|
#define FIR_OP0_SHIFT 28
|
||
|
#define FIR_OP1 0x0F000000
|
||
|
#define FIR_OP1_SHIFT 24
|
||
|
#define FIR_OP2 0x00F00000
|
||
|
#define FIR_OP2_SHIFT 20
|
||
|
#define FIR_OP3 0x000F0000
|
||
|
#define FIR_OP3_SHIFT 16
|
||
|
#define FIR_OP4 0x0000F000
|
||
|
#define FIR_OP4_SHIFT 12
|
||
|
#define FIR_OP5 0x00000F00
|
||
|
#define FIR_OP5_SHIFT 8
|
||
|
#define FIR_OP6 0x000000F0
|
||
|
#define FIR_OP6_SHIFT 4
|
||
|
#define FIR_OP7 0x0000000F
|
||
|
#define FIR_OP7_SHIFT 0
|
||
|
#define FIR_OP_NOP 0x0 /* No operation and end of sequence */
|
||
|
#define FIR_OP_CA 0x1 /* Issue current column address */
|
||
|
#define FIR_OP_PA 0x2 /* Issue current block+page address */
|
||
|
#define FIR_OP_UA 0x3 /* Issue user defined address */
|
||
|
#define FIR_OP_CM0 0x4 /* Issue command from FCR[CMD0] */
|
||
|
#define FIR_OP_CM1 0x5 /* Issue command from FCR[CMD1] */
|
||
|
#define FIR_OP_CM2 0x6 /* Issue command from FCR[CMD2] */
|
||
|
#define FIR_OP_CM3 0x7 /* Issue command from FCR[CMD3] */
|
||
|
#define FIR_OP_WB 0x8 /* Write FBCR bytes from FCM buffer */
|
||
|
#define FIR_OP_WS 0x9 /* Write 1 or 2 bytes from MDR[AS] */
|
||
|
#define FIR_OP_RB 0xA /* Read FBCR bytes to FCM buffer */
|
||
|
#define FIR_OP_RS 0xB /* Read 1 or 2 bytes to MDR[AS] */
|
||
|
#define FIR_OP_CW0 0xC /* Wait then issue FCR[CMD0] */
|
||
|
#define FIR_OP_CW1 0xD /* Wait then issue FCR[CMD1] */
|
||
|
#define FIR_OP_RBW 0xE /* Wait then read FBCR bytes */
|
||
|
#define FIR_OP_RSW 0xE /* Wait then read 1 or 2 bytes */
|
||
|
__be32 fcr; /**< Flash Command Register */
|
||
|
#define FCR_CMD0 0xFF000000
|
||
|
#define FCR_CMD0_SHIFT 24
|
||
|
#define FCR_CMD1 0x00FF0000
|
||
|
#define FCR_CMD1_SHIFT 16
|
||
|
#define FCR_CMD2 0x0000FF00
|
||
|
#define FCR_CMD2_SHIFT 8
|
||
|
#define FCR_CMD3 0x000000FF
|
||
|
#define FCR_CMD3_SHIFT 0
|
||
|
__be32 fbar; /**< Flash Block Address Register */
|
||
|
#define FBAR_BLK 0x00FFFFFF
|
||
|
__be32 fpar; /**< Flash Page Address Register */
|
||
|
#define FPAR_SP_PI 0x00007C00
|
||
|
#define FPAR_SP_PI_SHIFT 10
|
||
|
#define FPAR_SP_MS 0x00000200
|
||
|
#define FPAR_SP_CI 0x000001FF
|
||
|
#define FPAR_SP_CI_SHIFT 0
|
||
|
#define FPAR_LP_PI 0x0003F000
|
||
|
#define FPAR_LP_PI_SHIFT 12
|
||
|
#define FPAR_LP_MS 0x00000800
|
||
|
#define FPAR_LP_CI 0x000007FF
|
||
|
#define FPAR_LP_CI_SHIFT 0
|
||
|
__be32 fbcr; /**< Flash Byte Count Register */
|
||
|
#define FBCR_BC 0x00000FFF
|
||
|
u8 res11[0x8];
|
||
|
u8 res8[0xF00];
|
||
|
};
|
||
|
|
||
|
struct fsl_elbc_ctrl;
|
||
|
|
||
|
/* mtd information per set */
|
||
|
|
||
|
struct fsl_elbc_mtd {
|
||
|
struct mtd_info mtd;
|
||
|
struct nand_chip chip;
|
||
|
struct fsl_elbc_ctrl *ctrl;
|
||
|
|
||
|
struct device *dev;
|
||
|
int bank; /* Chip select bank number */
|
||
|
u8 __iomem *vbase; /* Chip select base virtual address */
|
||
|
int page_size; /* NAND page size (0=512, 1=2048) */
|
||
|
unsigned int fmr; /* FCM Flash Mode Register value */
|
||
|
};
|
||
|
|
||
|
/* overview of the fsl elbc controller */
|
||
|
|
||
|
struct fsl_elbc_ctrl {
|
||
|
struct nand_hw_control controller;
|
||
|
struct fsl_elbc_mtd *chips[MAX_BANKS];
|
||
|
|
||
|
/* device info */
|
||
|
struct device *dev;
|
||
|
struct elbc_regs __iomem *regs;
|
||
|
int irq;
|
||
|
wait_queue_head_t irq_wait;
|
||
|
unsigned int irq_status; /* status read from LTESR by irq handler */
|
||
|
u8 __iomem *addr; /* Address of assigned FCM buffer */
|
||
|
unsigned int page; /* Last page written to / read from */
|
||
|
unsigned int read_bytes; /* Number of bytes read during command */
|
||
|
unsigned int column; /* Saved column from SEQIN */
|
||
|
unsigned int index; /* Pointer to next byte to 'read' */
|
||
|
unsigned int status; /* status read from LTESR after last op */
|
||
|
unsigned int mdr; /* UPM/FCM Data Register value */
|
||
|
