linux/drivers/net/netxen/netxen_nic_ctx.c

714 lines
18 KiB
C
Raw Normal View History

/*
* Copyright (C) 2003 - 2008 NetXen, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.
*
* Contact Information:
* info@netxen.com
* NetXen,
* 3965 Freedom Circle, Fourth floor,
* Santa Clara, CA 95054
*
*/
#include "netxen_nic_hw.h"
#include "netxen_nic.h"
#include "netxen_nic_phan_reg.h"
#define NXHAL_VERSION 1
static int
netxen_api_lock(struct netxen_adapter *adapter)
{
u32 done = 0, timeout = 0;
for (;;) {
/* Acquire PCIE HW semaphore5 */
netxen_nic_read_w0(adapter,
NETXEN_PCIE_REG(PCIE_SEM5_LOCK), &done);
if (done == 1)
break;
if (++timeout >= NX_OS_CRB_RETRY_COUNT) {
printk(KERN_ERR "%s: lock timeout.\n", __func__);
return -1;
}
msleep(1);
}
#if 0
netxen_nic_write_w1(adapter,
NETXEN_API_LOCK_ID, NX_OS_API_LOCK_DRIVER);
#endif
return 0;
}
static int
netxen_api_unlock(struct netxen_adapter *adapter)
{
u32 val;
/* Release PCIE HW semaphore5 */
netxen_nic_read_w0(adapter,
NETXEN_PCIE_REG(PCIE_SEM5_UNLOCK), &val);
return 0;
}
static u32
netxen_poll_rsp(struct netxen_adapter *adapter)
{
u32 raw_rsp, rsp = NX_CDRP_RSP_OK;
int timeout = 0;
do {
/* give atleast 1ms for firmware to respond */
msleep(1);
if (++timeout > NX_OS_CRB_RETRY_COUNT)
return NX_CDRP_RSP_TIMEOUT;
netxen_nic_read_w1(adapter, NX_CDRP_CRB_OFFSET,
&raw_rsp);
rsp = le32_to_cpu(raw_rsp);
} while (!NX_CDRP_IS_RSP(rsp));
return rsp;
}
static u32
netxen_issue_cmd(struct netxen_adapter *adapter,
u32 pci_fn, u32 version, u32 arg1, u32 arg2, u32 arg3, u32 cmd)
{
u32 rsp;
u32 signature = 0;
u32 rcode = NX_RCODE_SUCCESS;
signature = NX_CDRP_SIGNATURE_MAKE(pci_fn, version);
/* Acquire semaphore before accessing CRB */
if (netxen_api_lock(adapter))
return NX_RCODE_TIMEOUT;
netxen_nic_write_w1(adapter, NX_SIGN_CRB_OFFSET,
cpu_to_le32(signature));
netxen_nic_write_w1(adapter, NX_ARG1_CRB_OFFSET,
cpu_to_le32(arg1));
netxen_nic_write_w1(adapter, NX_ARG2_CRB_OFFSET,
cpu_to_le32(arg2));
netxen_nic_write_w1(adapter, NX_ARG3_CRB_OFFSET,
cpu_to_le32(arg3));
netxen_nic_write_w1(adapter, NX_CDRP_CRB_OFFSET,
cpu_to_le32(NX_CDRP_FORM_CMD(cmd)));
rsp = netxen_poll_rsp(adapter);
if (rsp == NX_CDRP_RSP_TIMEOUT) {
printk(KERN_ERR "%s: card response timeout.\n",
netxen_nic_driver_name);
rcode = NX_RCODE_TIMEOUT;
} else if (rsp == NX_CDRP_RSP_FAIL) {
netxen_nic_read_w1(adapter, NX_ARG1_CRB_OFFSET, &rcode);
rcode = le32_to_cpu(rcode);
printk(KERN_ERR "%s: failed card response code:0x%x\n",
netxen_nic_driver_name, rcode);
}
/* Release semaphore */
netxen_api_unlock(adapter);
return rcode;
}
int
nx_fw_cmd_set_mtu(struct netxen_adapter *adapter, int mtu)
{
u32 rcode = NX_RCODE_SUCCESS;
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx[0];
if (recv_ctx->state == NX_HOST_CTX_STATE_ACTIVE)
rcode = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
recv_ctx->context_id,
mtu,
0,
NX_CDRP_CMD_SET_MTU);
if (rcode != NX_RCODE_SUCCESS)
return -EIO;
return 0;
}
static int
nx_fw_cmd_create_rx_ctx(struct netxen_adapter *adapter)
{
void *addr;
nx_hostrq_rx_ctx_t *prq;
nx_cardrsp_rx_ctx_t *prsp;
nx_hostrq_rds_ring_t *prq_rds;
nx_hostrq_sds_ring_t *prq_sds;
nx_cardrsp_rds_ring_t *prsp_rds;
nx_cardrsp_sds_ring_t *prsp_sds;