unsigned int use_mdr; /* Non zero if the MDR is to be set */
|
||
|
unsigned int oob; /* Non zero if operating on OOB data */
|
||
|
char *oob_poi; /* Place to write ECC after read back */
|
||
|
};
|
||
|
|
||
|
/* These map to the positions used by the FCM hardware ECC generator */
|
||
|
|
||
|
/* Small Page FLASH with FMR[ECCM] = 0 */
|
||
|
static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
|
||
|
.eccbytes = 3,
|
||
|
.eccpos = {6, 7, 8},
|
||
|
.oobfree = { {0, 5}, {9, 7} },
|
||
|
.oobavail = 12,
|
||
|
};
|
||
|
|
||
|
/* Small Page FLASH with FMR[ECCM] = 1 */
|
||
|
static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
|
||
|
.eccbytes = 3,
|
||
|
.eccpos = {8, 9, 10},
|
||
|
.oobfree = { {0, 5}, {6, 2}, {11, 5} },
|
||
|
.oobavail = 12,
|
||
|
};
|
||
|
|
||
|
/* Large Page FLASH with FMR[ECCM] = 0 */
|
||
|
static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
|
||
|
.eccbytes = 12,
|
||
|
.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
|
||
|
.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
|
||
|
.oobavail = 48,
|
||
|
};
|
||
|
|
||
|
/* Large Page FLASH with FMR[ECCM] = 1 */
|
||
|
static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
|
||
|
.eccbytes = 12,
|
||
|
.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
|
||
|
.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
|
||
|
.oobavail = 48,
|
||
|
};
|
||
|
|
||
|
/*=================================*/
|
||
|
|
||
|
/*
|
||
|
* Set up the FCM hardware block and page address fields, and the fcm
|
||
|
* structure addr field to point to the correct FCM buffer in memory
|
||
|
*/
|
||
|
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
int buf_num;
|
||
|
|
||
|
ctrl->page = page_addr;
|
||
|
|
||
|
out_be32(&lbc->fbar,
|
||
|
page_addr >> (chip->phys_erase_shift - chip->page_shift));
|
||
|
|
||
|
if (priv->page_size) {
|
||
|
out_be32(&lbc->fpar,
|
||
|
((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
|
||
|
(oob ? FPAR_LP_MS : 0) | column);
|
||
|
buf_num = (page_addr & 1) << 2;
|
||
|
} else {
|
||
|
out_be32(&lbc->fpar,
|
||
|
((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
|
||
|
(oob ? FPAR_SP_MS : 0) | column);
|
||
|
buf_num = page_addr & 7;
|
||
|
}
|
||
|
|
||
|
ctrl->addr = priv->vbase + buf_num * 1024;
|
||
|
ctrl->index = column;
|
||
|
|
||
|
/* for OOB data point to the second half of the buffer */
|
||
|
if (oob)
|
||
|
ctrl->index += priv->page_size ? 2048 : 512;
|
||
|
|
||
|
dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
|
||
|
"index %x, pes %d ps %d\n",
|
||
|
buf_num, ctrl->addr, priv->vbase, ctrl->index,
|
||
|
chip->phys_erase_shift, chip->page_shift);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* execute FCM command and wait for it to complete
|
||
|
*/
|
||
|
static int fsl_elbc_run_command(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
|
||
|
/* Setup the FMR[OP] to execute without write protection */
|
||
|
out_be32(&lbc->fmr, priv->fmr | 3);
|
||
|
if (ctrl->use_mdr)
|
||
|
out_be32(&lbc->mdr, ctrl->mdr);
|
||
|
|
||
|
dev_vdbg(ctrl->dev,
|
||
|
"fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
|
||
|
in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
|
||
|
dev_vdbg(ctrl->dev,
|
||
|
"fsl_elbc_run_command: fbar=%08x fpar=%08x "
|
||
|
"fbcr=%08x bank=%d\n",
|
||
|
in_be32(&lbc->fbar), in_be32(&lbc->fpar),
|
||
|
in_be32(&lbc->fbcr), priv->bank);
|
||
|
|
||
|
/* execute special operation */
|
||
|
out_be32(&lbc->lsor, priv->bank);
|
||
|
|
||
|
/* wait for FCM complete flag or timeout */
|
||
|
ctrl->irq_status = 0;
|
||
|
wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
|
||
|
FCM_TIMEOUT_MSECS * HZ/1000);
|
||
|
ctrl->status = ctrl->irq_status;
|
||
|
|
||
|
/* store mdr value in case it was needed */
|
||
|
if (ctrl->use_mdr)
|
||
|
ctrl->mdr = in_be32(&lbc->mdr);
|
||
|
|
||
|
ctrl->use_mdr = 0;
|
||
|
|
||
|
dev_vdbg(ctrl->dev,
|
||
|
"fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
|
||
|
ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
|
||
|
|
||
|
/* returns 0 on success otherwise non-zero) */
|
||
|
return ctrl->status == LTESR_CC ? 0 : -EIO;
|
||
|
}
|
||
|
|
||
|
static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
|
||
|
{
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
|
||
|
if (priv->page_size) {
|
||
|
out_be32(&lbc->fir,
|
||
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
||
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
||
|
(FIR_OP_CW1 << FIR_OP3_SHIFT) |
|
||
|
(FIR_OP_RBW << FIR_OP4_SHIFT));
|
||
|
|
||
|
out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
|
||
|
(NAND_CMD_READSTART << FCR_CMD1_SHIFT));
|
||
|
} else {
|
||
|
out_be32(&lbc->fir,
|
||
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
||
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
||
|
(FIR_OP_RBW << FIR_OP3_SHIFT));
|
||
|
|
||
|
if (oob)
|
||
|
out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
|
||
|
else
|
||
|
out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* cmdfunc send commands to the FCM */
|
||
|
static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
|
||
|
int column, int page_addr)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
|
||
|
ctrl->use_mdr = 0;
|
||
|
|
||
|
/* clear the read buffer */
|
||
|
ctrl->read_bytes = 0;
|
||
|
if (command != NAND_CMD_PAGEPROG)
|
||
|
ctrl->index = 0;
|
||
|
|
||
|
switch (command) {
|
||
|
/* READ0 and READ1 read the entire buffer to use hardware ECC. */
|
||
|
case NAND_CMD_READ1:
|
||
|
column += 256;
|
||
|
|
||
|
/* fall-through */
|
||
|
case NAND_CMD_READ0:
|
||
|
dev_dbg(ctrl->dev,
|
||
|
"fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
|
||
|
" 0x%x, column: 0x%x.\n", page_addr, column);
|
||
|
|
||
|
|
||
|
out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
|
||
|
set_addr(mtd, 0, page_addr, 0);
|
||
|
|
||
|
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
||
|
ctrl->index += column;
|
||
|
|
||
|
fsl_elbc_do_read(chip, 0);
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
return;
|
||
|
|
||
|
/* READOOB reads only the OOB because no ECC is performed. */
|
||
|
case NAND_CMD_READOOB:
|
||
|
dev_vdbg(ctrl->dev,
|
||
|
"fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
|
||
|
" 0x%x, column: 0x%x.\n", page_addr, column);
|
||
|
|
||
|
out_be32(&lbc->fbcr, mtd->oobsize - column);
|
||
|
set_addr(mtd, column, page_addr, 1);
|
||
|
|
||
|
ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
||
|
|
||
|
fsl_elbc_do_read(chip, 1);
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
return;
|
||
|
|
||
|
/* READID must read all 5 possible bytes while CEB is active */
|
||
|
case NAND_CMD_READID:
|
||
|
dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
|
||
|
|
||
|
out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_UA << FIR_OP1_SHIFT) |
|
||
|
(FIR_OP_RBW << FIR_OP2_SHIFT));
|
||
|
out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
|
||
|
/* 5 bytes for manuf, device and exts */
|
||
|
out_be32(&lbc->fbcr, 5);
|
||
|
ctrl->read_bytes = 5;
|
||
|
ctrl->use_mdr = 1;
|
||
|
ctrl->mdr = 0;
|
||
|
|
||
|
set_addr(mtd, 0, 0, 0);
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
return;
|
||
|
|
||
|
/* ERASE1 stores the block and page address */
|
||
|
case NAND_CMD_ERASE1:
|
||
|
dev_vdbg(ctrl->dev,
|
||
|
"fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
|
||
|
"page_addr: 0x%x.\n", page_addr);
|
||
|
set_addr(mtd, 0, page_addr, 0);
|
||
|
return;
|
||
|
|
||
|
/* ERASE2 uses the block and page address from ERASE1 */
|
||
|
case NAND_CMD_ERASE2:
|
||
|
dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
|
||
|
|
||
|
out_be32(&lbc->fir,
|
||
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_PA << FIR_OP1_SHIFT) |