struct nx_host_rds_ring *rds_ring;
dma_addr_t hostrq_phys_addr, cardrsp_phys_addr;
u64 phys_addr;
int i, nrds_rings, nsds_rings;
size_t rq_size, rsp_size;
u32 cap, reg;
int err;
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx[0];
/* only one sds ring for now */
nrds_rings = adapter->max_rds_rings;
nsds_rings = 1;
rq_size =
SIZEOF_HOSTRQ_RX(nx_hostrq_rx_ctx_t, nrds_rings, nsds_rings);
rsp_size =
SIZEOF_CARDRSP_RX(nx_cardrsp_rx_ctx_t, nrds_rings, nsds_rings);
addr = pci_alloc_consistent(adapter->pdev,
rq_size, &hostrq_phys_addr);
if (addr == NULL)
return -ENOMEM;
prq = (nx_hostrq_rx_ctx_t *)addr;
addr = pci_alloc_consistent(adapter->pdev,
rsp_size, &cardrsp_phys_addr);
if (addr == NULL) {
err = -ENOMEM;
goto out_free_rq;
}
prsp = (nx_cardrsp_rx_ctx_t *)addr;
prq->host_rsp_dma_addr = cpu_to_le64(cardrsp_phys_addr);
cap = (NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN);
cap |= (NX_CAP0_JUMBO_CONTIGUOUS | NX_CAP0_LRO_CONTIGUOUS);
prq->capabilities[0] = cpu_to_le32(cap);
prq->host_int_crb_mode =
cpu_to_le32(NX_HOST_INT_CRB_MODE_SHARED);
prq->host_rds_crb_mode =
cpu_to_le32(NX_HOST_RDS_CRB_MODE_UNIQUE);
prq->num_rds_rings = cpu_to_le16(nrds_rings);
prq->num_sds_rings = cpu_to_le16(nsds_rings);
prq->rds_ring_offset = 0;
prq->sds_ring_offset = prq->rds_ring_offset +
(sizeof(nx_hostrq_rds_ring_t) * nrds_rings);
prq_rds = (nx_hostrq_rds_ring_t *)(prq->data + prq->rds_ring_offset);
for (i = 0; i < nrds_rings; i++) {
rds_ring = &recv_ctx->rds_rings[i];
prq_rds[i].host_phys_addr = cpu_to_le64(rds_ring->phys_addr);
prq_rds[i].ring_size = cpu_to_le32(rds_ring->max_rx_desc_count);
prq_rds[i].ring_kind = cpu_to_le32(i);
prq_rds[i].buff_size = cpu_to_le64(rds_ring->dma_size);
}
prq_sds = (nx_hostrq_sds_ring_t *)(prq->data + prq->sds_ring_offset);
prq_sds[0].host_phys_addr =
cpu_to_le64(recv_ctx->rcv_status_desc_phys_addr);
prq_sds[0].ring_size = cpu_to_le32(adapter->max_rx_desc_count);
/* only one msix vector for now */
prq_sds[0].msi_index = cpu_to_le32(0);
/* now byteswap offsets */
prq->rds_ring_offset = cpu_to_le32(prq->rds_ring_offset);
prq->sds_ring_offset = cpu_to_le32(prq->sds_ring_offset);
phys_addr = hostrq_phys_addr;
err = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
(u32)(phys_addr >> 32),
(u32)(phys_addr & 0xffffffff),
rq_size,
NX_CDRP_CMD_CREATE_RX_CTX);
if (err) {
printk(KERN_WARNING
"Failed to create rx ctx in firmware%d\n", err);
goto out_free_rsp;
}
prsp_rds = ((nx_cardrsp_rds_ring_t *)
&prsp->data[prsp->rds_ring_offset]);
for (i = 0; i < le32_to_cpu(prsp->num_rds_rings); i++) {
rds_ring = &recv_ctx->rds_rings[i];
reg = le32_to_cpu(prsp_rds[i].host_producer_crb);
rds_ring->crb_rcv_producer = NETXEN_NIC_REG(reg - 0x200);
}
prsp_sds = ((nx_cardrsp_sds_ring_t *)
&prsp->data[prsp->sds_ring_offset]);
reg = le32_to_cpu(prsp_sds[0].host_consumer_crb);
recv_ctx->crb_sts_consumer = NETXEN_NIC_REG(reg - 0x200);
reg = le32_to_cpu(prsp_sds[0].interrupt_crb);
adapter->crb_intr_mask = NETXEN_NIC_REG(reg - 0x200);
recv_ctx->state = le32_to_cpu(prsp->host_ctx_state);
recv_ctx->context_id = le16_to_cpu(prsp->context_id);
recv_ctx->virt_port = le16_to_cpu(prsp->virt_port);
out_free_rsp:
pci_free_consistent(adapter->pdev, rsp_size, prsp, cardrsp_phys_addr);
out_free_rq:
pci_free_consistent(adapter->pdev, rq_size, prq, hostrq_phys_addr);
return err;
}
static void
nx_fw_cmd_destroy_rx_ctx(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx[0];
if (netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
recv_ctx->context_id,
NX_DESTROY_CTX_RESET,
0,
NX_CDRP_CMD_DESTROY_RX_CTX)) {
printk(KERN_WARNING
"%s: Failed to destroy rx ctx in firmware\n",
netxen_nic_driver_name);
}
}
static int
nx_fw_cmd_create_tx_ctx(struct netxen_adapter *adapter)
{
nx_hostrq_tx_ctx_t *prq;
nx_hostrq_cds_ring_t *prq_cds;
nx_cardrsp_tx_ctx_t *prsp;
void *rq_addr, *rsp_addr;
size_t rq_size, rsp_size;
u32 temp;
int err = 0;
u64 offset, phys_addr;
dma_addr_t rq_phys_addr, rsp_phys_addr;
rq_size = SIZEOF_HOSTRQ_TX(nx_hostrq_tx_ctx_t);
rq_addr = pci_alloc_consistent(adapter->pdev,
rq_size, &rq_phys_addr);
if (!rq_addr)
return -ENOMEM;
rsp_size = SIZEOF_CARDRSP_TX(nx_cardrsp_tx_ctx_t);
rsp_addr = pci_alloc_consistent(adapter->pdev,
rsp_size, &rsp_phys_addr);
if (!rsp_addr) {
err = -ENOMEM;
goto out_free_rq;
}
memset(rq_addr, 0, rq_size);
prq = (nx_hostrq_tx_ctx_t *)rq_addr;
memset(rsp_addr, 0, rsp_size);
prsp = (nx_cardrsp_tx_ctx_t *)rsp_addr;
prq->host_rsp_dma_addr = cpu_to_le64(rsp_phys_addr);
temp = (NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN | NX_CAP0_LSO);
prq->capabilities[0] = cpu_to_le32(temp);
prq->host_int_crb_mode =
cpu_to_le32(NX_HOST_INT_CRB_MODE_SHARED);
prq->interrupt_ctl = 0;
prq->msi_index = 0;
prq->dummy_dma_addr = cpu_to_le64(adapter->dummy_dma.phys_addr);
offset = adapter->ctx_desc_phys_addr+sizeof(struct netxen_ring_ctx);
prq->cmd_cons_dma_addr = cpu_to_le64(offset);
prq_cds = &prq->cds_ring;
prq_cds->host_phys_addr =
cpu_to_le64(adapter->ahw.cmd_desc_phys_addr);
prq_cds->ring_size = cpu_to_le32(adapter->max_tx_desc_count);
phys_addr = rq_phys_addr;
err = netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
(u32)(phys_addr >> 32),
((u32)phys_addr & 0xffffffff),
rq_size,
NX_CDRP_CMD_CREATE_TX_CTX);
if (err == NX_RCODE_SUCCESS) {
temp = le32_to_cpu(prsp->cds_ring.host_producer_crb);
adapter->crb_addr_cmd_producer =
NETXEN_NIC_REG(temp - 0x200);
#if 0
adapter->tx_state =
le32_to_cpu(prsp->host_ctx_state);
#endif
adapter->tx_context_id =
le16_to_cpu(prsp->context_id);
} else {
printk(KERN_WARNING
"Failed to create tx ctx in firmware%d\n", err);
err = -EIO;
}
pci_free_consistent(adapter->pdev, rsp_size, rsp_addr, rsp_phys_addr);
out_free_rq:
pci_free_consistent(adapter->pdev, rq_size, rq_addr, rq_phys_addr);
return err;
}
static void
nx_fw_cmd_destroy_tx_ctx(struct netxen_adapter *adapter)
{
if (netxen_issue_cmd(adapter,
adapter->ahw.pci_func,
NXHAL_VERSION,
adapter->tx_context_id,
NX_DESTROY_CTX_RESET,
0,
NX_CDRP_CMD_DESTROY_TX_CTX)) {
printk(KERN_WARNING
"%s: Failed to destroy tx ctx in firmware\n",
netxen_nic_driver_name);
}
}
static u64 ctx_addr_sig_regs[][3] = {
{NETXEN_NIC_REG(0x188), NETXEN_NIC_REG(0x18c), NETXEN_NIC_REG(0x1c0)},
{NETXEN_NIC_REG(0x190), NETXEN_NIC_REG(0x194), NETXEN_NIC_REG(0x1c4)},
{NETXEN_NIC_REG(0x198), NETXEN_NIC_REG(0x19c), NETXEN_NIC_REG(0x1c8)},
{NETXEN_NIC_REG(0x1a0), NETXEN_NIC_REG(0x1a4), NETXEN_NIC_REG(0x1cc)}