|
||
|
(FIR_OP_CM1 << FIR_OP2_SHIFT));
|
||
|
|
||
|
out_be32(&lbc->fcr,
|
||
|
(NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
|
||
|
(NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
|
||
|
|
||
|
out_be32(&lbc->fbcr, 0);
|
||
|
ctrl->read_bytes = 0;
|
||
|
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
return;
|
||
|
|
||
|
/* SEQIN sets up the addr buffer and all registers except the length */
|
||
|
case NAND_CMD_SEQIN: {
|
||
|
__be32 fcr;
|
||
|
dev_vdbg(ctrl->dev,
|
||
|
"fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
|
||
|
"page_addr: 0x%x, column: 0x%x.\n",
|
||
|
page_addr, column);
|
||
|
|
||
|
ctrl->column = column;
|
||
|
ctrl->oob = 0;
|
||
|
|
||
|
fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
|
||
|
(NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
|
||
|
|
||
|
if (priv->page_size) {
|
||
|
out_be32(&lbc->fir,
|
||
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_CA << FIR_OP1_SHIFT) |
|
||
|
(FIR_OP_PA << FIR_OP2_SHIFT) |
|
||
|
(FIR_OP_WB << FIR_OP3_SHIFT) |
|
||
|
(FIR_OP_CW1 << FIR_OP4_SHIFT));
|
||
|
|
||
|
fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
|
||
|
} else {
|
||
|
out_be32(&lbc->fir,
|
||
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_CM2 << FIR_OP1_SHIFT) |
|
||
|
(FIR_OP_CA << FIR_OP2_SHIFT) |
|
||
|
(FIR_OP_PA << FIR_OP3_SHIFT) |
|
||
|
(FIR_OP_WB << FIR_OP4_SHIFT) |
|
||
|
(FIR_OP_CW1 << FIR_OP5_SHIFT));
|
||
|
|
||
|
if (column >= mtd->writesize) {
|
||
|
/* OOB area --> READOOB */
|
||
|
column -= mtd->writesize;
|
||
|
fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
|
||
|
ctrl->oob = 1;
|
||
|
} else if (column < 256) {
|
||
|
/* First 256 bytes --> READ0 */
|
||
|
fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
|
||
|
} else {
|
||
|
/* Second 256 bytes --> READ1 */
|
||
|
fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out_be32(&lbc->fcr, fcr);
|
||
|
set_addr(mtd, column, page_addr, ctrl->oob);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
|
||
|
case NAND_CMD_PAGEPROG: {
|
||
|
int full_page;
|
||
|
dev_vdbg(ctrl->dev,
|
||
|
"fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
|
||
|
"writing %d bytes.\n", ctrl->index);
|
||
|
|
||
|
/* if the write did not start at 0 or is not a full page
|
||
|
* then set the exact length, otherwise use a full page
|
||
|
* write so the HW generates the ECC.
|
||
|
*/
|
||
|
if (ctrl->oob || ctrl->column != 0 ||
|
||
|
ctrl->index != mtd->writesize + mtd->oobsize) {
|
||
|
out_be32(&lbc->fbcr, ctrl->index);
|
||
|
full_page = 0;
|
||
|
} else {
|
||
|
out_be32(&lbc->fbcr, 0);
|
||
|
full_page = 1;
|
||
|
}
|
||
|
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
|
||
|
/* Read back the page in order to fill in the ECC for the
|
||
|
* caller. Is this really needed?
|
||
|
*/
|
||
|
if (full_page && ctrl->oob_poi) {
|
||
|
out_be32(&lbc->fbcr, 3);
|
||
|
set_addr(mtd, 6, page_addr, 1);
|
||
|
|
||
|
ctrl->read_bytes = mtd->writesize + 9;
|
||
|
|
||
|
fsl_elbc_do_read(chip, 1);
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
|
||
|
memcpy_fromio(ctrl->oob_poi + 6,
|
||
|
&ctrl->addr[ctrl->index], 3);
|
||
|
ctrl->index += 3;
|
||
|
}
|
||
|
|
||
|
ctrl->oob_poi = NULL;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* CMD_STATUS must read the status byte while CEB is active */
|
||
|
/* Note - it does not wait for the ready line */
|
||
|
case NAND_CMD_STATUS:
|
||
|
out_be32(&lbc->fir,
|
||
|
(FIR_OP_CM0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_RBW << FIR_OP1_SHIFT));
|
||
|
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
|
||
|
out_be32(&lbc->fbcr, 1);
|
||
|
set_addr(mtd, 0, 0, 0);
|
||
|
ctrl->read_bytes = 1;
|
||
|
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
|
||
|
/* The chip always seems to report that it is
|
||
|
* write-protected, even when it is not.