};
#define CRB_CTX_ADDR_REG_LO(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][0])
#define CRB_CTX_ADDR_REG_HI(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][2])
#define CRB_CTX_SIGNATURE_REG(FUNC_ID) (ctx_addr_sig_regs[FUNC_ID][1])
#define lower32(x) ((u32)((x) & 0xffffffff))
#define upper32(x) ((u32)(((u64)(x) >> 32) & 0xffffffff))
static struct netxen_recv_crb recv_crb_registers[] = {
/* Instance 0 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x100),
/* Jumbo frames */
NETXEN_NIC_REG(0x110),
/* LRO */
NETXEN_NIC_REG(0x120)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x138),
},
/* Instance 1 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x144),
/* Jumbo frames */
NETXEN_NIC_REG(0x154),
/* LRO */
NETXEN_NIC_REG(0x164)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x17c),
},
/* Instance 2 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x1d8),
/* Jumbo frames */
NETXEN_NIC_REG(0x1f8),
/* LRO */
NETXEN_NIC_REG(0x208)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x220),
},
/* Instance 3 */
{
/* crb_rcv_producer: */
{
NETXEN_NIC_REG(0x22c),
/* Jumbo frames */
NETXEN_NIC_REG(0x23c),
/* LRO */
NETXEN_NIC_REG(0x24c)
},
/* crb_sts_consumer: */
NETXEN_NIC_REG(0x264),
},
};
static int
netxen_init_old_ctx(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
int ctx, ring;
int func_id = adapter->portnum;
adapter->ctx_desc->cmd_ring_addr =
cpu_to_le64(adapter->ahw.cmd_desc_phys_addr);
adapter->ctx_desc->cmd_ring_size =
cpu_to_le32(adapter->max_tx_desc_count);
for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
adapter->ctx_desc->rcv_ctx[ring].rcv_ring_addr =
cpu_to_le64(rds_ring->phys_addr);
adapter->ctx_desc->rcv_ctx[ring].rcv_ring_size =
cpu_to_le32(rds_ring->max_rx_desc_count);
}
adapter->ctx_desc->sts_ring_addr =
cpu_to_le64(recv_ctx->rcv_status_desc_phys_addr);
adapter->ctx_desc->sts_ring_size =
cpu_to_le32(adapter->max_rx_desc_count);
}
adapter->pci_write_normalize(adapter, CRB_CTX_ADDR_REG_LO(func_id),
lower32(adapter->ctx_desc_phys_addr));
adapter->pci_write_normalize(adapter, CRB_CTX_ADDR_REG_HI(func_id),
upper32(adapter->ctx_desc_phys_addr));
adapter->pci_write_normalize(adapter, CRB_CTX_SIGNATURE_REG(func_id),
NETXEN_CTX_SIGNATURE | func_id);
return 0;
}
static uint32_t sw_int_mask[4] = {
CRB_SW_INT_MASK_0, CRB_SW_INT_MASK_1,
CRB_SW_INT_MASK_2, CRB_SW_INT_MASK_3
};
int netxen_alloc_hw_resources(struct netxen_adapter *adapter)
{
struct netxen_hardware_context *hw = &adapter->ahw;
u32 state = 0;
void *addr;
int err = 0;
int ctx, ring;
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
err = netxen_receive_peg_ready(adapter);
if (err) {
printk(KERN_ERR "Rcv Peg initialization not complete:%x.\n",
state);
return err;
}
addr = pci_alloc_consistent(adapter->pdev,
sizeof(struct netxen_ring_ctx) + sizeof(uint32_t),
&adapter->ctx_desc_phys_addr);
if (addr == NULL) {
DPRINTK(ERR, "failed to allocate hw context\n");
return -ENOMEM;
}
memset(addr, 0, sizeof(struct netxen_ring_ctx));
adapter->ctx_desc = (struct netxen_ring_ctx *)addr;
adapter->ctx_desc->ctx_id = cpu_to_le32(adapter->portnum);
adapter->ctx_desc->cmd_consumer_offset =
cpu_to_le64(adapter->ctx_desc_phys_addr +