|
||
|
*/
|
||
|
setbits8(ctrl->addr, NAND_STATUS_WP);
|
||
|
return;
|
||
|
|
||
|
/* RESET without waiting for the ready line */
|
||
|
case NAND_CMD_RESET:
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
|
||
|
out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
|
||
|
out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
return;
|
||
|
|
||
|
default:
|
||
|
dev_err(ctrl->dev,
|
||
|
"fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
|
||
|
command);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
|
||
|
{
|
||
|
/* The hardware does not seem to support multiple
|
||
|
* chips per bank.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write buf to the FCM Controller Data Buffer
|
||
|
*/
|
||
|
static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
unsigned int bufsize = mtd->writesize + mtd->oobsize;
|
||
|
|
||
|
if (len < 0) {
|
||
|
dev_err(ctrl->dev, "write_buf of %d bytes", len);
|
||
|
ctrl->status = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if ((unsigned int)len > bufsize - ctrl->index) {
|
||
|
dev_err(ctrl->dev,
|
||
|
"write_buf beyond end of buffer "
|
||
|
"(%d requested, %u available)\n",
|
||
|
len, bufsize - ctrl->index);
|
||
|
len = bufsize - ctrl->index;
|
||
|
}
|
||
|
|
||
|
memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
|
||
|
ctrl->index += len;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* read a byte from either the FCM hardware buffer if it has any data left
|
||
|
* otherwise issue a command to read a single byte.
|
||
|
*/
|
||
|
static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
|
||
|
/* If there are still bytes in the FCM, then use the next byte. */
|
||
|
if (ctrl->index < ctrl->read_bytes)
|
||
|
return in_8(&ctrl->addr[ctrl->index++]);
|
||
|
|
||
|
dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
|
||
|
return ERR_BYTE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read from the FCM Controller Data Buffer
|
||
|
*/
|
||
|
static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
int avail;
|
||
|
|
||
|
if (len < 0)
|
||
|
return;
|
||
|
|
||
|
avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
|
||
|
memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
|
||
|
ctrl->index += avail;
|
||
|
|
||
|
if (len > avail)
|
||
|
dev_err(ctrl->dev,
|
||
|
"read_buf beyond end of buffer "
|
||
|
"(%d requested, %d available)\n",
|
||
|
len, avail);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Verify buffer against the FCM Controller Data Buffer
|
||
|
*/
|
||
|
static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
int i;
|
||
|
|
||
|
if (len < 0) {
|
||
|
dev_err(ctrl->dev, "write_buf of %d bytes", len);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
|
||
|
dev_err(ctrl->dev,
|
||
|
"verify_buf beyond end of buffer "
|
||
|
"(%d requested, %u available)\n",
|
||
|
len, ctrl->read_bytes - ctrl->index);
|
||
|
|
||
|
ctrl->index = ctrl->read_bytes;
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < len; i++)
|
||
|
if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
|
||
|
break;
|
||
|
|
||
|
ctrl->index += len;
|
||
|
return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
|
||
|
}
|
||
|
|
||
|
/* This function is called after Program and Erase Operations to
|
||
|
* check for success or failure.
|
||
|
*/
|
||
|
static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
||
|
{
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
|
||
|
if (ctrl->status != LTESR_CC)
|
||
|
return NAND_STATUS_FAIL;
|
||
|
|
||
|
/* Use READ_STATUS command, but wait for the device to be ready */
|
||
|
ctrl->use_mdr = 0;
|
||
|
out_be32(&lbc->fir,
|
||
|
(FIR_OP_CW0 << FIR_OP0_SHIFT) |
|
||
|
(FIR_OP_RBW << FIR_OP1_SHIFT));
|
||
|
out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
|
||
|
out_be32(&lbc->fbcr, 1);
|
||
|
set_addr(mtd, 0, 0, 0);
|
||
|
ctrl->read_bytes = 1;
|
||
|
|
||
|
fsl_elbc_run_command(mtd);
|
||
|
|
||
|
if (ctrl->status != LTESR_CC)
|
||
|
return NAND_STATUS_FAIL;
|
||
|
|
||
|
/* The chip always seems to report that it is
|
||
|
* write-protected, even when it is not.
|
||
|
*/
|
||
|
setbits8(ctrl->addr, NAND_STATUS_WP);
|
||
|
return fsl_elbc_read_byte(mtd);
|
||
|
}
|
||
|
|
||
|
static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
|
||
|
{
|
||
|
struct nand_chip *chip = mtd->priv;
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
unsigned int al;
|
||
|
|
||
|
/* calculate FMR Address Length field */
|
||
|
al = 0;
|
||
|
if (chip->pagemask & 0xffff0000)
|
||
|
al++;
|
||
|
if (chip->pagemask & 0xff000000)
|
||
|
al++;
|
||
|
|
||
|
/* add to ECCM mode set in fsl_elbc_init */
|
||
|
priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
|
||
|
(al << FMR_AL_SHIFT);
|
||
|
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
|
||
|
chip->numchips);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
|
||
|
chip->chipsize);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
|
||
|
chip->pagemask);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
|
||
|
chip->chip_delay);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
|
||
|
chip->badblockpos);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
|
||
|
chip->chip_shift);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
|
||
|
chip->page_shift);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
|
||
|
chip->phys_erase_shift);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
|
||
|
chip->ecclayout);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
|
||
|
chip->ecc.mode);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
|
||
|
chip->ecc.steps);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
|
||
|
chip->ecc.bytes);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
|
||
|
chip->ecc.total);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
|
||
|
chip->ecc.layout);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
|
||
|
mtd->erasesize);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
|
||
|
mtd->writesize);
|
||
|
dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
|
||
|
mtd->oobsize);
|
||
|
|
||
|
/* adjust Option Register and ECC to match Flash page size */
|
||
|
if (mtd->writesize == 512) {
|
||
|
priv->page_size = 0;
|
||
|
clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
|
||
|
} else if (mtd->writesize == 2048) {
|
||
|
priv->page_size = 1;
|
||
|
setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
|
||
|
/* adjust ecc setup if needed */
|
||
|
if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
|
||
|
BR_DECC_CHK_GEN) {
|
||
|
chip->ecc.size = 512;
|
||
|
chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
|
||
|
&fsl_elbc_oob_lp_eccm1 :
|
||
|
&fsl_elbc_oob_lp_eccm0;
|
||
|
mtd->ecclayout = chip->ecc.layout;
|
||
|
mtd->oobavail = chip->ecc.layout->oobavail;
|
||
|
}
|
||
|
} else {
|
||
|
dev_err(ctrl->dev,
|
||
|
"fsl_elbc_init: page size %d is not supported\n",
|
||
|
mtd->writesize);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* The default u-boot configuration on MPC8313ERDB causes errors;
|
||
|
* more delay is needed. This should be safe for other boards
|
||
|
* as well.
|
||
|
*/
|
||
|
setbits32(&lbc->bank[priv->bank].or, 0x70);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int fsl_elbc_read_page(struct mtd_info *mtd,
|
||
|
struct nand_chip *chip,
|
||
|
uint8_t *buf)
|
||
|
{
|
||
|
fsl_elbc_read_buf(mtd, buf, mtd->writesize);
|
||
|
fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||
|
|
||
|
if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
|
||
|
mtd->ecc_stats.failed++;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* ECC will be calculated automatically, and errors will be detected in
|
||
|
* waitfunc.
|
||
|
*/
|
||
|
static void fsl_elbc_write_page(struct mtd_info *mtd,
|
||
|
struct nand_chip *chip,
|
||
|
const uint8_t *buf)
|
||
|
{
|
||
|
struct fsl_elbc_mtd *priv = chip->priv;
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
|
||
|
fsl_elbc_write_buf(mtd, buf, mtd->writesize);
|
||
|
fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
||
|
|
||
|
ctrl->oob_poi = chip->oob_poi;
|
||
|
}
|
||
|
|
||
|
static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
|
||
|
{
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
struct nand_chip *chip = &priv->chip;
|
||
|
|
||
|
dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
|
||
|
|
||
|
/* Fill in fsl_elbc_mtd structure */
|
||
|
priv->mtd.priv = chip;
|
||
|
priv->mtd.owner = THIS_MODULE;
|
||
|
priv->fmr = 0; /* rest filled in later */
|
||
|
|
||
|
/* fill in nand_chip structure */
|
||
|
/* set up function call table */
|
||
|
chip->read_byte = fsl_elbc_read_byte;
|
||
|
chip->write_buf = fsl_elbc_write_buf;
|
||
|
chip->read_buf = fsl_elbc_read_buf;
|
||
|
chip->verify_buf = fsl_elbc_verify_buf;
|
||
|
chip->select_chip = fsl_elbc_select_chip;
|
||
|
chip->cmdfunc = fsl_elbc_cmdfunc;
|
||
|
chip->waitfunc = fsl_elbc_wait;
|
||
|
|
||
|
/* set up nand options */
|
||
|
chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