sizeof(struct netxen_ring_ctx));
adapter->cmd_consumer =
(__le32 *)(((char *)addr) + sizeof(struct netxen_ring_ctx));
/* cmd desc ring */
addr = pci_alloc_consistent(adapter->pdev,
sizeof(struct cmd_desc_type0) *
adapter->max_tx_desc_count,
&hw->cmd_desc_phys_addr);
if (addr == NULL) {
printk(KERN_ERR "%s failed to allocate tx desc ring\n",
netxen_nic_driver_name);
return -ENOMEM;
}
hw->cmd_desc_head = (struct cmd_desc_type0 *)addr;
for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
/* rx desc ring */
rds_ring = &recv_ctx->rds_rings[ring];
addr = pci_alloc_consistent(adapter->pdev,
RCV_DESC_RINGSIZE,
&rds_ring->phys_addr);
if (addr == NULL) {
printk(KERN_ERR "%s failed to allocate rx "
"desc ring[%d]\n",
netxen_nic_driver_name, ring);
err = -ENOMEM;
goto err_out_free;
}
rds_ring->desc_head = (struct rcv_desc *)addr;
if (adapter->fw_major < 4)
rds_ring->crb_rcv_producer =
recv_crb_registers[adapter->portnum].
crb_rcv_producer[ring];
}
/* status desc ring */
addr = pci_alloc_consistent(adapter->pdev,
STATUS_DESC_RINGSIZE,
&recv_ctx->rcv_status_desc_phys_addr);
if (addr == NULL) {
printk(KERN_ERR "%s failed to allocate sts desc ring\n",
netxen_nic_driver_name);
err = -ENOMEM;
goto err_out_free;
}
recv_ctx->rcv_status_desc_head = (struct status_desc *)addr;
if (adapter->fw_major < 4)
recv_ctx->crb_sts_consumer =
recv_crb_registers[adapter->portnum].
crb_sts_consumer;
}
if (adapter->fw_major >= 4) {
adapter->intr_scheme = INTR_SCHEME_PERPORT;
adapter->msi_mode = MSI_MODE_MULTIFUNC;
err = nx_fw_cmd_create_rx_ctx(adapter);
if (err)
goto err_out_free;
err = nx_fw_cmd_create_tx_ctx(adapter);
if (err)
goto err_out_free;
} else {
adapter->intr_scheme = adapter->pci_read_normalize(adapter,
CRB_NIC_CAPABILITIES_FW);
adapter->msi_mode = adapter->pci_read_normalize(adapter,
CRB_NIC_MSI_MODE_FW);
adapter->crb_intr_mask = sw_int_mask[adapter->portnum];
err = netxen_init_old_ctx(adapter);
if (err) {
netxen_free_hw_resources(adapter);
return err;
}
}
return 0;
err_out_free:
netxen_free_hw_resources(adapter);
return err;
}
void netxen_free_hw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
int ctx, ring;
if (adapter->fw_major >= 4) {
nx_fw_cmd_destroy_tx_ctx(adapter);
nx_fw_cmd_destroy_rx_ctx(adapter);
}
if (adapter->ctx_desc != NULL) {
pci_free_consistent(adapter->pdev,
sizeof(struct netxen_ring_ctx) +
sizeof(uint32_t),
adapter->ctx_desc,
adapter->ctx_desc_phys_addr);
adapter->ctx_desc = NULL;
}
if (adapter->ahw.cmd_desc_head != NULL) {
pci_free_consistent(adapter->pdev,
sizeof(struct cmd_desc_type0) *
adapter->max_tx_desc_count,
adapter->ahw.cmd_desc_head,
adapter->ahw.cmd_desc_phys_addr);
adapter->ahw.cmd_desc_head = NULL;
}
for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
recv_ctx = &adapter->recv_ctx[ctx];
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
if (rds_ring->desc_head != NULL) {
pci_free_consistent(adapter->pdev,
RCV_DESC_RINGSIZE,
rds_ring->desc_head,
rds_ring->phys_addr);
rds_ring->desc_head = NULL;
}
}
if (recv_ctx->rcv_status_desc_head != NULL) {
pci_free_consistent(adapter->pdev,
STATUS_DESC_RINGSIZE,
recv_ctx->rcv_status_desc_head,
recv_ctx->rcv_status_desc_phys_addr);
recv_ctx->rcv_status_desc_head = NULL;
}
}
}