|
||
|
|
||
|
chip->controller = &ctrl->controller;
|
||
|
chip->priv = priv;
|
||
|
|
||
|
chip->ecc.read_page = fsl_elbc_read_page;
|
||
|
chip->ecc.write_page = fsl_elbc_write_page;
|
||
|
|
||
|
/* If CS Base Register selects full hardware ECC then use it */
|
||
|
if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
|
||
|
BR_DECC_CHK_GEN) {
|
||
|
chip->ecc.mode = NAND_ECC_HW;
|
||
|
/* put in small page settings and adjust later if needed */
|
||
|
chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
|
||
|
&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
|
||
|
chip->ecc.size = 512;
|
||
|
chip->ecc.bytes = 3;
|
||
|
} else {
|
||
|
/* otherwise fall back to default software ECC */
|
||
|
chip->ecc.mode = NAND_ECC_SOFT;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
|
||
|
{
|
||
|
struct fsl_elbc_ctrl *ctrl = priv->ctrl;
|
||
|
|
||
|
nand_release(&priv->mtd);
|
||
|
|
||
|
if (priv->vbase)
|
||
|
iounmap(priv->vbase);
|
||
|
|
||
|
ctrl->chips[priv->bank] = NULL;
|
||
|
kfree(priv);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
|
||
|
struct device_node *node)
|
||
|
{
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
struct fsl_elbc_mtd *priv;
|
||
|
struct resource res;
|
||
|
#ifdef CONFIG_MTD_PARTITIONS
|
||
|
static const char *part_probe_types[]
|
||
|
= { "cmdlinepart", "RedBoot", NULL };
|
||
|
struct mtd_partition *parts;
|
||
|
#endif
|
||
|
int ret;
|
||
|
int bank;
|
||
|
|
||
|
/* get, allocate and map the memory resource */
|
||
|
ret = of_address_to_resource(node, 0, &res);
|
||
|
if (ret) {
|
||
|
dev_err(ctrl->dev, "failed to get resource\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* find which chip select it is connected to */
|
||
|
for (bank = 0; bank < MAX_BANKS; bank++)
|
||
|
if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
|
||
|
(in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
|
||
|
(in_be32(&lbc->bank[bank].br) &
|
||
|
in_be32(&lbc->bank[bank].or) & BR_BA)
|
||
|
== res.start)
|
||
|
break;
|
||
|
|
||
|
if (bank >= MAX_BANKS) {
|
||
|
dev_err(ctrl->dev, "address did not match any chip selects\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
||
|
if (!priv)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
ctrl->chips[bank] = priv;
|
||
|
priv->bank = bank;
|
||
|
priv->ctrl = ctrl;
|
||
|
priv->dev = ctrl->dev;
|
||
|
|
||
|
priv->vbase = ioremap(res.start, res.end - res.start + 1);
|
||
|
if (!priv->vbase) {
|
||
|
dev_err(ctrl->dev, "failed to map chip region\n");
|
||
|
ret = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ret = fsl_elbc_chip_init(priv);
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
|
||
|
ret = nand_scan_ident(&priv->mtd, 1);
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
|
||
|
ret = fsl_elbc_chip_init_tail(&priv->mtd);
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
|
||
|
ret = nand_scan_tail(&priv->mtd);
|
||
|
if (ret)
|
||
|
goto err;
|
||
|
|
||
|
#ifdef CONFIG_MTD_PARTITIONS
|
||
|
/* First look for RedBoot table or partitions on the command
|
||
|
* line, these take precedence over device tree information */
|
||
|
ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
|
||
|
if (ret < 0)
|
||
|
goto err;
|
||
|
|
||
|
#ifdef CONFIG_MTD_OF_PARTS
|
||
|
if (ret == 0) {
|
||
|
ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
|
||
|
node, &parts);
|
||
|
if (ret < 0)
|
||
|
goto err;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (ret > 0)
|
||
|
add_mtd_partitions(&priv->mtd, parts, ret);
|
||
|
else
|
||
|
#endif
|
||
|
add_mtd_device(&priv->mtd);
|
||
|
|
||
|
printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
|
||
|
res.start, priv->bank);
|
||
|
return 0;
|
||
|
|
||
|
err:
|
||
|
fsl_elbc_chip_remove(priv);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
|
||
|
{
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
|
||
|
/* clear event registers */
|
||
|
setbits32(&lbc->ltesr, LTESR_NAND_MASK);
|
||
|
out_be32(&lbc->lteatr, 0);
|
||
|
|
||
|
/* Enable interrupts for any detected events */
|
||
|
out_be32(&lbc->lteir, LTESR_NAND_MASK);
|
||
|
|
||
|
ctrl->read_bytes = 0;
|
||
|
ctrl->index = 0;
|
||
|
ctrl->addr = NULL;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
|
||
|
{
|
||
|
struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < MAX_BANKS; i++)
|
||
|
if (ctrl->chips[i])
|
||
|
fsl_elbc_chip_remove(ctrl->chips[i]);
|
||
|
|
||
|
if (ctrl->irq)
|
||
|
free_irq(ctrl->irq, ctrl);
|
||
|
|
||
|
if (ctrl->regs)
|
||
|
iounmap(ctrl->regs);
|
||
|
|
||
|
dev_set_drvdata(&ofdev->dev, NULL);
|
||
|
kfree(ctrl);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* NOTE: This interrupt is also used to report other localbus events,
|
||
|
* such as transaction errors on other chipselects. If we want to
|
||
|
* capture those, we'll need to move the IRQ code into a shared
|
||
|
* LBC driver.
|
||
|
*/
|
||
|
|
||
|
static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
|
||
|
{
|
||
|
struct fsl_elbc_ctrl *ctrl = data;
|
||
|
struct elbc_regs __iomem *lbc = ctrl->regs;
|
||
|
__be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
|
||
|
|
||
|
if (status) {
|
||
|
out_be32(&lbc->ltesr, status);
|
||
|
out_be32(&lbc->lteatr, 0);
|
||
|
|
||
|
ctrl->irq_status = status;
|
||
|
smp_wmb();
|
||
|
wake_up(&ctrl->irq_wait);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
/* fsl_elbc_ctrl_probe
|
||
|
*
|
||
|
* called by device layer when it finds a device matching
|
||
|
* one our driver can handled. This code allocates all of
|
||
|
* the resources needed for the controller only. The
|
||
|
* resources for the NAND banks themselves are allocated
|
||
|
* in the chip probe function.
|
||
|
*/
|
||
|
|
||
|
static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
|
||
|
const struct of_device_id *match)
|
||
|
{
|
||
|
struct device_node *child;
|
||
|
struct fsl_elbc_ctrl *ctrl;
|
||
|
int ret;
|
||
|
|
||
|
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
|
||
|
if (!ctrl)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
dev_set_drvdata(&ofdev->dev, ctrl);
|
||
|
|
||
|
spin_lock_init(&ctrl->controller.lock);
|
||
|
init_waitqueue_head(&ctrl->controller.wq);
|
||
|
init_waitqueue_head(&ctrl->irq_wait);
|
||
|
|
||
|
ctrl->regs = of_iomap(ofdev->node, 0);
|
||
|
if (!ctrl->regs) {
|
||
|
dev_err(&ofdev->dev, "failed to get memory region\n");
|
||
|
ret = -ENODEV;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
|
||
|
if (ctrl->irq == NO_IRQ) {
|
||
|
dev_err(&ofdev->dev, "failed to get irq resource\n");
|
||
|
ret = -ENODEV;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ctrl->dev = &ofdev->dev;
|
||
|
|
||
|
ret = fsl_elbc_ctrl_init(ctrl);
|
||
|
if (ret < 0)
|
||
|
goto err;
|
||
|
|
||
|
ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
|
||
|
if (ret != 0) {
|
||
|
dev_err(&ofdev->dev, "failed to install irq (%d)\n",
|
||
|
ctrl->irq);
|
||
|
ret = ctrl->irq;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
for_each_child_of_node(ofdev->node, child)
|
||
|
if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
|
||
|
fsl_elbc_chip_probe(ctrl, child);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
err:
|
||
|
fsl_elbc_ctrl_remove(ofdev);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id fsl_elbc_match[] = {
|
||
|
{
|
||
|
.compatible = "fsl,elbc",
|
||
|
},
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static struct of_platform_driver fsl_elbc_ctrl_driver = {
|
||
|
.driver = {
|
||
|
.name = "fsl-elbc",
|
||
|
},
|
||
|
.match_table = fsl_elbc_match,
|
||
|
.probe = fsl_elbc_ctrl_probe,
|
||
|
.remove = __devexit_p(fsl_elbc_ctrl_remove),
|
||
|
};
|
||
|
|
||
|
static int __init fsl_elbc_init(void)
|
||
|
{
|
||
|
return of_register_platform_driver(&fsl_elbc_ctrl_driver);
|
||
|
}
|
||
|
|
||
|
static void __exit fsl_elbc_exit(void)
|
||
|
{
|
||
|
of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
|
||
|
}
|
||
|
|
||
|
module_init(fsl_elbc_init);
|
||
|
module_exit(fsl_elbc_exit);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_AUTHOR("Freescale");
|
||
|
MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
|